JPH1068501A - Rectangular multitubular once-through boiler - Google Patents

Rectangular multitubular once-through boiler

Info

Publication number
JPH1068501A
JPH1068501A JP13755297A JP13755297A JPH1068501A JP H1068501 A JPH1068501 A JP H1068501A JP 13755297 A JP13755297 A JP 13755297A JP 13755297 A JP13755297 A JP 13755297A JP H1068501 A JPH1068501 A JP H1068501A
Authority
JP
Japan
Prior art keywords
water pipe
burner
vertical water
combustion
walls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13755297A
Other languages
Japanese (ja)
Inventor
Tamotsu Miura
保 三浦
Toshihiro Kayahara
敏広 茅原
Seiji Tai
誠二 田井
Masatoshi Miura
正敏 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP13755297A priority Critical patent/JPH1068501A/en
Publication of JPH1068501A publication Critical patent/JPH1068501A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce discharge of harmful combustion exhaust matter by reducing in size a boiler. SOLUTION: A burner 3 is provided at one ends of a pair of water tube walls 12 in its lengthwise direction. A gas passage of the burner 3 is formed from one end to the other in its lengthwise direction between the walls. Many vertical water tubes 10 are disposed substantially over a whole area of the passage via a predetermined interval to adjacent vertical water tube. A distance between the tube 10 directly near the burner 3 and the burner 3 is set equal to or shorter than a length of substantially three times as large as a diameter of the tube 10. A gap between the tubes 10 is set to equal to or shorter than the diameter. A flame of the burner 3 is distributed to a gap between the walls 12 and the tube 10 between the walls 12 and a gap between the tubes between the walls 12 to form a vortex.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、縦列配置した水
管群に対して燃焼火炎、燃焼ガスを交叉線方向に流動さ
せる形式の缶体を備えた角型多管式貫流ボイラーに関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a square multitubular once-through boiler provided with a can body of a type in which a combustion flame and a combustion gas flow in a crosswise direction with respect to a group of water tubes arranged in tandem.

【0002】[0002]

【従来の技術】近年では、環境汚染問題等により、ボイ
ラーにおいても有害燃焼排気物、特にNOX ,CO等の
更なる低減化が求められている。このような有害燃焼排
気物の低減化対策としては、排気ガスを再循環させる方
法,予混合気に水を噴射する方法,燃料過剰で一次燃焼
させて、その後流で二次空気を混入して二次燃焼させ
る、所謂二段燃焼方法等や,バーナ近傍の冷体物により
燃焼ガス温度を調整した後、熱交換器までの間の断熱空
間内でCOを酸化させるもの等が知られている。
BACKGROUND OF THE INVENTION Recently, environmental pollution problems and the like, hazardous combustion emissions even boiler, in particular NO X, further reduction such as CO are required. Measures to reduce such harmful combustion exhaust include a method of recirculating exhaust gas, a method of injecting water into the premixed air, a primary combustion with excess fuel, and a mixture of secondary air in the subsequent stream. A so-called two-stage combustion method in which secondary combustion is performed, a method in which CO is oxidized in an adiabatic space between a heat exchanger, and the like after a combustion gas temperature is adjusted by a cold body near a burner are known. .

【0003】[0003]

【発明が解決しようとする課題】しかしながら、これら
の低減化対策を従来のボイラー缶体に適用するのみで
は、ボイラーの大型化、複雑化を招き、コストも上昇す
る。
However, simply applying these reduction measures to a conventional boiler can increases the size and complexity of the boiler and increases the cost.

【0004】[0004]

【課題を解決するための手段】この発明は、前記課題を
解決するためになされたもので、多数の垂直水管を1列
に整列配置すると共に隣り合う垂直水管同士をフィン状
部材で連結して水管壁を形成し、この水管壁2枚を互い
に間隔を存して対面させ配置し、バーナを前記1対の水
管壁の長手方向一端に設け、前記水管壁間にその長手方
向一端から他端へ向けて前記バーナのガス通路を形成
し、多数の垂直水管を隣り合う垂直水管と所定の間隔を
存して前記ガス通路のほぼ全域に亘って配置し、前記バ
ーナの直近の前記垂直水管と前記バーナとの距離を前記
垂直水管の直径の略3倍の長さに等しいかそれよりも小
さく設定すると共に前記各垂直水管の相互の間隙を前記
直径と等しいかそれ以下に設定し、前記バーナの火炎を
前記水管壁と前記水管壁間の垂直水管との間の間隙と前
記水管壁間の垂直水管同士の間の間隙とに流通させて渦
流となすことを特徴としている。
SUMMARY OF THE INVENTION The present invention has been made in order to solve the above-mentioned problems, and has a structure in which a number of vertical water tubes are arranged in a line and adjacent vertical water tubes are connected to each other by fin-shaped members. A water pipe wall is formed, the two water pipe walls are arranged facing each other with a space therebetween, and a burner is provided at one longitudinal end of the pair of water pipe walls. A gas passage of the burner is formed from one end to the other end, and a number of vertical water pipes are arranged over substantially the entire gas passage at a predetermined interval from an adjacent vertical water pipe. The distance between the vertical water pipe and the burner is set to be equal to or less than about three times the diameter of the vertical water pipe, and the gap between the vertical water pipes is set to be equal to or less than the diameter. And the flame of the burner is transferred to the water pipe wall and the water. Were then circulated to the gap between the adjacent vertical water tubes of the gap between the water tube walls between the vertical water tube walls are characterized by forming a vortex.

