JP4309771B2 - Multi-pipe once-through boiler - Google Patents

Multi-pipe once-through boiler Download PDF

Info

Publication number
JP4309771B2
JP4309771B2 JP2004007570A JP2004007570A JP4309771B2 JP 4309771 B2 JP4309771 B2 JP 4309771B2 JP 2004007570 A JP2004007570 A JP 2004007570A JP 2004007570 A JP2004007570 A JP 2004007570A JP 4309771 B2 JP4309771 B2 JP 4309771B2
Authority
JP
Japan
Prior art keywords
combustion
gas
combustion chamber
heat transfer
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004007570A
Other languages
Japanese (ja)
Other versions
JP2005201514A (en
Inventor
静夫 片岡
定和 山田
晴男 野上
伸章 林本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma KK
Original Assignee
Takuma KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma KK filed Critical Takuma KK
Priority to JP2004007570A priority Critical patent/JP4309771B2/en
Publication of JP2005201514A publication Critical patent/JP2005201514A/en
Application granted granted Critical
Publication of JP4309771B2 publication Critical patent/JP4309771B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Combustion Of Fluid Fuel (AREA)

Description

本発明は、燃焼室を有するボイラ、特に、複数の水管及びヒレから成る二つの環状の水冷壁を同心円状に配設して内側の水冷壁と外側の水冷壁との間に環状の燃焼室を形成するようにした多管式貫流ボイラに係り、低NOx化、低CO化及び水冷壁等への熱吸収率の向上を図れるようにした多管式貫流ボイラに関するものである。   The present invention relates to a boiler having a combustion chamber, in particular, two annular water cooling walls made up of a plurality of water pipes and fins arranged concentrically, and an annular combustion chamber between an inner water cooling wall and an outer water cooling wall. In particular, the present invention relates to a multi-tube once-through boiler that can reduce NOx, reduce CO, and improve the heat absorption rate to a water-cooled wall.

一般に、先混合拡散燃焼バーナを搭載した多管式貫流ボイラに於いては、燃焼用空気を多段に分割して供給する方法や排ガスの一部をバーナへ再循環させる排ガス再循環方法等によって、NOxの排出を抑えることが行われて来た。特に、ガスを燃料とするガス焚き拡散燃焼に於いては、燃料噴射ノズルの多岐化による濃淡燃焼方式を採用して低NOx化を図り、又、油を燃料とする油焚き拡散燃焼に於いては、油燃料の微粒化噴霧等により低NOx化を図っている。
これらの拡散燃焼方式では、バーナのノズルから噴出させた燃料の周囲へ燃焼用空気を圧送して両者を強制混合させ、燃焼用空気と混合された燃料を燃焼室内で燃焼させるようにしているため、バーナのノズルから噴出された燃料が燃え切るまでの対流距離を確保する必要があり、大きな燃焼室を必要とする。又、火炎の形状から燃焼室の形状が制約されたり、燃焼用空気の整流や火炎の安定化機構を必要とする。その結果、先混合拡散燃焼バーナを搭載した多管式貫流ボイラに於いては、必然的にボイラ自体が大型化すると云う問題があった。
In general, in a multi-pipe once-through boiler equipped with a premixed diffusion combustion burner, a method of supplying combustion air in multiple stages, a method of exhaust gas recirculation that recirculates part of the exhaust gas to the burner, etc. It has been practiced to reduce NOx emissions. In particular, in the gas-fired diffusion combustion using gas as fuel, the concentration combustion method by diversifying the fuel injection nozzle is adopted to reduce NOx, and in the oil-fired diffusion combustion using oil as fuel. NOx reduction is achieved by atomizing spray of oil fuel.
In these diffusion combustion systems, the combustion air is pumped around the fuel ejected from the nozzle of the burner, both are forcibly mixed, and the fuel mixed with the combustion air is burned in the combustion chamber. It is necessary to secure a convection distance until the fuel ejected from the burner nozzle burns out, and a large combustion chamber is required. In addition, the shape of the combustion chamber is restricted by the shape of the flame, and the combustion air rectification and the flame stabilization mechanism are required. As a result, in a multi-tube type once-through boiler equipped with a premixed diffusion combustion burner, there is a problem that the boiler itself inevitably increases in size.

ところで、貫流ボイラの分野に於いては、小型化が益々進んでおり、最近では蒸発量が2t/hクラスの小型貫流ボイラの場合、火炉負荷が5000kW/m3hにも達している。これに加えて、燃焼ガスが水管群を通過する対流伝熱部では、燃焼ガスの流速が50m/sec以上にも達している。これらの圧力損失との兼ね合いから、これ以上の火炎の短炎化を図ろうとすると、より高圧の空気を供給できる送風機が必要になるが、動力やコスト面、送風機の大型化等の問題から先混合拡散燃焼バーナを採用できなくなって来ている。 By the way, in the field of once-through boilers, downsizing is increasingly advanced, and recently, in the case of a small once-through boiler with an evaporation amount of 2 t / h class, the furnace load has reached 5000 kW / m 3 h. In addition to this, in the convection heat transfer section where the combustion gas passes through the water tube group, the flow velocity of the combustion gas reaches 50 m / sec or more. In consideration of these pressure losses, a blower that can supply higher-pressure air is required to reduce the flame length further. However, problems such as power, cost, and larger size of the blower are necessary. The mixed diffusion combustion burner cannot be used.

これに対して、予混合表面燃焼バーナを搭載した多管式貫流ボイラの場合、予混合表面燃焼バーナは、ガス燃料と燃焼用空気を予混合させて成る予混合ガスがセラミック等の多孔質材等により形成された予混合ガス分割プレートに供給され、予混合ガス分割プレートに均一に拡散されてその表面で燃焼を行うようにしているため、火炎が予混合ガス分割プレートの表面に分散され、微小な分割火炎が多数形成されることになる。その結果、予混合表面燃焼バーナは、先混合拡散燃焼バーナに比較して短炎化を図れると共に、NOxの排出量も大幅に抑えることができる等の利点を有するものであり、多管式貫流ボイラの小型化に適したバーナである。
従って、近年貫流ボイラに於いては、小型化を図るために予混合表面燃焼バーナが搭載されるようになって来ている(例えば、特許文献1及び特許文献2参照)。
On the other hand, in the case of a multi-tube type once-through boiler equipped with a premixed surface combustion burner, the premixed surface combustion burner is a porous material in which a premixed gas obtained by premixing gas fuel and combustion air is a ceramic or the like. Is supplied to the premixed gas dividing plate formed by, etc., is uniformly diffused to the premixed gas dividing plate and burns on its surface, so that the flame is dispersed on the surface of the premixed gas dividing plate, A large number of minute divided flames are formed. As a result, the premixed surface combustion burner has advantages such as being able to shorten the flame compared to the premixed diffusion combustion burner and greatly reducing NOx emissions, and so on. This burner is suitable for boiler miniaturization.
Therefore, in recent years, premixed surface combustion burners have been mounted in once-through boilers in order to reduce the size (for example, see Patent Document 1 and Patent Document 2).

然し乍ら、予混合表面燃焼バーナを搭載した多管式貫流ボイラに於いては、燃料がガス燃料のみに限られるうえ、比較的低い空気比(空気過剰率)で予混合ガスを燃焼させた場合に予混合ガス分割プレートの表面が加熱され、NOxの排出量が急激に増加すると云う問題があった。
又、予混合ガスの予混合ガス分割プレートへの供給が不均一になった場合でも、燃焼温度が安定せず、表面燃焼領域に於いて局部的な高温を生じることになり、その結果、サーマルNOxが発生し、NOxの低減を図れないと云う問題があった。
更に、予混合ガス分割プレートが一般的にセラミック等の多孔質材により形成されているため、予混合ガス分割プレート上に生じる温度差によって予混合ガス分割プレートに歪やクラックが発生したり、或いは目詰まりを引き起こしたりすると云う問題もあった。
特開平7−12301号公報 特開平11−294702号公報
However, in a multi-tube once-through boiler equipped with a premixed surface combustion burner, the fuel is limited to gas fuel only, and the premixed gas is burned at a relatively low air ratio (excess air ratio). There is a problem that the surface of the premixed gas dividing plate is heated, and the amount of NOx emission increases rapidly.
Even if the premixed gas is supplied to the premixed gas dividing plate in a non-uniform manner, the combustion temperature is not stable, and a local high temperature is generated in the surface combustion region. There is a problem that NOx is generated and NOx cannot be reduced.
Further, since the premixed gas dividing plate is generally formed of a porous material such as ceramic, the premixed gas dividing plate may be distorted or cracked due to a temperature difference generated on the premixed gas dividing plate, or There was also a problem of causing clogging.
Japanese Patent Laid-Open No. 7-12301 JP 11-294702 A

本発明は、このような問題点に鑑みて為されたものであり、その目的は低NOx化及び低CO化を図れると共に、水冷壁等の単位面積当たりの熱吸収量を増加させてボイラ自体の小型化を図れるようにした多管式貫流ボイラを提供することにある。   The present invention has been made in view of such problems, and its purpose is to reduce NOx and CO, and to increase the amount of heat absorption per unit area of a water-cooled wall or the like to increase the boiler itself. An object of the present invention is to provide a multitubular once-through boiler that can be made compact.