【0005】[0005]

【作用】上記の手段によれば、バーナからの燃焼火炎は
水管壁と前記水管壁間の垂直水管との間の間隙と、前記
水管壁間の垂直水管同士の間の間隙とに流通するので、
水管壁と水管壁間の水管群の両方により冷却されること
で、NOxの発生量が低減する。又、燃焼火炎を水管壁
と水管群で冷却する際に発生するCOは、水管壁と水管
壁間の垂直水管との間の間隙と、水管壁間の垂直水管同
士の間の間隙水管群の水管間隙における燃焼火炎の渦流
により効果的に酸化され、COの排出量が低減する。
According to the above-mentioned means, the combustion flame from the burner is transmitted to the gap between the water pipe wall and the vertical water pipe between the water pipe walls and the gap between the vertical water pipes between the water pipe walls. Because it circulates,
By being cooled by both the water pipe wall and the water pipe group between the water pipe walls, the generation amount of NOx is reduced. Further, CO generated when the combustion flame is cooled by the water pipe wall and the water pipe group is formed by a gap between the water pipe walls and the vertical water pipes between the water pipe walls, and between the vertical water pipes between the water pipe walls. It is effectively oxidized by the swirling flow of the combustion flame in the water pipe gap of the pore water pipe group, and the CO emission is reduced.

【0006】[0006]

【実施例】以下、この発明の具体的実施例を図面に基づ
いて詳細に説明する。図1〜図5は、この発明に係る角
型多管式貫流ボイラーの一実施例を示すもので、図1は
一部を断面とした側面説明図,図2は缶体における垂直
水管の配置を説明する平面説明図、図3はこの多管式貫
流ボイラーにおける節炭器の一部を断面とした側面拡大
説明図、図4は図3の側面図、図5は角型多管式貫流ボ
イラーの全体を示す斜視説明図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings. 1 to 5 show an embodiment of a rectangular multi-tube once-through boiler according to the present invention. FIG. 1 is an explanatory side view partially in section, and FIG. 2 is an arrangement of a vertical water pipe in a can body. FIG. 3 is an enlarged side view of a cross section of a part of the economizer in this multi-tube once-through boiler, FIG. 4 is a side view of FIG. 3, and FIG. 5 is a square multi-tube once-through boiler. It is a perspective explanatory view showing the whole boiler.

【0007】図面において、1は薄型のボイラー本体
で、断熱材を介してケーシング2にて缶体Aを囲むこと
により形成されている。缶体Aは、多数の垂直水管10
を実質上平行に縦列配置することにより、全体で図示す
るような幅狭で縦長の略矩形状の角型缶体を構成してお
り、以下に、詳細に説明する。即ち、缶体Aの外郭を構
成する水管壁12は、直管状の垂直水管10を等間隔で
配置してなるもので、隣合う垂直水管10同士をフィン
状部材11,11…で連結することにより、垂直水管1
0同士の隙間を塞いだ状態としてあり、矩形形状とした
1枚の壁部材として構成されている。そして、このよう
に構成した水管壁12を2枚、所要の間隔を保持した状
態で対面させ、かつ両者が互いに略平行をなすように配
置し、一対となった水管壁12,12の各垂直水管1
0,10…の上下端を、上下のヘッダ15,16(図1
参照)にそれぞれ連結してある。
In the drawings, reference numeral 1 denotes a thin boiler main body, which is formed by surrounding a can body A with a casing 2 via a heat insulating material. The can body A has a large number of vertical water pipes 10.
Are arranged substantially in parallel in tandem to form a narrow, vertically long, substantially rectangular prismatic can body as shown in the figure as a whole, which will be described in detail below. That is, the water pipe wall 12 constituting the outer shell of the can body A is configured by arranging straight vertical water pipes 10 at equal intervals, and connecting the adjacent vertical water pipes 10 with the fin-shaped members 11, 11,.... The vertical water pipe 1
It is in a state in which the gap between the zeros is closed, and is configured as one rectangular wall member. Then, two water pipe walls 12 configured as described above are opposed to each other while maintaining a required interval, and are arranged so as to be substantially parallel to each other. Each vertical water pipe 1
The upper and lower ends of 0, 10...
Reference).

【0008】前記一対の水管壁12,12の長手方向
(縦列方向、即ち図2における左右方向)の一端部には
後述する燃焼バーナ3が設けられており、また他端部に
はガス出口7が設けられている。この結果、前記一対の
水管壁12,12と前記上下のヘッダ15,16とによ
り、燃焼バーナ3からの燃焼火炎及び燃焼ガスが実質上
直線的に通過するガス通路8を形成している。このガス
通路8内には、前記燃焼バーナ3からの燃焼火炎及び燃
焼ガスの流通を許容する間隔をもって、多数の垂直水管
10,10…が挿設されている。
At one end of the pair of water pipe walls 12, 12 in the longitudinal direction (vertical direction, ie, the horizontal direction in FIG. 2), a combustion burner 3 described later is provided, and at the other end, a gas outlet is provided. 7 are provided. As a result, the pair of water pipe walls 12, 12 and the upper and lower headers 15, 16 form a gas passage 8 through which the combustion flame and the combustion gas from the combustion burner 3 pass substantially linearly. A number of vertical water pipes 10, 10... Are inserted in the gas passage 8 at intervals allowing the flow of the combustion flame and the combustion gas from the combustion burner 3.

【0009】各垂直水管10相互の間隔は、図2に示す
ように、垂直水管10の直径dと略等しいかそれ以下に
設定する。即ち、前記両水管壁12における垂直水管1
0同士の間隙、前記ガス通路8に挿設した各水管列イ,
ロ,ハ…の垂直水管10同士の間隙、水管列イ,ロ,ハ
…の各列の間隙並びに、前記両水管壁12の垂直水管1
0と前記ガス通路8に挿設した垂直水管10の隣合うも
の同士の間隙を、垂直水管10の直径dと略等しいか、
それ以下に設定する。尚、これらの各間隙は、全て同一
であっても、互いに異なっていても、前述の条件内にあ
ればよい。そして、前記各垂直水管10は、前記間隔を
保持して前記ガス通路8の略全域に亘って挿設されてい
る。このように、前記ガス通路8内の略全域に亘って挿
設された各垂直水管10の上下端は、前記両水管壁12
を構成する垂直水管10,10…と同様に前記上下のヘ
ッダ15,16にそれぞれ連結してある。
As shown in FIG. 2, the distance between the vertical water pipes 10 is set to be substantially equal to or less than the diameter d of the vertical water pipes 10. That is, the vertical water pipe 1 in the water pipe walls 12
0, each water pipe row a inserted in the gas passage 8,
The gaps between the vertical water pipes 10 of B, C,..., The gaps of each row of water pipe rows A, B, C,.
0 and the gap between adjacent ones of the vertical water pipes 10 inserted in the gas passage 8 is substantially equal to the diameter d of the vertical water pipes 10,
Set it below. These gaps may be all the same or different from each other, as long as they are within the aforementioned conditions. Each of the vertical water pipes 10 is inserted over substantially the entire area of the gas passage 8 while maintaining the interval. In this way, the upper and lower ends of each vertical water pipe 10 inserted substantially over the entire area in the gas passage 8 are connected to the two water pipe walls 12.
Are connected to the upper and lower headers 15, 16, respectively.

【0010】また、前記ガス通路8内に挿設された各垂
直水管10は、図示するように、前記両水管壁12を構
成する垂直水管10,10…とそれぞれ千鳥配列となる
ように配置してある。更に、前記ガス通路8内において
前記燃焼バーナ3と対面する垂直水管10,10は、図
2に示すように、前記燃焼バーナ3に比較的近接した位
置に配置されており、前記燃焼バーナ3とこれに対面す
る垂直水管10、即ち、第1の垂直水管列イの垂直水管
10,10との間隔もきわめて小さいものとなってい
る。即ち、前記燃焼バーナ3と、この直前に位置する第
1の垂直水管列イとの間隙は、所定距離、即ち、垂直水
管10の直径dの略3倍に等しいかそれ以下に設定して
ある。また、水管壁12の水管列のうち燃焼バーナ3に
最も近接する水管列も上述の如き所定距離を基準として
設定している。
The vertical water pipes 10 inserted in the gas passages 8 are arranged in a staggered arrangement with the vertical water pipes 10, 10... I have. Further, the vertical water pipes 10, 10 facing the combustion burner 3 in the gas passage 8 are disposed relatively close to the combustion burner 3, as shown in FIG. The space between the vertical water pipe 10 facing this, that is, the vertical water pipes 10, 10 of the first vertical water pipe row A is also extremely small. That is, the gap between the combustion burner 3 and the first vertical water pipe row A located immediately before this is set to a predetermined distance, that is, substantially equal to or less than three times the diameter d of the vertical water pipe 10. . Further, the water pipe row closest to the combustion burner 3 among the water pipe rows of the water pipe wall 12 is also set based on the predetermined distance as described above.

【0011】前記燃焼バーナ3は、全一次空気式の予混
合バーナで、空気比が1以上(好ましくは1〜1.5)
の混合気を使用するものである。即ち、燃料ガスに対し
て燃焼用空気の全量を前記の空気比となるように混合し
た混合気(以下、予混合気と称する。)を使用する形式
のものである。このような予混合バーナとしては、例え
ば、表面燃焼バーナ等がある。更に、この実施例におい
ての燃焼バーナ3は、缶体Aの横幅が前記のように幅狭
であり、バーナ取付け用の間口(図示省略)が限られて
いるため、小型の高負荷燃焼バーナ(特願昭63−13
0982参照)が好ましい。
The combustion burner 3 is an all-primary air type premix burner having an air ratio of 1 or more (preferably 1 to 1.5).
Is used. That is, this type uses a mixture (hereinafter, referred to as a pre-mixture) in which the entire amount of combustion air is mixed with the fuel gas so as to have the above-described air ratio. Such a premix burner includes, for example, a surface combustion burner. Further, in the combustion burner 3 in this embodiment, the lateral width of the can body A is narrow as described above, and the frontage (not shown) for attaching the burner is limited, so that a small high-load combustion burner ( Japanese Patent Application No. 63-13
0982).