上記目的を達成するために、本発明の請求項1の発明は、複数の水管及びヒレから成る二つの環状の水冷壁を同心円状に配設して内側の水冷壁と外側の水冷壁との間に環状の燃焼室を形成し、両水冷壁の各水管の上下端部を上部ヘッダー及び下部ヘッダーに夫々連通状に接続して成る多管式貫流ボイラであって、前記外側の水冷壁の上端部に燃焼室の上端部側に開口する焚き口を形成し、又、内側の水冷壁の下端部にガス通過口を形成し、前記焚き口から燃焼室内にガス燃料と燃焼用空気又はガス燃料と燃焼用空気を混合させて成る予混合ガスを燃焼室壁面に沿ってその接線方向へ噴出して燃焼させ、燃焼室内に燃焼室壁面に沿うサイクロン火炎を形成すると共に、燃焼ガスを燃焼室内で旋回させながら燃焼室内を上方から下方へ向かって流すようにしたことに特徴がある。 In order to achieve the above object, according to the first aspect of the present invention, two annular water cooling walls comprising a plurality of water pipes and fins are arranged concentrically so that an inner water cooling wall and an outer water cooling wall are arranged. An annular combustion chamber is formed between the upper and lower ends of each water pipe of both water-cooling walls, and is connected to the upper header and the lower header in communication with each other. The upper end is formed with a throat that opens to the upper end of the combustion chamber, and the gas passage is formed at the lower end of the inner water cooling wall. Gas fuel and combustion air or gas are introduced from the throat into the combustion chamber. A premixed gas, which is a mixture of fuel and combustion air, is jetted in the tangential direction along the combustion chamber wall surface and burned to form a cyclone flame along the combustion chamber wall surface, and the combustion gas is injected into the combustion chamber. flow through the combustion chamber towards the top to the bottom in while turning It is characterized in the that way.

本発明の請求項2の発明は、環状の燃焼室内に燃焼室の上端部側から下端部側へ向かう螺旋状の旋回促進用ガイド体を配設し、当該旋回促進用ガイド体により燃焼室内を流れる燃焼ガスの旋回を促進させるようにしたことに特徴がある。 According to a second aspect of the present invention, a spiral swirl promoting guide body from the upper end side to the lower end side of the combustion chamber is disposed in the annular combustion chamber, and the combustion chamber is moved by the swirl promoting guide body. It is characterized in that the swirling of the flowing combustion gas is promoted.

本発明の請求項3の発明は、内側の水冷壁の一部に燃焼室内を旋回しながら流れる燃焼ガスの一部を燃焼室の下流側にあるガス通路へ導く圧力損失緩和用ガス通過口を形成し、燃焼室内の燃焼ガスの一部を前記圧力損失緩和用ガス通過口からガス通路へショートパスさせるようにしたことに特徴がある。   According to a third aspect of the present invention, there is provided a gas passage for reducing pressure loss that guides a part of the combustion gas flowing while swirling in the combustion chamber to a part of the inner water cooling wall to the gas passage on the downstream side of the combustion chamber. This is characterized in that a part of the combustion gas in the combustion chamber is short-passed from the pressure loss reducing gas passage port to the gas passage.

本発明の請求項4の発明は、内側の水冷壁で囲まれた空間内に上下端部が上部ヘッダー及び下部ヘッダーに夫々連通状に接続された複数本の伝熱水管から成る伝熱水管群を配設すると共に、前記伝熱水管群と内側の水冷壁との隙間及び伝熱水管群の隙間に煙道へ連通するガス通路を形成し、又、内側の水冷壁の下端部に燃焼室内の下方へ流れた燃焼ガスを前記ガス通路へ均一に流入させる複数のガス通過口を形成したことに特徴がある。 The invention of claim 4 of the present invention is a heat transfer water pipe group comprising a plurality of heat transfer water pipes whose upper and lower ends are connected to the upper header and the lower header in a continuous manner in a space surrounded by an inner water cooling wall. And a gas passage communicating with the flue in the gap between the heat transfer water tube group and the inner water cooling wall and the gap between the heat transfer water tube group, and a combustion chamber at the lower end of the inner water cooling wall. It is characterized in that a plurality of gas passages are formed through which the combustion gas flowing downward in the gas flows uniformly into the gas passage.

本発明の請求項5の発明は、外側の水冷壁の上端部に燃焼室の上端部側に開口する複数の焚き口を形成し、各焚き口から燃焼室内にガス燃料と燃焼用空気又はガス燃料と燃焼用空気を混合させて成る予混合ガスを燃焼室壁面に沿ってその接線方向へ噴出して燃焼させるようにしたことに特徴がある。 According to a fifth aspect of the present invention, a plurality of nozzles that open to the upper end of the combustion chamber are formed at the upper end of the outer water cooling wall, and gas fuel and combustion air or gas are introduced into the combustion chamber from each nozzle. It is characterized in that a premixed gas obtained by mixing fuel and combustion air is jetted in the tangential direction along the combustion chamber wall surface and burned.

本発明の請求項6の発明は、焚き口の下流側位置で且つ外側の水冷壁の上端部に燃焼室の上端部側に開口する二次燃焼用空気の空気供給口を少なくとも一つ形成し、前記焚き口から燃焼室内に噴出されるガス燃料と燃焼用空気又は予混合ガスを空気比1以下の条件下で燃焼させて焚き口の下流側領域に一次燃焼ゾーンを形成し、又、前記空気供給口から燃焼室内に二次燃焼用空気を燃焼室壁面に沿ってその接線方向へ噴出して一次燃焼ゾーンで発生した一次燃焼ガスと撹拌混合すると共に、当該一次燃焼ガスを全空気比1.1〜1.5の条件下で燃焼させて空気供給口の下流側領域に二次燃焼ゾーンを形成するようにしたことに特徴がある。 According to a sixth aspect of the present invention, at least one air supply port for the secondary combustion air that opens to the upper end portion side of the combustion chamber is formed at the downstream side of the firing port and at the upper end portion of the outer water cooling wall. Gas fuel and combustion air or premixed gas ejected from the spark outlet into the combustion chamber are burned under an air ratio of 1 or less to form a primary combustion zone in the downstream region of the spark outlet, The secondary combustion air is jetted in the tangential direction along the wall of the combustion chamber from the air supply port into the combustion chamber, and is agitated and mixed with the primary combustion gas generated in the primary combustion zone. It is characterized in that a secondary combustion zone is formed in the downstream region of the air supply port by burning under the conditions of 1 to 1.5.

本発明の請求項7の発明は、少なくとも伝熱水管群を形成する各伝熱水管の外周面に、複数のフィンを相対する伝熱水管に対して交互に且つ伝熱水管の長手方向に垂直に取り付け、ガス通過口からガス通路内に流入した燃焼ガスがガス通路の一端部側から他端部側へジグザグ状に流れるようにしたことに特徴がある。   According to the seventh aspect of the present invention, at least the outer peripheral surface of each heat transfer water tube forming the heat transfer water tube group has a plurality of fins alternately with respect to the opposite heat transfer water tubes and perpendicular to the longitudinal direction of the heat transfer water tubes. And the combustion gas flowing into the gas passage from the gas passage port flows in a zigzag shape from one end of the gas passage to the other end.

本発明の請求項8の発明は、少なくとも伝熱水管群を形成する各伝熱水管の外周面に、複数のフィンを隣接する伝熱水管に対して階段状に且つ伝熱水管の長手方向に垂直に取り付け、ガス通過口からガス通路内に流入した燃焼ガスがガス通路の一端部側から他端部側へ旋回しながら流れるようにしたことに特徴がある。   In the invention according to claim 8 of the present invention, a plurality of fins are formed stepwise with respect to the adjacent heat transfer water pipe and in the longitudinal direction of the heat transfer water pipe at least on the outer peripheral surface of each heat transfer water pipe forming the heat transfer water pipe group. It is characterized in that it is mounted vertically and the combustion gas flowing into the gas passage from the gas passage port flows while turning from one end side to the other end side of the gas passage.

本発明の請求項9の発明は、少なくとも伝熱水管群を形成する各伝熱水管の外周面に、複数のフィンを放射状に且つ伝熱水管の長手方向に平行に取り付け、ガス通過口からガス通路内に流入した燃焼ガスがガス通路の一端部側から他端部側へフィンと接触しながら流れるようにしたことに特徴がある。   According to the ninth aspect of the present invention, a plurality of fins are attached radially and parallel to the longitudinal direction of the heat transfer water pipe at least on the outer peripheral surface of each heat transfer water pipe forming the heat transfer water pipe group, and gas is supplied from the gas passage port. The combustion gas that has flowed into the passage is characterized by flowing from one end of the gas passage to the other end while contacting the fins.