【0012】そして、ボイラー本体1の頂面S1には、前
記燃焼バーナ3へ燃焼用空気を供給する送風機4が配置
されている。この送風機4は、遠心型のもので、その吹
出口4aは、前記燃焼バーナ3の取付側に向けて下向き
に形成されており、ボイラー本体1の前面S2に配置され
たバーナダクト5を介して、前記燃焼バーナ3と接続し
ている。このバーナダクト5は、前記燃焼バーナ3へ前
記送風機4からの燃焼用空気と燃料ガスとを混合してな
る予混合気を供給するもので、缶体Aの横幅と略同等
か,あるいはそれ以下の横幅にて形成される。即ち、バ
ーナダクト5は、図示するような四角の筒形状とし、そ
の上端部を前記送風機4の吹出口4aと接続している。
またその途中に燃料ガス供給ノズル(図示省略)を配置
し、缶体Aに当接する部分に形成した開口部(図示省
略)から前記燃焼バーナ3へ前述空気比の予混合気を供
給するように取り付けられている。
A blower 4 for supplying combustion air to the combustion burner 3 is arranged on the top surface S 1 of the boiler body 1. The blower 4 is of a centrifugal type, its outlet 4a is formed downwardly toward the attachment side of the combustion burners 3, via a Banadakuto 5 disposed on the front surface S 2 of the boiler main body 1 , And the combustion burner 3. The burner duct 5 supplies the combustion burner 3 with a premixed gas obtained by mixing the combustion air from the blower 4 with the fuel gas, and is substantially equal to or less than the width of the can body A. It is formed with a width. That is, the burner duct 5 has a square tubular shape as shown in the figure, and its upper end is connected to the outlet 4 a of the blower 4.
A fuel gas supply nozzle (not shown) is arranged in the middle of the nozzle, and a premixed air having the above-mentioned air ratio is supplied to the combustion burner 3 from an opening (not shown) formed in a portion which comes into contact with the can body A. Installed.

【0013】以上の構成において、燃焼用空気は、送風
機4からバーナダクト5を介して供給され、このバーナ
ダクト5の途中で燃料ガス供給ノズル(図示省略)から
の燃料ガスを伴って、予混合気として燃焼バーナ3へ供
給される。この際の予混合気は、前述したように空気比
が1以上(好ましくは1〜1.5)となるように、前記
の燃焼用空気と燃料ガスとが混合される。燃焼バーナ3
に供給された予混合気は、この燃焼バーナ3から噴出
し、燃焼バーナ3前面で燃焼火炎となり、缶体A内の各
水管10の隙間空間内を図2中左方から右方に向けて完
全燃焼しながら流動する。これに伴い燃焼火炎及び燃焼
ガスは各水管10に熱伝達を行う。
In the above configuration, the combustion air is supplied from the blower 4 through the burner duct 5, and along the fuel gas from a fuel gas supply nozzle (not shown) in the middle of the burner duct 5, as combustion air. It is supplied to the combustion burner 3. At this time, the combustion air and the fuel gas are mixed so that the premixed air has an air ratio of 1 or more (preferably 1 to 1.5) as described above. Combustion burner 3
The premixed gas supplied to the combustion burner 3 is ejected from the combustion burner 3 and becomes a combustion flame at the front of the combustion burner 3, and the space inside each water pipe 10 in the can body A is directed from left to right in FIG. It flows while completely burning. Accordingly, the combustion flame and the combustion gas transfer heat to each water pipe 10.

【0014】その際、燃焼バーナ3と第1の垂直水管列
イ、並びに両水管壁12との間隙を上述の如く狭く設定
してあるため、燃焼バーナ3からの火炎は、各垂直水管
列イ,,ロ,ハ…における各垂直水管10の間隙を通し
て、ガス通路8に沿って缶体の長手方向に長く延びるこ
とになり、この間隙空間内でも燃焼反応が生じる。この
結果、燃焼バーナ3からの燃焼火炎は、第1の垂直水管
列イから次々と各垂直水管列ロ,ハ…に、また、両水管
壁12にも接触し、順次伝熱を行い、火炎温度を例えば
1200℃〜1300℃程度に低く抑えることができ、サーマル
NOX (thermal NOX )の生成を抑制することができ
る。更に燃焼火炎は、各垂直水管10によって、隣合う
垂直水管10,10…同士の間隙で渦流となるため、保
炎性が向上すると共に、未燃ガスが高温の燃焼ガス流に
急速に取込まれて完全燃焼が行われ、特にCOは酸化さ
れてCO2 となる。また、燃焼反応後の燃焼ガスも、各
水管列並びに水管壁に接触しながら缶体の長手方向に通
過するようになり、比較的低い温度範囲に保たれる。従
って、CO2 のCOへの熱解離が抑制される。
At this time, since the gap between the combustion burner 3 and the first vertical water pipe row A and between the two water pipe walls 12 is set to be narrow as described above, the flame from the combustion burner 3 is transmitted to each vertical water pipe row. Along the gas passage 8 in the longitudinal direction of the can through the gaps between the vertical water pipes 10 in (a), (b), (c), etc., a combustion reaction occurs also in the gap space. As a result, the combustion flame from the combustion burner 3 comes into contact with each of the vertical water pipe rows B, C,... Successively from the first vertical water pipe row A, and also on both water pipe walls 12, and sequentially conducts heat. For example, the flame temperature
The temperature can be reduced to about 1200 ° C. to 1300 ° C., and generation of thermal NO X (thermal NO X ) can be suppressed. Further, the combustion flame is swirled by the vertical water pipes 10 in the gaps between the adjacent vertical water pipes 10, 10. Therefore, the flame holding property is improved, and the unburned gas is rapidly taken into the high-temperature combustion gas flow. In rare cases, complete combustion takes place, especially CO being oxidized to CO 2 . Further, the combustion gas after the combustion reaction passes in the longitudinal direction of the can body while being in contact with each of the water pipe rows and the water pipe walls, and is maintained at a relatively low temperature range. Therefore, thermal dissociation of CO 2 into CO is suppressed.