本発明の請求項1の多管式貫流ボイラは、環状の水冷壁を同心円状に配設して内側の水冷壁と外側の水冷壁との間に環状の燃焼室を形成すると共に、外側の水冷壁に燃焼室に開口する焚き口を形成し、当該焚き口から燃焼室内にガス燃料と燃焼用空気又はガス燃料と燃焼用空気を混合させて成る予混合ガスを燃焼室壁面に沿ってその接線方向へ噴出して燃焼させ、燃焼室内に燃焼室壁面に沿うサイクロン火炎を形成すると共に、燃焼ガスを燃焼室内で旋回させながら流すようにしている。前記サイクロン火炎は、表面積が大きく、サイクロン火炎が遠心力により外側の水冷壁内面を嘗めるように延びるため、放射特性が良くなってサイクロン火炎が冷却されることなり、火炎温度が比較的低い温度に保たれる。その結果、本発明の請求項1の多管式貫流ボイラは、燃焼室内のNOxの発生が抑制されることになる。然も、燃焼ガスの一部が環状の燃焼室内を周回して焚き口に戻るため、燃焼ガスによる排ガス再循環作用が得られることになり、NOxの発生がより一層抑制されることになる。
又、本発明の請求項1の多管式貫流ボイラは、サイクロン火炎による輻射伝熱によって内側の水冷壁と外側の水冷壁の両方に熱を与えると共に、サイクロン火炎が遠心力により外側の水冷壁内面を嘗めることによる接触伝熱によっても外側の水冷壁へ熱を与えるため、水冷壁への熱吸収率が大幅に向上する。その結果、ボイラ自体の小型化を図れる。
更に、本発明の請求項1の多管式貫流ボイラは、サイクロン火炎が燃焼室内を旋回する長い火炎であり、焚き口から噴出されたガス燃料が燃焼室内で燃え切るまでの対流距離を稼げるため、COの発生を抑制することができる。
加えて、本発明の請求項1の多管式貫流ボイラは、燃焼室内で発生した燃焼ガスが燃焼室内を旋回しながら流れるため、燃焼ガスと水冷壁との接触時間が長くなって燃焼ガスから熱を確実且つ良好に回収することができる。
According to the first aspect of the present invention, an annular water cooling wall is disposed concentrically to form an annular combustion chamber between an inner water cooling wall and an outer water cooling wall. A water-cooling wall is formed with a spark opening that opens into the combustion chamber, and a premixed gas that is a mixture of gas fuel and combustion air or gas fuel and combustion air is mixed along the combustion chamber wall surface into the combustion chamber. It is jetted in the tangential direction and burned to form a cyclone flame along the wall of the combustion chamber in the combustion chamber, and the combustion gas is allowed to flow while swirling in the combustion chamber. The cyclone flame has a large surface area, and the cyclone flame extends so as to give up the inner surface of the outer water-cooled wall by centrifugal force. Therefore, the radiation characteristics are improved and the cyclone flame is cooled, and the flame temperature is lowered to a relatively low temperature. Kept. As a result, in the multitubular once-through boiler according to claim 1 of the present invention, generation of NOx in the combustion chamber is suppressed. However, since a part of the combustion gas circulates in the annular combustion chamber and returns to the outlet, the exhaust gas recirculation action by the combustion gas is obtained, and the generation of NOx is further suppressed.
The multi-tube once-through boiler according to claim 1 of the present invention applies heat to both the inner water cooling wall and the outer water cooling wall by radiant heat transfer by the cyclone flame, and the cyclone flame is subjected to centrifugal force by the outer water cooling wall. Heat is also given to the outer water-cooled wall by contact heat transfer by giving up the inner surface, so the heat absorption rate to the water-cooled wall is greatly improved. As a result, the boiler itself can be reduced in size.
Furthermore, the multi-tube once-through boiler according to claim 1 of the present invention is a long flame in which the cyclone flame swirls in the combustion chamber, so that the convection distance until the gas fuel ejected from the firing port burns out in the combustion chamber can be increased. , Generation of CO can be suppressed.
In addition, in the multitubular once-through boiler according to the first aspect of the present invention, since the combustion gas generated in the combustion chamber flows while swirling in the combustion chamber, the contact time between the combustion gas and the water cooling wall becomes longer, and the Heat can be reliably and satisfactorily recovered.

本発明の請求項2乃至請求項9の多管式貫流ボイラは、上記効果に加えて更に次のような効果を奏することができる。
即ち、本発明の請求項2の多管式貫流ボイラは、燃焼室内に螺旋状の旋回促進用ガイド体を配設し、この旋回促進用ガイド体により燃焼室内を流れる燃焼ガスの旋回を促進させ、燃焼ガスが燃焼室内を所定の旋回数だけ旋回するようにしているため、内側の水冷壁及び外側の水冷壁への熱伝達が促進されることになる。
本発明の請求項3の多管式貫流ボイラは、内側の水冷壁の一部に燃焼室内の燃焼ガスの一部を燃焼室の下流側にあるガス通路へ導く圧力損失緩和用ガス通過口を形成し、この圧力損失緩和用ガス通過口から燃焼室内の燃焼ガスの一部をガス通路へショートパスさせるようにしているため、燃焼室内の燃焼ガスの旋回数に比例して増加する圧力損失を緩和することができ、送風機の大型化等を防止することができる。
本発明の請求項4の多管式貫流ボイラは、内側の水冷壁で囲まれた空間内に複数本の伝熱水管から成る伝熱水管群を配設し、伝熱水管群と内側の水冷壁との隙間及び伝熱水管群の隙間に燃焼室内を通過した燃焼ガスが流れるガス通路を形成しているため、燃焼ガスから熱をより一層確実且つ良好に回収することができる。
本発明の請求項5の多管式貫流ボイラは、外側の水冷壁に複数の焚き口を形成し、各焚き口から燃焼室内にガス燃料と燃焼用空気又はガス燃料と燃焼用空気を混合させて成る予混合ガスを燃焼室壁面に沿ってその接線方向へ噴出して燃焼させるようにしているため、燃焼ガスの旋回流強さを促進させることができると共に、ターンダウン燃焼時の切り替えを良好に行える。
本発明の請求項6の多管式貫流ボイラは、外側の水冷壁に焚き口と空気供給口を夫々形成し、焚き口から燃焼室内に噴出されるガス燃料と燃焼用空気又は予混合ガスを空気比1以下の条件下で燃焼させて焚き口の下流側領域に火炎温度が1500℃以下の還元燃焼領域となる一次燃焼ゾーンを形成し、又、空気供給口から燃焼室内に二次燃焼用空気を噴出して一次燃焼ゾーンで発生した一次燃焼ガスと撹拌混合すると共に、当該一次燃焼ガスを全空気比1.1〜1.5の条件下で燃焼させて空気噴出口の下流側領域に二次燃焼ゾーンを形成するようにしているため、サーマルNOxの発生を抑制することができると共に、一次燃焼ガスが二次燃焼ゾーンで完全燃焼されてCOの発生が抑制されることになる。
本発明の請求項7乃至請求項9の多管式貫流ボイラは、伝熱水管群を形成する複数本の伝熱水管に多数のフィンを取り付けているため、伝熱面積が広くなって燃焼ガスから熱を良好に回収することができる。特に、燃焼ガスがガス通路内をジグザグ状に又は旋回しながら流れるように、複数本の伝熱水管にフィンを取り付けた場合には、伝熱水管と燃焼ガスとの接触時間が長くなり、燃焼ガスから熱をより一層確実且つ良好に回収することができる。
The multitubular once-through boiler according to claims 2 to 9 of the present invention can further exhibit the following effects in addition to the above effects.
That is, in the multi-tube type once-through boiler according to the second aspect of the present invention, a spiral turning promotion guide body is arranged in the combustion chamber, and the turning promotion guide body promotes the turning of the combustion gas flowing in the combustion chamber. Since the combustion gas is swirled in the combustion chamber by a predetermined number of turns, heat transfer to the inner water cooling wall and the outer water cooling wall is promoted.
According to a third aspect of the present invention, there is provided a multi-tube once-through boiler having a gas passage for reducing pressure loss that leads a part of the combustion gas in the combustion chamber to a gas passage on the downstream side of the combustion chamber in a part of the inner water cooling wall. Since a part of the combustion gas in the combustion chamber is short-passed from the pressure loss mitigation gas passage to the gas passage, the pressure loss that increases in proportion to the number of revolutions of the combustion gas in the combustion chamber is increased. It can be mitigated, and an increase in the size of the blower can be prevented.
According to a fourth aspect of the present invention, a multitubular once-through boiler is provided with a heat transfer water tube group including a plurality of heat transfer water tubes in a space surrounded by an inner water cooling wall, and the heat transfer water tube group and the inner water cooling Since the gas passage through which the combustion gas that has passed through the combustion chamber flows is formed in the gap between the wall and the heat transfer water tube group, the heat can be more reliably and satisfactorily recovered from the combustion gas.
The multi-tube once-through boiler according to claim 5 of the present invention forms a plurality of nozzles in the outer water cooling wall, and mixes gas fuel and combustion air or gas fuel and combustion air from each nozzle into the combustion chamber. The premixed gas is jetted in the tangential direction along the combustion chamber wall surface and burned, so that the swirl flow strength of the combustion gas can be promoted and switching during turndown combustion is good Can be done.
According to the sixth aspect of the present invention, the multi-tube once-through boiler has a water outlet and an air supply port formed on the outer water cooling wall, respectively, and gas fuel and combustion air or premixed gas ejected from the fire outlet into the combustion chamber. A primary combustion zone that forms a reduction combustion region with a flame temperature of 1500 ° C. or less is formed in the downstream region of the firing port under the condition of an air ratio of 1 or less, and for secondary combustion from the air supply port to the combustion chamber While agitating and mixing with the primary combustion gas generated in the primary combustion zone by jetting air, the primary combustion gas is burned under the conditions of a total air ratio of 1.1 to 1.5 to the downstream region of the air outlet Since the secondary combustion zone is formed, the generation of thermal NOx can be suppressed, and the primary combustion gas is completely burned in the secondary combustion zone, thereby suppressing the generation of CO.
In the multi-tube once-through boiler according to claims 7 to 9 of the present invention, a large number of fins are attached to a plurality of heat transfer water tubes forming the heat transfer water tube group, so that the heat transfer area is increased and the combustion gas is increased. Heat can be recovered well. In particular, when fins are attached to multiple heat transfer water pipes so that the combustion gas flows in a zigzag or swirling manner in the gas passage, the contact time between the heat transfer water pipe and the combustion gas becomes longer, and combustion occurs. Heat can be recovered from gas more reliably and satisfactorily.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。
図1及び図2は本発明の第1の実施形態に係る多管式貫流ボイラを示し、当該多管式貫流ボイラは、複数の水管1a及びヒレ1bから成る横断面形状が円形の内側の水冷壁1と、内側の水冷壁1の外周位置に同心円状に配設されて複数の水管2a及びヒレ2bから成る横断面形状が円形の外側の水冷壁2と、内側の水冷壁1と外側の水冷壁2との間に形成された環状の燃焼室3と、外側の水冷壁2に形成した焚き口4に接続されたガス燃料供給管5及び燃焼用空気供給管6と、両水冷壁1,2の各水管1a,2aの上端部及び下端部に夫々連通状に接続された上部ヘッダー7及び下部ヘッダー8と、内側の水冷壁1で囲まれた空間内に配設されて上下端部が上部ヘッダー7及び下部ヘッダー8に夫々連通状に接続された複数の伝熱水管9aから成る伝熱水管群9と、伝熱水管群9と内側の水冷壁1との隙間及び伝熱水管群9の隙間に形成された燃焼ガスGのガス通路10等から構成されており、ガス燃料Fと燃焼用空気Aを焚き口4から燃焼室3内に燃焼室3壁面に沿ってその接線方向へ噴出して拡散燃焼させ、燃焼室3内に燃焼室3壁面に沿うサイクロン火炎Cを形成すると共に、燃焼ガスGを旋回させながら燃焼室3内を一端側から他端側へ向かって流した後、ガス通路10内へ流入させるようにしたものである。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
1 and 2 show a multitubular once-through boiler according to a first embodiment of the present invention. The multitubular once-through boiler has an inner water-cooling shape having a circular cross-sectional shape composed of a plurality of water tubes 1a and fins 1b. An outer water cooling wall 2 which is concentrically arranged at the outer peripheral position of the wall 1 and the inner water cooling wall 1 and has a circular cross-sectional shape composed of a plurality of water pipes 2a and fins 2b, the inner water cooling wall 1 and the outer water cooling wall 1 An annular combustion chamber 3 formed between the water cooling wall 2, a gas fuel supply pipe 5 and a combustion air supply pipe 6 connected to a nozzle 4 formed in the outer water cooling wall 2, and both water cooling walls 1 , 2 are arranged in a space surrounded by the upper and lower headers 8 and 8 connected to the upper and lower ends of the water pipes 1a and 2a, respectively, and the water cooling wall 1 on the inner side. Are a plurality of heat transfer water pipes 9a connected to the upper header 7 and the lower header 8 in a continuous manner. A heat transfer water tube group 9, a gap between the heat transfer water tube group 9 and the inner water cooling wall 1, a gas passage 10 for the combustion gas G formed in the gap between the heat transfer water tube group 9, and the like. F and combustion air A are jetted in the tangential direction along the wall surface of the combustion chamber 3 into the combustion chamber 3 from the spout 4 and diffusely burned to form a cyclone flame C along the wall surface of the combustion chamber 3 in the combustion chamber 3. At the same time, the combustion gas G is swirled in the combustion chamber 3 from one end side to the other end side, and then flows into the gas passage 10.

この多管式貫流ボイラに於いては、内側の水冷壁1の水管1a内を流れるボイラ水への熱吸収は、燃焼室3内のサイクロン火炎Cによる輻射伝熱と、燃焼室3内を流れる燃焼ガスGによる接触伝熱(対流伝熱)とによって行われ、又、外側の水冷壁2の水管2a内を流れるボイラ水への熱吸収は、燃焼室3内のサイクロン火炎Cによる輻射伝熱と、サイクロン火炎Cが遠心力により外側の水冷壁2内面を嘗めることによる接触伝熱と、燃焼室3内を流れる燃焼ガスGによる接触伝熱とによって行われ、更に、伝熱水管群9の伝熱水管9a内を流れるボイラ水への熱吸収は、ガス通路10内を流れる燃焼ガスGによる接触伝熱のみによって行われることになる。   In this multitubular once-through boiler, heat absorption to the boiler water flowing in the water pipe 1 a of the inner water cooling wall 1 flows through the radiant heat transfer by the cyclone flame C in the combustion chamber 3 and the combustion chamber 3. The heat absorption by the boiler water flowing in the water pipe 2a of the outer water cooling wall 2 is performed by the contact heat transfer (convection heat transfer) by the combustion gas G, and the radiation heat transfer by the cyclone flame C in the combustion chamber 3 And the contact heat transfer caused by the cyclone flame C giving up the inner surface of the outer water cooling wall 2 by centrifugal force and the contact heat transfer caused by the combustion gas G flowing in the combustion chamber 3. Heat absorption into the boiler water flowing in the heat transfer water pipe 9 a is performed only by contact heat transfer by the combustion gas G flowing in the gas passage 10.

具体的には、前記内側の水冷壁1は、複数本の水管1aを環状に並列配置して隣接する水管1aを上下方向へ延びる帯板状のヒレ1bで連結することにより形成されており、横断面形状が円形の気密構造に構成されている。この内側の水冷壁1で囲まれた空間には、空間内に伝熱水管群9を配設することによって、燃焼ガスGが通過するガス通路10が形成される。
又、内側の水冷壁1の下端部には、ヒレ1bの下端部を切り欠くことにより燃焼室3内の燃焼ガスGをガス通路10内へ均一に流入させる複数のガス通過口11が形成されていると共に、内側の水冷壁1の上端部には、ガス通路10を通過した燃焼ガスGを煙道12へ導く燃焼ガス出口13が形成されている。
Specifically, the inner water cooling wall 1 is formed by connecting a plurality of water pipes 1a in a ring and connecting adjacent water pipes 1a with strip-like fins 1b extending in the vertical direction. The cross-sectional shape is an airtight structure with a circular shape. A gas passage 10 through which the combustion gas G passes is formed in the space surrounded by the inner water cooling wall 1 by disposing the heat transfer water tube group 9 in the space.
Further, a plurality of gas passage ports 11 through which the combustion gas G in the combustion chamber 3 flows uniformly into the gas passage 10 are formed at the lower end portion of the inner water cooling wall 1 by cutting out the lower end portion of the fin 1b. In addition, a combustion gas outlet 13 that guides the combustion gas G that has passed through the gas passage 10 to the flue 12 is formed at the upper end of the inner water cooling wall 1.

前記外側の水冷壁2は、内側の水冷壁1と同様に複数本の水管2aを環状に並列配置して隣接する水管2aを上下方向に延びる帯板状のヒレ2bで連結することにより形成されており、横断面形状が円形の気密構造に構成されている。この外側の水冷壁2は、内側の水冷壁1の外周位置に内側の水冷壁1と同心円状に配置されており、内側の水冷壁1との間で環状の燃焼室3を形成するようになっている。
又、外側の水冷壁2の上端部には、環状の燃焼室3の一端部(上端部)に開口する焚き口4が形成されており、当該焚き口4に連通状に接続したガス燃料供給管5及び燃焼用空気供給管6からガス燃料Fと燃焼用空気Aを供給し、これらを焚き口4から燃焼室3内に噴出できるようになっている。このとき、焚き口4、ガス燃料供給管5及び燃焼用空気供給管6の向きは、焚き口4から燃焼室3内にガス燃料Fと燃焼用空気Aを燃焼室3壁面に沿ってその接線方向へ噴出できるように設定されている。
更に、外側の水冷壁2の上端部には、煙道12と内側の水冷壁1に形成した燃焼ガス出口13に夫々連通する燃焼ガス出口14が形成されており、ガス通路10内の燃焼ガスGが両水冷壁1,2に形成した燃焼ガス出口13,14から煙道12へ流れるようになっている。
尚、内側の水冷壁1に形成した燃焼ガス出口13と外側の水冷壁2に形成した燃焼ガス出口14との間には、燃焼ガスGが燃焼室3内へ流入しないように両燃焼ガス出口13,14と燃焼室3とを区画する耐火物15が設けられている。
The outer water cooling wall 2 is formed by connecting a plurality of water pipes 2a in a ring shape in parallel with the inner water cooling wall 1 and connecting adjacent water pipes 2a with strip-like fins 2b extending in the vertical direction. The cross-sectional shape is an airtight structure with a circular shape. The outer water cooling wall 2 is arranged concentrically with the inner water cooling wall 1 at the outer peripheral position of the inner water cooling wall 1 so as to form an annular combustion chamber 3 with the inner water cooling wall 1. It has become.
A gas outlet 4 is formed at the upper end of the outer water cooling wall 2 so as to open to one end (upper end) of the annular combustion chamber 3. Gas fuel F and combustion air A are supplied from the pipe 5 and the combustion air supply pipe 6, and these can be ejected into the combustion chamber 3 from the nozzle 4. At this time, the direction of the burning port 4, the gas fuel supply pipe 5 and the combustion air supply pipe 6 is such that the gas fuel F and the combustion air A are tangent along the combustion chamber 3 wall surface from the burning port 4 into the combustion chamber 3. It is set so that it can be ejected in the direction.
Further, a combustion gas outlet 14 communicating with the flue 12 and a combustion gas outlet 13 formed in the inner water cooling wall 1 is formed at the upper end of the outer water cooling wall 2, and the combustion gas in the gas passage 10 is formed. G flows from the combustion gas outlets 13 and 14 formed in the water cooling walls 1 and 2 to the flue 12.
In addition, both combustion gas outlets are provided between the combustion gas outlet 13 formed in the inner water cooling wall 1 and the combustion gas outlet 14 formed in the outer water cooling wall 2 so that the combustion gas G does not flow into the combustion chamber 3. A refractory 15 is provided to partition the combustion chambers 13 and 14 and the combustion chamber 3.