【0015】更に、前記燃焼バーナ3は、予め前述の空
気比にて燃焼用空気と燃料ガスとを混合した予混合気を
燃焼させるものであり、上記混合気は燃焼バーナ3に供
給されるまでに既に均一な混合状態となっている。その
ため、燃焼バーナ3の前方に向けて形成される燃焼火炎
は、水管に伝熱作用を及ぼして燃焼反応の生じない温度
領域まで温度降下するまでに、速やかに燃焼を完了する
ため、未燃焼部分が残留することなく、完全燃焼する。
これに対して、上記燃焼バーナ3が、先混合バーナや、
部分予混合バーナ等であった場合、上記の如くバーナ直
前に水管を配置した缶体構造においては、燃焼バーナか
ら噴出する燃料ガス、あるいは部分予混合気に空気を混
入するための噴出距離が大幅に不足する。このため、燃
料ガスに対して空気の混入が難しく、完全に燃焼させる
ことができない。また、十分な量の燃焼用空気を取り込
めたとしてもこの種缶体では、燃料ガスと十分に混合さ
れないまま燃焼が始まり、不完全燃焼部分が残留する。
特にこの不完全燃焼部分は、前述したような水管の火炎
温度抑制作用によって冷却されるため、そのまま缶体か
ら排出されるため、熱効率の低下につながる問題があ
る。
Further, the combustion burner 3 burns a premixed air mixture of combustion air and fuel gas at the above-mentioned air ratio in advance. Already in a uniform mixed state. Therefore, the combustion flame formed toward the front of the combustion burner 3 completes the combustion immediately before the temperature falls to a temperature range in which a heat transfer effect is exerted on the water pipe and a combustion reaction does not occur. Completely combusts without remaining.
On the other hand, the combustion burner 3 is a premix burner,
In the case of a partially premixed burner, etc., in the can body structure in which the water pipe is arranged immediately before the burner as described above, the ejection distance for mixing air into the fuel gas ejected from the combustion burner or the partially premixed gas is large. Shortage. For this reason, it is difficult to mix air into the fuel gas, and it is not possible to completely burn the fuel gas. Further, even if a sufficient amount of combustion air is taken in, in this kind of can body, combustion starts without being sufficiently mixed with the fuel gas, and an incompletely combusted portion remains.
In particular, since the incompletely burned portion is cooled by the flame temperature suppressing action of the water pipe as described above, it is discharged from the can as it is, which causes a problem of lowering thermal efficiency.

【0016】加えて、前記の如き缶体構造とすることに
より、前記燃焼バーナ3からの燃焼ガスの流通経路、即
ち、ガス通路8を直線状に比較的長いものとして形成す
ることができる。従って、前記燃焼バーナ3からの燃焼
ガスを缶体A内に、比較的低温状態で停留させておくこ
とができ、別個に燃焼室を形成する必要がなくなる。こ
のことは、缶体Aがコンパクトになると同時に、燃焼ガ
スに渦流を与える作用によって有害排気物の低減につな
がる。
In addition, by adopting the can body structure as described above, the flow path of the combustion gas from the combustion burner 3, that is, the gas passage 8 can be formed to be relatively long in a straight line. Therefore, the combustion gas from the combustion burner 3 can be kept in the can body A at a relatively low temperature, and it is not necessary to form a separate combustion chamber. This leads to a reduction in harmful exhaust emissions due to the effect of imparting swirl to the combustion gas, while at the same time making the can body A compact.

【0017】例えば、従来の缶体とこの発明の実施例に
係る角型多管式貫流ボイラーについて、外形寸法、燃焼
負荷を同一として有害排気物の生成量を調べると、NO
X は70〜80ppm から40ppm に低減し、COについては、
この発明における缶体Aは50ppm 以下と低くなってい
る。これらNOX ,CO値は、排ガス循環装置付きのボ
イラーで循環率を10%としたものと同等であるが、この
発明に係る角型多管式貫流ボイラーでは、全く循環させ
ず、1方向のみに燃焼ガスを流通させる形式でこのよう
な有害排気物の低減作用があり、しかも、排ガス循環用
の複雑な配管が不要で、構造がきわめてシンプルにな
る。
For example, regarding the conventional can body and the rectangular multi-tubular once-through boiler according to the embodiment of the present invention, when the outer dimensions and the combustion load are the same, the amount of harmful exhaust gas generated is examined.
X is reduced from 70-80 ppm to 40 ppm, and for CO,
The can A in the present invention is as low as 50 ppm or less. These NO x and CO values are equivalent to those obtained by setting the circulation rate to 10% in a boiler equipped with an exhaust gas circulating device. In such a form, the combustion gas is circulated to reduce the harmful exhaust gas, and complicated pipes for exhaust gas circulation are not required, so that the structure becomes extremely simple.