前記上部ヘッダー7及び下部ヘッダー8は、何れも中空構造に形成されており、内側の水冷壁1及び外側の水冷壁2の各水管1a,2aの上下端部に連通状に接続されている。この上部ヘッダー7には、気水分離器等を備えた蒸気管が接続されていると共に、下部ヘッダー8には給水ポンプ等を備えた給水管が接続されている(何れも図示省略)。又、上部ヘッダー7の下面側及び下部ヘッダー8の上面側は、耐火物15が内張りされており、高温の燃焼ガスGから保護されている。   The upper header 7 and the lower header 8 are both formed in a hollow structure, and are connected to upper and lower ends of the water pipes 1a and 2a of the inner water cooling wall 1 and the outer water cooling wall 2, respectively. The upper header 7 is connected to a steam pipe provided with a steam separator, etc., and the lower header 8 is connected to a water supply pipe provided with a water supply pump or the like (both not shown). A refractory 15 is lined on the lower surface side of the upper header 7 and the upper surface side of the lower header 8, and is protected from the high-temperature combustion gas G.

前記伝熱水管群9は、内側の水冷壁1で囲まれた空間内に配設されており、上下端部が上部ヘッダー7及び下部ヘッダー8に夫々連通状に接続された複数本の伝熱水管9aから成る。この伝熱水管群9を形成する複数の伝熱水管9aは、内側の水冷壁1で囲まれた空間内に一定のピッチで配設されている。従って、伝熱水管群9と内側の水冷壁1との隙間及び伝熱水管群9の隙間には、燃焼室3及び煙道12へ連通するガス通路10が形成されることになる。   The heat transfer water tube group 9 is disposed in a space surrounded by the inner water cooling wall 1, and a plurality of heat transfer pipes whose upper and lower ends are connected to the upper header 7 and the lower header 8 in communication with each other. It consists of a water tube 9a. The plurality of heat transfer water tubes 9 a forming the heat transfer water tube group 9 are arranged at a constant pitch in a space surrounded by the inner water cooling wall 1. Accordingly, a gas passage 10 communicating with the combustion chamber 3 and the flue 12 is formed in the gap between the heat transfer water tube group 9 and the inner water cooling wall 1 and the gap between the heat transfer water tube group 9.

尚、前記多管式貫流ボイラには、図示していないがパイロットバーナが設けられている。このパイロットバーナは、そのパイロット炎が焚き口4に臨むように設けられており、焚き口4から燃焼室3内に噴出される燃焼ガスG及び燃焼用空気Aに着火させるようになっている。   The multi-tube once-through boiler is provided with a pilot burner (not shown). The pilot burner is provided so that the pilot flame faces the firing port 4, and ignites the combustion gas G and the combustion air A ejected from the firing port 4 into the combustion chamber 3.

以上のように構成された多管式貫流ボイラによれば、ガス燃料供給管5及び燃焼用空気供給管6を経て焚き口4に供給されたガス燃料Fと燃焼用空気Aは、焚き口4から燃焼室3内に燃焼室3壁面に沿ってその接線方向へ噴出されて強制混合されると共に、パイロットバーナにより着火されて拡散燃焼を行う。即ち、ガス燃料Fと燃焼用空気Aが焚き口4から燃焼室3内に燃焼室3壁面に沿ってその接線方向へ噴出されることから、燃焼室3内には燃焼室3壁面に沿うサイクロン火炎Cが形成される。このとき、焚き口4から噴出された燃焼ガスGと燃焼用空気Aは、燃焼室3壁面(内側の水冷壁1外面及び外側の水冷壁2内面)が水管1a,2aとヒレ1b,2bとにより凹凸状に形成されているため、水管1,2の下流側に発生する渦流により混合が促進されることになる。   According to the multi-tube type once-through boiler configured as described above, the gas fuel F and the combustion air A supplied to the firing port 4 through the gas fuel supply tube 5 and the combustion air supply tube 6 are supplied to the firing port 4. From the inside of the combustion chamber 3, it is jetted in the tangential direction along the wall surface of the combustion chamber 3 to be forcibly mixed, and ignited by a pilot burner to perform diffusion combustion. That is, the gas fuel F and the combustion air A are jetted into the combustion chamber 3 in the tangential direction along the combustion chamber 3 wall surface from the firing port 4, so that the cyclone along the combustion chamber 3 wall surface is formed in the combustion chamber 3. Flame C is formed. At this time, the combustion gas G and the combustion air A ejected from the firing port 4 have the combustion chamber 3 wall surface (the inner water cooling wall 1 outer surface and the outer water cooling wall 2 inner surface) as water pipes 1a, 2a and fins 1b, 2b. Therefore, mixing is promoted by the vortex generated on the downstream side of the water pipes 1 and 2.

前記サイクロン火炎Cは、表面積が大きく、サイクロン火炎Cが遠心力により外側の水冷壁2内面を嘗めるように延びるため、放射特性が良くなって冷却されることになり、火炎温度が比較的低い温度に保たれる。その結果、燃焼室3内のNOxの発生が抑制されることになる。然も、燃焼ガスGの一部が環状の燃焼室3内を周回して焚き口4に戻るため、燃焼ガスGによる排ガス再循環作用によりNOxの発生がより一層抑制されることになる。
又、サイクロン火炎Cは、輻射伝熱に加えて火炎が遠心力により外側の水冷壁2内面を嘗めることによる接触伝熱により外側の水冷壁2へ熱を放出する。即ち、外側の水冷壁2の水管内2aを流れるボイラ水への熱吸収は、サイクロン火炎Cによる輻射伝熱に加えてサイクロン火炎Cとの接触による接触伝熱とによって行われるため、外側の水冷壁2への熱吸収が促進される。然も、サイクロン火炎Cは、輻射伝熱によって内側の水冷壁1へも熱を放出し、内側の水冷壁1の水管1a内を流れるボイラ水へも熱を与える。
更に、サイクロン火炎Cは、燃焼室3内を旋回しながら下降する長い火炎であり、焚き口4から噴出されたガス燃料Fが燃焼室3内で燃え切るまでの対流距離を稼げるため、COの発生を抑制することができる。
The cyclone flame C has a large surface area, and the cyclone flame C extends so as to give up the inner surface of the outer water-cooled wall 2 due to centrifugal force. Therefore, the cyclone flame C is cooled with improved radiation characteristics, and the flame temperature is relatively low. To be kept. As a result, the generation of NOx in the combustion chamber 3 is suppressed. However, since a part of the combustion gas G circulates in the annular combustion chamber 3 and returns to the firing port 4, the generation of NOx is further suppressed by the exhaust gas recirculation action by the combustion gas G.
The cyclone flame C releases heat to the outer water cooling wall 2 by contact heat transfer caused by the flame giving up the inner surface of the outer water cooling wall 2 by centrifugal force in addition to the radiant heat transfer. That is, heat absorption to the boiler water flowing in the water pipe 2a of the outer water cooling wall 2 is performed by contact heat transfer due to contact with the cyclone flame C in addition to radiation heat transfer by the cyclone flame C. Heat absorption to the wall 2 is promoted. However, the cyclone flame C releases heat to the inner water cooling wall 1 by radiant heat transfer, and also gives heat to the boiler water flowing in the water pipe 1a of the inner water cooling wall 1.
Furthermore, the cyclone flame C is a long flame descending while turning in the combustion chamber 3, and the convection distance until the gas fuel F ejected from the firing port 4 burns out in the combustion chamber 3 is earned. Occurrence can be suppressed.

そして、拡散燃焼により発生した燃焼ガスGは、燃焼室3内を旋回しながら上方から下方へ向かって流れ、燃焼室3内を下降する間に接触伝熱により内側の水冷壁1と外側の水冷壁2に熱を与えつつ、内側の水冷壁1に形成したガス通過口11からガス通路10内に均一に流入する。
ガス通路10内に流入した燃焼ガスGは、伝熱水管群9と内側の水冷壁1に接触しながらガス通路10内を下方から上方へ向かって流れ、ガス通路10内を上昇する間に接触伝熱により伝熱水管群9を形成する複数の伝熱水管9aと内側の水冷壁1とに熱を与え、その後燃焼ガス出口13,14を通って煙道12からボイラ外部へ排出される。
Then, the combustion gas G generated by diffusion combustion flows from the upper side to the lower side while turning in the combustion chamber 3, and while descending in the combustion chamber 3, the inner water cooling wall 1 and the outer water cooling are caused by contact heat transfer. While heating the wall 2, the gas uniformly flows into the gas passage 10 from the gas passage port 11 formed in the inner water-cooled wall 1.
The combustion gas G that has flowed into the gas passage 10 flows in the gas passage 10 from the lower side to the upper side while contacting the heat transfer water tube group 9 and the inner water cooling wall 1, and contacts the gas passage 10 while rising in the gas passage 10. Heat is applied to the plurality of heat transfer water tubes 9a forming the heat transfer water tube group 9 and the inner water cooling wall 1 by heat transfer, and then discharged from the flue 12 through the combustion gas outlets 13 and 14 to the outside of the boiler.

図3及び図4は本発明の第2の実施形態に係る多管式貫流ボイラを示し、当該多管式貫流ボイラは、上述した構造の多管式貫流ボイラ(図1及び図2に示すもの)に改良を加えたものであり、外側の水冷壁2の上端部に形成した焚き口4にガス燃料Fと燃焼用空気Aを混合させて成る予混合ガスF′を供給する予混合ガス供給管16を接続し、予混合ガスF′を焚き口4から燃焼室3内に燃焼室3壁面に沿ってその接線方向へ噴出して予混合燃焼させ、燃焼室3内に燃焼室3壁面に沿うサイクロン火炎Cを形成すると共に、燃焼ガスGを旋回させながら燃焼室3内を上方から下方へ向かって流した後、ガス通路10内へ流入させるようにしたものである。   3 and 4 show a multi-pipe once-through boiler according to a second embodiment of the present invention. The multi-pipe once-through boiler is a multi-pipe once-through boiler having the above-described structure (shown in FIGS. 1 and 2). And a premixed gas supply for supplying a premixed gas F ′ obtained by mixing the gas fuel F and the combustion air A to the spout 4 formed at the upper end of the outer water cooling wall 2. The pipe 16 is connected, and the premixed gas F ′ is ejected from the nozzle 4 into the combustion chamber 3 along the wall surface of the combustion chamber 3 in the tangential direction for premix combustion, and into the combustion chamber 3 wall surface. A cyclone flame C is formed along the same, and the combustion gas G is swung from the upper side to the lower side while swirling the combustion gas G, and then flows into the gas passage 10.

尚、この多管式貫流ボイラは、焚き口4に予混合ガス供給管16を接続したこと以外は、図1及び図2に示す多管式貫流ボイラと同様構造に構成されており、図1及び図2の多管式貫流ボイラと同じ部位・部材には同一の参照番号を付し、その詳細な説明を省略する。
又、焚き口4へ供給される予混合ガスF′は、ガス燃料Fと燃焼用空気Aとの混合が充分に行われており、混合ムラのない高い混合精度の予混合ガスF′であることは勿論である。
この多管式貫流ボイラは、図1及び図2に示す多管式貫流ボイラと同様の作用効果を奏することができる。
The multitubular once-through boiler has the same structure as the multitubular once-through boiler shown in FIGS. 1 and 2 except that the premixed gas supply pipe 16 is connected to the nozzle 4. And the same reference number is attached | subjected to the same site | part and member as the multitubular once-through boiler of FIG. 2, and the detailed description is abbreviate | omitted.
In addition, the premixed gas F ′ supplied to the firing port 4 is a premixed gas F ′ with high mixing accuracy without mixing unevenness, in which the gas fuel F and the combustion air A are sufficiently mixed. Of course.
This multitubular once-through boiler can achieve the same effects as the multitubular once-through boiler shown in FIGS.

図5は本発明の第3の実施形態に係る多管式貫流ボイラを示し、当該多管式貫流ボイラは、外側の水冷壁2の一部に燃焼室3の一端部(上端部)に開口する複数の焚き口4を形成し、各焚き口4から燃焼室3内にガス燃料Fと燃焼用空気Aを燃焼室3壁面に沿ってその接線方向へ噴出して燃焼させるようにしたものである。
即ち、この多管式貫流ボイラは、外側の水冷壁2の上端部に二つの焚き口4を燃焼室3周方向に180°間隔を隔てた状態で且つ対向状に形成すると共に、各焚き口4にガス燃料供給管5と燃焼用空気供給管6を夫々接続し、ガス燃料Fと燃焼用空気Aを二つの焚き口4から燃焼室3内に同一の周方向で且つ燃焼室3壁面の接線方向へ噴出して拡散燃焼させ、燃焼室3内に燃焼室3壁面に沿うサイクロン火炎Cを形成すると共に、燃焼ガスGを旋回させながら燃焼室3室内を上方から下方へ向かって流した後、ガス通路10内へ流入させるようにしたものである。
FIG. 5 shows a multi-pipe once-through boiler according to a third embodiment of the present invention. The multi-pipe once-through boiler is opened at one end (upper end) of the combustion chamber 3 in a part of the outer water-cooled wall 2. A plurality of firing ports 4 are formed, and gas fuel F and combustion air A are ejected from each firing port 4 into the combustion chamber 3 along the wall surface of the combustion chamber 3 in the tangential direction for combustion. is there.
That is, this multi-tube once-through boiler is formed with two nozzles 4 at the upper end of the outer water cooling wall 2 in a state of being opposed to each other by 180 ° in the circumferential direction of the combustion chamber 3, and 4 are connected to the gas fuel supply pipe 5 and the combustion air supply pipe 6 respectively, and the gas fuel F and the combustion air A are connected to the combustion chamber 3 from the two nozzles 4 in the same circumferential direction and on the wall surface of the combustion chamber 3. After tangentially jetting and diffusing and burning, a cyclone flame C is formed in the combustion chamber 3 along the wall surface of the combustion chamber 3, and the combustion gas G is swirled while flowing in the combustion chamber 3 from above to below. The gas is allowed to flow into the gas passage 10.

尚、この多管式貫流ボイラは、外側の水冷壁2に二つの焚き口4を対向状に形成し、各焚き口4にガス燃焼供給管5及び燃焼用空気供給管6を夫々接続したこと以外は、図1及び図2に示す多管式貫流ボイラと同様構造に構成されており、図1及び図2の多管式貫流ボイラと同じ部位・部材には同一の参照番号を付し、その詳細な説明を省略する。
この多管式貫流ボイラは、図1及び図2に示す多管式貫流ボイラと同様の作用効果を奏することができる。然も、この多管式貫流ボイラは、二つの焚き口4を設けているため、燃焼ガスGの旋回流強さを促進させることができると共に、ターンダウン燃焼時の切り替えを良好に行える。
In this multi-pipe once-through boiler, the two water outlets 4 are formed in the outer water cooling wall 2 so as to face each other, and the gas combustion supply pipe 5 and the combustion air supply pipe 6 are connected to each of the fire outlets 4 respectively. Other than that, it is configured in the same structure as the multi-tube once-through boiler shown in FIGS. 1 and 2, and the same reference numerals are assigned to the same parts and members as the multi-tube once-through boiler of FIGS. Detailed description thereof is omitted.
This multitubular once-through boiler can achieve the same effects as the multitubular once-through boiler shown in FIGS. However, since this multi-pipe once-through boiler is provided with the two spouts 4, the strength of the swirling flow of the combustion gas G can be promoted and the switching at the time of the turn-down combustion can be performed satisfactorily.

図6は本発明の第4の実施形態に係る多管式貫流ボイラを示し、当該多管式貫流ボイラは、外側の水冷壁2の上端部に二つの焚き口4を燃焼室3周方向に180°間隔を隔てた状態で且つ対向状に形成すると共に、各焚き口4に予混合ガス供給管16を夫々接続し、予混合ガスF′を二つの焚き口4から燃焼室3内に同一の周方向で且つ燃焼室3壁面の接線方向へ噴出して予混合燃焼させ、燃焼室3内に燃焼室3壁面に沿うサイクロン火炎Cを形成すると共に、燃焼ガスGを旋回させながら燃焼室3室内を上方から下方へ向かって流した後、ガス通路10内へ流入させるようにしたものである。   FIG. 6 shows a multi-pipe once-through boiler according to a fourth embodiment of the present invention. The multi-pipe once-through boiler has two holes 4 at the upper end of the outer water cooling wall 2 in the circumferential direction of the combustion chamber 3. They are formed in a state of being opposed to each other at an interval of 180 °, and the premixed gas supply pipes 16 are respectively connected to the respective spouts 4 so that the premixed gas F ′ is the same in the combustion chamber 3 from the two spouts 4. And in the tangential direction of the wall surface of the combustion chamber 3 and premixed combustion is performed to form a cyclone flame C along the wall surface of the combustion chamber 3 in the combustion chamber 3 and the combustion chamber 3 while swirling the combustion gas G The room flows from the upper side to the lower side and then flows into the gas passage 10.

尚、この多管式貫流ボイラは、外側の水冷壁2に二つの焚き口4を対向状に形成し、各焚き口4に予混合ガス供給管16を夫々接続したこと以外は、図1及び図2に示す多管式貫流ボイラと同様構造に構成されており、図1及び図2の多管式貫流ボイラと同じ部位・部材には同一の参照番号を付し、その詳細な説明を省略する。
この多管式貫流ボイラは、図5に示す多管式貫流ボイラと同様の作用効果を奏することができる。
The multitubular once-through boiler is the same as that shown in FIGS. 1 and 2 except that the two water inlets 4 are formed on the outer water cooling wall 2 so as to face each other, and the premixed gas supply pipes 16 are connected to the water outlets 4 respectively. The multi-tube once-through boiler shown in FIG. 2 has the same structure, and the same parts and members as those of the multi-tube once-through boiler shown in FIGS. 1 and 2 are denoted by the same reference numerals, and detailed description thereof is omitted. To do.
The multitubular once-through boiler can achieve the same effects as the multitubular once-through boiler shown in FIG.