【0018】更に、前記の構成により、燃焼用空気、燃
焼ガスの流通経路は、所定の横幅によって区画された直
立空間内に形成される。この結果、ボイラー全体の横幅
を、流通経路が形成され得る幅にまで縮めることがで
き、従来の燃焼室を有する多管式貫流ボイラーに比べ
て、著しく幅狭とすることができる。また、この構成に
よれば、燃焼バーナ3が缶体Aの一側端面に位置するこ
とになり、その保守、点検、交換等をきわめて容易に行
うことができる。
Further, with the above configuration, the flow path of the combustion air and the combustion gas is formed in an upright space defined by a predetermined width. As a result, the width of the entire boiler can be reduced to a width where a flow path can be formed, and can be significantly narrower than that of a multi-tube once-through boiler having a conventional combustion chamber. In addition, according to this configuration, the combustion burner 3 is located at one end face of the can A, so that maintenance, inspection, replacement, and the like can be performed very easily.

【0019】加えて、この実施例における前記缶体Aの
後面には、缶体Aのガス出口7と連通した節炭器6が配
置されている。即ち、この節炭器6は、缶体Aを介して
燃焼バーナ3と対向する側に配置してあり、その幅も、
前記缶体Aの幅と略等しいものであって、この構成は以
下のようになっている。
In addition, on the back surface of the can A in this embodiment, a economizer 6 communicating with the gas outlet 7 of the can A is arranged. That is, this economizer 6 is arranged on the side facing the combustion burner 3 via the can body A, and its width is also
The width is substantially equal to the width of the can A, and this configuration is as follows.

【0020】即ち、前記節炭器6は、図1〜図4に示す
ように、略L字型をなす筒状の節炭器ボディ21内に、
水平方向に延びるフィン付の伝熱管20を格子状に配列
した構成となっている。これら伝熱管20の両端は、そ
れぞれ、節炭器ボディ21の側面を貫通して開口させて
ある。そして、節炭器ボディ21の一方の側面における
伝熱管20の開口のうち、最上段の4個並びに最下段の
4個は、それぞれ、節炭器ボディ21側面に配設した節
炭器ヘッダ22a,22bによって連通状態とし、中央
の2段の8個は同様の節炭器ヘッダ22cによって連通
状態としている。一方、節炭器ボディ21の他方の側面
における伝熱管20の開口は、上方2段の8個の開口、
並びに、下方2段の8個の開口のそれぞれが、節炭器ボ
ディ21側面に配設した節炭器ヘッダ22d,22eに
よって連通状態にしてある。従って、これら伝熱管20
と前記節炭器ヘッダ22a〜22eにより、上下方向に
蛇行する流路が簡潔な構成で容易に節炭器6に形成さ
れ、この節炭器6への水の出入は、節炭器ヘッダ22
a,22bに配設した入水管23、出水管24から行わ
れる。
That is, as shown in FIGS. 1 to 4, the economizer 6 is provided in a tubular economizer body 21 having a substantially L-shape.
The heat transfer tubes 20 with fins extending in the horizontal direction are arranged in a lattice. Both ends of these heat transfer tubes 20 are respectively opened through the side surfaces of the economizer body 21. Out of the openings of the heat transfer tubes 20 on one side surface of the economizer body 21, the uppermost four and the lowermost four are respectively the economizer header 22a disposed on the economizer body 21 side surface. , 22b, and the eight central two stages are connected by the same economizer header 22c. On the other hand, the openings of the heat transfer tubes 20 on the other side of the economizer body 21 have eight openings in the upper two stages,
In addition, each of the eight openings in the lower two stages is in communication with the economizer headers 22d and 22e arranged on the side face of the economizer body 21. Therefore, these heat transfer tubes 20
And the above-mentioned economizer headers 22a to 22e, a flow path meandering in the vertical direction can be easily formed in the economizer 6 with a simple configuration.
The process is performed from the water inlet pipe 23 and the water outlet pipe 24 provided in the a and 22b.

【0021】この節炭器6には、前記ガス通路8内での
熱伝達を終えた燃焼ガスが、缶体Aの排ガス出口7から
流入する。この節炭器6に流入した燃焼ガスは、ここで
は上方に向けて流動し、更に、伝熱管20との間で熱交
換を行う。ここで、前記節炭器6内の水は、最上段の4
本の伝熱管20から最下段の4本の伝熱管20に向けて
各節炭器ヘッダ22d,22c,22eを介して流通さ
せてあるから、最上段の伝熱管20内の水は比較的低温
となっており、節炭器6下流側における温度低下した燃
焼ガスからも効率よく熱回収を行うことができ、全体的
に、きわめて高効率で熱回収が行われ、燃焼ガスは、こ
の後排気筒(図示省略)から排気ガスとして排出され
る。
The combustion gas which has completed the heat transfer in the gas passage 8 flows into the economizer 6 from the exhaust gas outlet 7 of the can A. The combustion gas that has flowed into the economizer 6 flows upward here, and further exchanges heat with the heat transfer tube 20. Here, the water in the economizer 6 is 4
Since the heat is transferred from each of the heat transfer tubes 20 to the four lowermost heat transfer tubes 20 via the economizer headers 22d, 22c, and 22e, the water in the uppermost heat transfer tube 20 has a relatively low temperature. Therefore, heat can be efficiently recovered from the combustion gas having a lowered temperature on the downstream side of the economizer 6, and as a whole, heat recovery is performed with extremely high efficiency. The exhaust gas is exhausted from a cylinder (not shown).

【0022】尚、上記実施例の角型多管式貫流ボイラー
における送風機4やバーナダクト5の配置並びに形状
は、図6〜図8に示すように変更できる。
The arrangement and shape of the blower 4 and the burner duct 5 in the rectangular multi-tube once-through boiler of the above embodiment can be changed as shown in FIGS.