図7は本発明の第5の実施形態に係る多管式貫流ボイラを示し、当該多管式貫流ボイラは、燃焼ガスGと燃焼用空気Aを噴出する焚き口4の下流側位置で且つ外側の水冷壁2の一部に燃焼室3の一端部(上端部)に開口する二次燃焼用空気A′の空気供給口17を形成し、前記焚き口4から燃焼室3内にガス燃料Fと燃焼用空気Aを噴出させて焚き口4の下流側領域で一次燃焼させ、又、前記空気供給口17から燃焼室3内に二次燃焼用空気A′を噴出させて焚き口4の下流側領域で発生した一次燃焼ガスと撹拌混合し、当該一次燃焼ガスを空気供給口17の下流側領域で完全燃焼させるようにしたものである。
即ち、この多管式貫流ボイラは、外側の水冷壁2の上端部に焚き口4と空気供給口17を燃焼室3周方向に180°間隔を隔てた状態で且つ対向状に形成し、焚き口4にガス燃料供給管5と燃焼用空気供給管6を夫々接続すると共に、空気供給口17に二次燃焼用空気供給管6′を接続したものであり、ガス燃料Fと燃焼用空気Aを焚き口4から燃焼室3内に燃焼室3壁面に沿ってその接線方向へ噴出して空気比(空気過剰率)1以下の条件下で拡散燃焼させ、焚き口4の下流側領域に一次燃焼ゾーンZ1(還元燃焼領域)を形成し、又、二次燃焼用空気A′を空気供給口17から燃焼室3内に燃焼室3壁面に沿ってその接線方向へ噴出して一次燃焼ゾーンZ1で発生した一次燃焼ガスと撹拌混合し、当該一次燃焼ガスを全空気比(空気過剰率)1.1〜1.5の条件下で燃焼させて空気噴出口17の下流側領域に二次燃焼ゾーンZ2(完全燃焼領域)を形成するようにしたものである。
FIG. 7 shows a multi-pipe once-through boiler according to a fifth embodiment of the present invention. The multi-pipe once-through boiler is located on the downstream side of the firing port 4 through which the combustion gas G and the combustion air A are jetted and outside. An air supply port 17 for the secondary combustion air A ′ that opens to one end (upper end) of the combustion chamber 3 is formed in a part of the water cooling wall 2 of the combustion chamber 3. And combustion air A are jetted to cause primary combustion in the downstream region of the firing port 4, and secondary combustion air A ′ is jetted from the air supply port 17 into the combustion chamber 3 to downstream of the firing port 4. The primary combustion gas generated in the side region is stirred and mixed, and the primary combustion gas is completely burned in the downstream region of the air supply port 17.
In other words, this multi-tube once-through boiler is formed by forming the firing port 4 and the air supply port 17 at the upper end of the outer water cooling wall 2 in a state of being opposed to each other by 180 ° in the circumferential direction of the combustion chamber 3. The gas fuel supply pipe 5 and the combustion air supply pipe 6 are connected to the port 4, and the secondary combustion air supply pipe 6 ′ is connected to the air supply port 17. Is blown into the combustion chamber 3 along the wall of the combustion chamber 3 in the tangential direction and diffused and burned under the condition of an air ratio (excess air ratio) of 1 or less, Combustion zone Z1 (reduction combustion region) is formed, and secondary combustion air A ′ is ejected from the air supply port 17 into the combustion chamber 3 along the wall surface of the combustion chamber 3 in the tangential direction thereof. Is mixed with the primary combustion gas generated in step 1, and the primary combustion gas is mixed with the total air ratio (excess air). ) Is burned downstream region of the air injection port 17 under the conditions of 1.1 to 1.5 is obtained so as to form a secondary combustion zone Z2 (complete combustion region).

尚、この多管式貫流ボイラは、外側の水冷壁2に空気供給口17を焚き口4と対向状に形成し、空気供給口17に二次燃焼用空気供給管6′を夫々接続したこと以外は、図1及び図2に示す多管式貫流ボイラと同様構造に構成されており、図1及び図2の多管式貫流ボイラと同じ部位・部材には同一の参照番号を付し、その詳細な説明を省略する。
この多管式貫流ボイラは、図1及び図2に示す多管式貫流ボイラと同様の作用効果を奏することができる。然も、この多管式貫流ボイラは、焚き口4から噴出されるガス燃料Fと燃焼用空気Aを空気比1以下の条件で燃焼させて焚き口4の下流側領域に火炎温度が1500℃以下の一次燃焼ゾーンZ1(還元燃焼領域)を形成しているため、サーマルNOxの発生を抑制することができるうえ、一次燃焼ゾーンZ1で発生した一次燃焼ガスを空気供給口17から噴出される二次燃焼用空気A′と撹拌混合し、これを全空気比1.1〜1.5の条件で二次燃焼させて空気供給口17の下流側領域に二次燃焼ゾーンZ2(完全燃焼領域)を形成しているため、一次燃焼ガスが二次燃焼ゾーンZ2で完全燃焼されてCOの発生が抑制されることになる。
In this multitubular once-through boiler, an air supply port 17 is formed on the outer water cooling wall 2 so as to face the firing port 4, and a secondary combustion air supply tube 6 'is connected to the air supply port 17, respectively. Other than that, it is configured in the same structure as the multi-tube once-through boiler shown in FIGS. 1 and 2, and the same reference numerals are assigned to the same parts and members as the multi-tube once-through boiler of FIGS. Detailed description thereof is omitted.
This multitubular once-through boiler can achieve the same effects as the multitubular once-through boiler shown in FIGS. However, this multi-tube once-through boiler combusts the gas fuel F and the combustion air A ejected from the firing port 4 under the condition that the air ratio is 1 or less, and the flame temperature is 1500 ° C. in the downstream region of the firing port 4. Since the following primary combustion zone Z1 (reduction combustion region) is formed, generation of thermal NOx can be suppressed, and the primary combustion gas generated in the primary combustion zone Z1 is ejected from the air supply port 17. This is agitated and mixed with the secondary combustion air A ′, and this is subjected to secondary combustion under the conditions of a total air ratio of 1.1 to 1.5, and a secondary combustion zone Z2 (complete combustion region) in the downstream region of the air supply port 17 Therefore, the primary combustion gas is completely burned in the secondary combustion zone Z2, and the generation of CO is suppressed.

図8及び図9は本発明の第6の実施形態に係る多管式貫流ボイラを示し、当該多管式貫流ボイラは、内側の水冷壁1を形成する水管1aのガス通路10に対向する面と、伝熱水管群9を形成する各伝熱水管9aの外周面とに、略円弧状の複数のフィン18と三角形状の複数のフィン18を相対する伝熱水管9aに対して交互に且つ伝熱水管9aの長手方向に垂直に取り付け、ガス通過口11からガス通路10内に流入した燃焼ガスGがガス通路10内を下方から上方へ向かってジグザグ状に流れるようにしたものである。   8 and 9 show a multi-pipe once-through boiler according to a sixth embodiment of the present invention, and the multi-pipe once-through boiler faces the gas passage 10 of the water pipe 1a that forms the inner water-cooled wall 1. And a plurality of substantially arc-shaped fins 18 and a plurality of triangular fins 18 on the outer peripheral surface of each heat transfer water tube 9a forming the heat transfer water tube group 9 alternately with respect to the heat transfer water tubes 9a facing each other, and The heat transfer water pipe 9a is attached vertically to the longitudinal direction of the heat transfer water pipe 9a so that the combustion gas G flowing into the gas passage 10 from the gas passage port 11 flows in a zigzag manner in the gas passage 10 from below to above.

尚、この多管式貫流ボイラは、内側の水冷壁1の水管1aと伝熱水管群9の各伝熱水管9aにフィン18を取り付けたこと以外は、図1及び図2に示す多管式貫流ボイラと同様構造に構成されており、図1及び図2の多管式貫流ボイラと同じ部位・部材には同一の参照番号を付し、その詳細な説明を省略する。
この多管式貫流ボイラは、図1及び図2に示す多管式貫流ボイラと同様の作用効果を奏することができる。然も、この多管式貫流ボイラは、フィン18により伝熱面積が広くなっているうえ、燃焼ガスGがガス通路10内をジグザグ状に流れて伝熱水管9a等の接触時間が長くなるため、燃焼ガスGから熱を確実且つ良好に回収することができる。
This multitubular once-through boiler is a multitubular type shown in FIGS. 1 and 2 except that fins 18 are attached to the water pipe 1a of the inner water cooling wall 1 and the heat transfer water pipes 9a of the heat transfer water pipe group 9. The structure is the same as that of the once-through boiler, and the same parts and members as those of the multi-tube once-through boiler of FIGS. 1 and 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
This multitubular once-through boiler can achieve the same effects as the multitubular once-through boiler shown in FIGS. However, in this multi-tube once-through boiler, the heat transfer area is widened by the fins 18, and the combustion gas G flows in a zigzag manner in the gas passage 10 so that the contact time of the heat transfer water pipe 9a and the like becomes long. The heat can be reliably and satisfactorily recovered from the combustion gas G.

図10及び図11は本発明の第7の実施形態に係る多管式貫流ボイラを示し、当該多管式貫流ボイラは、内側の水冷壁1を形成する水管1aのガス通路10に対向する面と、伝熱水管群9を形成する各伝熱水管9aの外周面とに、略円弧状の複数のフィン18と三角形状の複数のフィン18を隣接する伝熱水管9aに対して階段状に且つ伝熱水管9aの長手方向に垂直に取り付け、ガス通過口11からガス通路10内に流入した燃焼ガスGがガス通路10を下方から上方へ向かって旋回しながら流れるようにしたものである。   10 and 11 show a multi-pipe once-through boiler according to a seventh embodiment of the present invention, and the multi-pipe once-through boiler faces the gas passage 10 of the water pipe 1a forming the inner water-cooled wall 1. On the outer peripheral surface of each heat transfer water tube 9a forming the heat transfer water tube group 9, a plurality of substantially arc-shaped fins 18 and a plurality of triangular fins 18 are stepped with respect to the adjacent heat transfer water tubes 9a. And it attaches perpendicularly | vertically to the longitudinal direction of the heat-transfer water pipe | tube 9a, and the combustion gas G which flowed in in the gas passage 10 from the gas passage port 11 flows through the gas passage 10 turning from upper to lower.