【0023】次に、この発明における缶体構造について
の他の実施例を、図9に基づいて説明する。図9に示す
実施例は、前記ガス通路8内に挿設する多数の垂直水管
を、伝熱面密度の異なった2以上の垂直水管群として構
成し、これら垂直水管群が燃焼ガスの流れ方向上流側か
ら下流側に向けて、伝熱面密度の小なるものから大なる
ものの順に配置したもので、図示する実施例において
は、伝熱面密度の異なる3つの垂直水管群を備えたもの
としてある。即ち、前記上流側から順に、平滑な垂直水
管10群,横ヒレ付水管10’群,エロフィン水管1
0”群を配置してあり、各垂直水管群を構成する各垂直
水管は、前記両水管壁(12)間にその長手方向に沿って2
列状態で、前記燃焼バーナ3側から前記ガス出口7側に
向けて所定本数ずつ等間隔で配列してある。
Next, another embodiment of the can body structure according to the present invention will be described with reference to FIG. In the embodiment shown in FIG. 9, a number of vertical water pipes inserted into the gas passage 8 are configured as two or more vertical water pipe groups having different heat transfer surface densities, and these vertical water pipe groups are arranged in the flow direction of the combustion gas. From the upstream side to the downstream side, the heat transfer surface density is arranged in ascending order from the smallest one to the largest one. In the illustrated embodiment, it is assumed that three vertical water pipe groups having different heat transfer surface densities are provided. is there. That is, in order from the upstream side, a group of 10 smooth vertical water pipes, a group of water pipes with horizontal fins 10 ′, and a group of aerofin water pipes 1
0 "group is arranged, and each vertical water pipe constituting each vertical water pipe group is provided between the two water pipe walls (12) along the longitudinal direction thereof.
In the row state, predetermined numbers are arranged at regular intervals from the combustion burner 3 side to the gas outlet 7 side.

【0024】[0024]

【発明の効果】以上のように、この発明によれば、一対
の水管壁の一端に配設されるバーナに近接して垂直水管
群を配設するという簡単な構成により、低公害化が実現
できると共に、燃焼室を殆ど無くすることができ缶体の
小型化を実現できる。又、バーナからの燃焼火炎は水管
壁間の垂直水管同士の間の間隙だけではなく、水管壁と
前記水管壁間の垂直水管との間の間隙にも流通するの
で、バーナからの燃焼火炎は燃焼火炎の流れと交叉する
方向に関しても全体的に効果的に冷却され、燃焼火炎の
冷却の均一性を向上でき、NOx低減の効果が大きい。
又、燃焼火炎を水管壁と水管群で冷却する際に発生する
COは、水管壁と水管壁間の垂直水管との間の間隙と水
管壁間の垂直水管同士の間の間隙における燃焼火炎の渦
流により酸化され、COの排出量が低減する。従って、
小型化及び低公害化の産業的利用価値の多大なボイラー
を提供できる。
As described above, according to the present invention, low pollution can be achieved by a simple structure in which the vertical water pipe group is provided close to the burners provided at one end of the pair of water pipe walls. In addition to the realization, the combustion chamber can be almost eliminated, and the can body can be reduced in size. Further, the combustion flame from the burner flows not only in the gap between the vertical water pipes between the water pipe walls but also in the gap between the water pipe wall and the vertical water pipe between the water pipe walls. The combustion flame is effectively cooled as a whole in the direction crossing the flow of the combustion flame, so that the uniformity of the cooling of the combustion flame can be improved and the effect of reducing NOx is great.
Further, CO generated when the combustion flame is cooled by the water pipe wall and the water pipe group is formed by a gap between the water pipe wall and the vertical water pipe between the water pipe walls and a gap between the vertical water pipes between the water pipe walls. Is oxidized by the swirling flow of the combustion flame, thereby reducing CO emissions. Therefore,
It is possible to provide a boiler having a large industrial value for miniaturization and low pollution.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明一実施例の一部を断面とした側面
説明図である。
FIG. 1 is an explanatory side view showing a part of an embodiment of the present invention in section.

【図2】図2は同実施例の缶体における垂直水管の配置
を説明する平断面説明図である。
FIG. 2 is an explanatory plan sectional view for explaining an arrangement of a vertical water pipe in the can body of the embodiment.

【図3】図3は同実施例における節炭器の一部を断面と
した側面拡大説明図である。
FIG. 3 is an enlarged side view illustrating a part of the economizer in the embodiment.

【図4】図4は図3の側面図である。FIG. 4 is a side view of FIG. 3;

【図5】図5は同実施例のボイラーの全体を示す斜視説
明図である。
FIG. 5 is a perspective explanatory view showing the entire boiler of the embodiment.

【図6】図6は他のボイラーの全体を示す斜視説明図で
ある。
FIG. 6 is an explanatory perspective view showing the whole of another boiler.

【図7】図7は他のボイラーの全体を示す斜視説明図で
ある。
FIG. 7 is an explanatory perspective view showing the whole of another boiler.

【図8】図8は他のボイラーの全体を示す斜視説明図で
ある。
FIG. 8 is a perspective explanatory view showing the whole of another boiler.

【図9】図9は缶体構造の他の実施例における垂直水管
の配置を説明する平断面説明図である。
FIG. 9 is an explanatory plan sectional view illustrating an arrangement of vertical water pipes in another embodiment of the can body structure.

【符号の説明】[Explanation of symbols]

A 缶体 3 燃焼バーナ 7 ガス出口 8 ガス通路 10 垂直水管 11 フィン状部材 12 水管壁 A Can body 3 Combustion burner 7 Gas outlet 8 Gas passage 10 Vertical water pipe 11 Fin member 12 Water pipe wall

フロントページの続き (72)発明者 三浦 正敏 愛媛県松山市堀江町7番地 三浦工業株式 会社内Continuation of the front page (72) Inventor Masatoshi Miura 7-Horiecho, Matsuyama-shi, Ehime Miura Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 多数の垂直水管を1列に整列配置すると
共に隣り合う垂直水管同士をフィン状部材で連結して水
管壁を形成し、この水管壁2枚を互いに間隔を存して対
面させ配置し、バーナを前記1対の水管壁の長手方向一
端に設け、前記水管壁間にその長手方向一端から他端へ
向けて前記バーナのガス通路を形成し、多数の垂直水管
を隣り合う垂直水管と所定の間隔を存して前記ガス通路
のほぼ全域に亘って配置し、前記バーナの直近の前記垂
直水管と前記バーナとの距離を前記垂直水管の直径の略
3倍の長さに等しいかそれよりも小さく設定すると共に
前記各垂直水管の相互の間隙を前記直径と等しいかそれ
以下に設定し、前記バーナの火炎を前記水管壁と前記水
管壁間の垂直水管との間の間隙と、前記水管壁間の垂直
水管同士の間の間隙とに流通させて渦流となすことを特
徴とする角型多管式貫流ボイラー。
1. A plurality of vertical water pipes are arranged in a line, and adjacent vertical water pipes are connected to each other by a fin-shaped member to form a water pipe wall. The two water pipe walls are spaced apart from each other. A plurality of vertical water pipes, wherein a burner is provided at one longitudinal end of the pair of water pipe walls, and a gas passage of the burner is formed between the water pipe walls from one end to the other end in the longitudinal direction. Is disposed over substantially the entire area of the gas passage at a predetermined distance from an adjacent vertical water pipe, and the distance between the vertical water pipe and the burner in the immediate vicinity of the burner is approximately three times the diameter of the vertical water pipe. The length of each vertical water pipe is set to be equal to or less than the length, and the gap between the vertical water pipes is set to be equal to or less than the diameter, and the flame of the burner is set to the vertical water pipe between the water pipe wall and the water pipe wall. And the gap between the vertical water tubes between the water tube walls A rectangular multi-tube, once-through boiler characterized by being swirled by flowing through the boiler.
【請求項2】 前記燃焼火炎温度を1200℃〜130
0℃程度に抑制したことを特徴とする角型多管式貫流ボ
イラー。
2. The combustion flame temperature is set at 1200 ° C. to 130 ° C.
A rectangular multi-tube once-through boiler characterized in that the temperature is controlled to about 0 ° C.
JP13755297A 1997-05-12 1997-05-12 Rectangular multitubular once-through boiler Pending JPH1068501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13755297A JPH1068501A (en) 1997-05-12 1997-05-12 Rectangular multitubular once-through boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13755297A JPH1068501A (en) 1997-05-12 1997-05-12 Rectangular multitubular once-through boiler

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10821397A Division JP2933055B2 (en) 1997-04-10 1997-04-10 Square multi-tube type once-through boiler

Publications (1)

Publication Number Publication Date
JPH1068501A true JPH1068501A (en) 1998-03-10

Family

ID=15201386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13755297A Pending JPH1068501A (en) 1997-05-12 1997-05-12 Rectangular multitubular once-through boiler

Country Status (1)

Country Link
JP (1) JPH1068501A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102496816B1 (en) * 2022-06-14 2023-02-06 주식회사 라인즈 Low-nox boiler that self-generates dry steam

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102496816B1 (en) * 2022-06-14 2023-02-06 주식회사 라인즈 Low-nox boiler that self-generates dry steam

Similar Documents

Publication Publication Date Title
US5746159A (en) Combustion device in tube nested boiler and its method of combustion
US6029614A (en) Water-tube boiler with re-circulation means
JP3221582B2 (en) Low NOx and low CO combustion device
KR950004497B1 (en) Quadrangular type multi-tube once-through boiler
JPH11108308A (en) Water tube boiler and burner
JPH074616A (en) Cyclone combustion
JP2933055B2 (en) Square multi-tube type once-through boiler
JP4309771B2 (en) Multi-pipe once-through boiler
JP2933060B2 (en) Square multi-tube type once-through boiler
JPH1068501A (en) Rectangular multitubular once-through boiler
JP3185792B2 (en) boiler
JP4400921B2 (en) Multi-pipe once-through boiler
JP3310932B2 (en) boiler
CN209801465U (en) Premixing and staged combustion device
JP2007120839A (en) Multitubular once-through boiler
JP3533461B2 (en) Water tube boiler
JP2824619B2 (en) Square multi-tube type once-through boiler
JPH09145001A (en) Water tube boiler and combustion method thereof
JP3180938B2 (en) Water tube boiler and combustion method thereof
JP2507407Y2 (en) Square multi-tube once-through boiler
JPH0791601A (en) Water-tube boiler
JP3368887B2 (en) Low NOx and low CO combustion method
JP3662599B2 (en) Water tube boiler
JPH0674409A (en) Boiler system equipped with combusion gas recirculating mechanism
JP3384975B2 (en) Water tube boiler