尚、この多管式貫流ボイラは、内側の水冷壁1の水管1aと伝熱水管群9の伝熱水管9aにフィン18を取り付けたこと以外は、図1及び図2に示す多管式貫流ボイラと同様構造に構成されており、図1及び図2の多管式貫流ボイラと同じ部位・部材には同一の参照番号を付し、その詳細な説明を省略する。
この多管式貫流ボイラは、図8及び図9に示す多管式貫流ボイラと同様の作用効果を奏することができる。
This multitubular once-through boiler is the same as that shown in FIGS. 1 and 2 except that fins 18 are attached to the water pipe 1a of the inner water cooling wall 1 and the heat transfer water pipe 9a of the heat transfer water pipe group 9. The same structure as a boiler is comprised, the same site | part and member as the multitubular once-through boiler of FIG.1 and FIG.2 are attached | subjected, and the detailed description is abbreviate | omitted.
This multitubular once-through boiler can achieve the same effects as the multitubular once-through boiler shown in FIGS.

図12及び図13は本発明の第8の実施形態に係る多管式貫流ボイラを示し、当該多管式貫流ボイラは、内側の水冷壁1を形成する水管1aのガス通路10に対向する面と、伝熱水管群9を形成する各伝熱水管9aの外周面とに、帯板状のフィン18を放射状に且つ伝熱水管9aの長手方向に平行に取り付け、ガス通過口11からガス通路10内に流入した燃焼ガスGがガス通路10内を下方から上方へ向かってフィン18と接触しながら流れるようにしたものである。   12 and 13 show a multitubular once-through boiler according to an eighth embodiment of the present invention, and the multitubular once-through boiler faces the gas passage 10 of the water pipe 1a that forms the inner water-cooled wall 1. And strip-shaped fins 18 are attached radially and parallel to the longitudinal direction of the heat transfer water pipe 9a to the outer peripheral surface of each heat transfer water pipe 9a forming the heat transfer water pipe group 9, and from the gas passage port 11 to the gas passage The combustion gas G that has flowed into the gas passage 10 flows in the gas passage 10 from below to above while contacting the fins 18.

尚、この多管式貫流ボイラは、内側の水冷壁1の水管1aと伝熱水管群9の伝熱水管9aにフィン18を取り付けたこと以外は、図1及び図2に示す多管式貫流ボイラと同様構造に構成されており、図1及び図2の多管式貫流ボイラと同じ部位・部材には同一の参照番号を付し、その詳細な説明を省略する。
この多管式貫流ボイラは、図8及び図9に示す多管式貫流ボイラと同様の作用効果を奏することができる。
This multitubular once-through boiler is the same as that shown in FIGS. 1 and 2 except that fins 18 are attached to the water pipe 1a of the inner water cooling wall 1 and the heat transfer water pipe 9a of the heat transfer water pipe group 9. The same structure as a boiler is comprised, the same site | part and member as the multitubular once-through boiler of FIG.1 and FIG.2 are attached | subjected, and the detailed description is abbreviate | omitted.
This multitubular once-through boiler can achieve the same effects as the multitubular once-through boiler shown in FIGS.

図14乃至図17は本発明の第9及び第10の実施形態に係る多管式貫流ボイラを示し、当該多管式貫流ボイラは、燃焼ガスGが燃焼室3内で所定の旋回数だけ旋回するように燃焼ガスGの旋回を促進させると共に、燃焼室3内の燃焼ガスGの旋回数に比例して増加する圧力損失を緩和させるためのものであり、環状の燃焼室3内に燃焼室3の一端部側から他端部側へ向かう螺旋状の旋回促進用ガイド体19を配設し、当該旋回促進用ガイド体19により燃焼室3内を流れる燃焼ガスGの旋回を促進させ、又、内側の水冷壁1の一部に燃焼室3内を旋回しながら流れる燃焼ガスGの一部を燃焼室3の下流側にあるガス通路10へ導く圧力損失緩和用ガス通過口20を形成し、燃焼室3内の適量の燃焼ガスGを前記圧力損失緩和用ガス通過口20からガス通路10へショートパスさせ、燃焼室3内の燃焼ガスGの旋回数に比例して増加する圧力損失を緩和させるようにしたものである。   FIGS. 14 to 17 show multitubular once-through boilers according to the ninth and tenth embodiments of the present invention. The multitubular once-through boiler swirls the combustion gas G in the combustion chamber 3 by a predetermined number of turns. In order to promote the swirling of the combustion gas G and reduce the pressure loss that increases in proportion to the swirling number of the combustion gas G in the combustion chamber 3, the combustion chamber 3 is provided in the annular combustion chamber 3. 3 is provided with a spiral turning promotion guide body 19 from one end side to the other end side, and the turning promotion guide body 19 promotes the turning of the combustion gas G flowing in the combustion chamber 3. A gas passage 20 for reducing pressure loss is formed in a part of the inner water cooling wall 1 to guide part of the combustion gas G flowing while swirling in the combustion chamber 3 to the gas passage 10 on the downstream side of the combustion chamber 3. , An appropriate amount of the combustion gas G in the combustion chamber 3 is transferred to the pressure loss reducing gas passage 2. From the gas passage 10 is short-pass, is obtained so as to relieve the increasing pressure loss in proportion to the number of turns of the combustion gas G in the combustion chamber 3.

即ち、本発明の第9の実施形態に係る多管式貫流ボイラは、図14及び図15に示す如く、内側の水冷壁1外面及び外側の水冷壁2内面に、耐熱性金属材又はセラミック材等により形成された帯板状のヒレから成る旋回促進用ガイド体19を燃焼室3の上端部側から下端部側へ向かって螺旋状に取り付け、又、内側の水冷壁1のヒレ1bに、燃焼室3内の燃焼ガスGの一部をガス通路10内へ短絡的に流入させる圧力損失緩和用ガス通過口20を所定の間隔毎に複数形成したものである。
前記旋回促進用ガイド体19は、高温の燃焼ガスGからの吸熱による熱応力や旋回促進用ガイド体19の水冷壁1,2への取付け部の熱負荷の集中によって、各水冷壁1,2の水管1a,2aが破損を起こさないような形状に形成されている。
又、圧力損失緩和用ガス通過口20を設ける位置は、圧力損失緩和用ガス通過口20を通過する燃焼ガスGが燃焼室3内を通過する際に水冷壁1,2に熱を奪われ、その燃焼ガスGの温度が燃焼室3の下端部に設けたガス通過口11からガス通路10内へ流入する燃焼ガスGの温度と等しくなるような位置に設けるのが望ましい。
That is, as shown in FIGS. 14 and 15, the multitubular once-through boiler according to the ninth embodiment of the present invention has a heat-resistant metal material or ceramic material on the outer surface of the inner water-cooling wall 1 and the inner surface of the outer water-cooling wall 2. A spiral promoting guide body 19 made of a strip-like fin formed by, for example, is attached spirally from the upper end side to the lower end side of the combustion chamber 3, and on the fin 1 b of the inner water cooling wall 1, A plurality of pressure loss mitigating gas passages 20 through which a part of the combustion gas G in the combustion chamber 3 flows into the gas passage 10 in a short circuit is formed at predetermined intervals.
The turning promotion guide body 19 is provided with each water cooling wall 1, 2 due to the thermal stress due to heat absorption from the high-temperature combustion gas G and the concentration of the thermal load of the mounting portion of the turning promotion guide body 19 on the water cooling wall 1, 2. The water pipes 1a and 2a are formed in a shape that does not cause breakage.
Further, the position where the pressure loss mitigating gas passage port 20 is provided is such that when the combustion gas G passing through the pressure loss mitigating gas passage port 20 passes through the combustion chamber 3, the water cooling walls 1 and 2 are deprived of heat. It is desirable to provide the combustion gas G at a position where the temperature of the combustion gas G becomes equal to the temperature of the combustion gas G flowing into the gas passage 10 from the gas passage port 11 provided at the lower end of the combustion chamber 3.

尚、この多管式貫流ボイラは、水冷壁1,2に旋回促進用ガイド体19を取り付けたこと及び内側の水冷壁1に圧力損失緩和用ガス通過口20を形成したこと以外は、図1及び図2に示す多管式貫流ボイラと同様構造に構成されており、図1及び図2の多管式貫流ボイラと同じ部位・部材には同一の参照番号を付し、その詳細な説明を省略する。
この多管式貫流ボイラは、図1及び図2に示す多管式貫流ボイラと同様の作用効果を奏することができる。然も、この多管式貫流ボイラは、燃焼室3内に螺旋状の旋回促進用ガイド体19を配設して燃焼室3内を流れる燃焼ガスGの旋回を促進させ、燃焼ガスGが燃焼室3内を所定の旋回数だけ旋回するようにしているため、内側の水冷壁1及び外側の水冷壁2への熱伝達がより一層促進されることになる。又、この多管式貫流ボイラは、内側の水冷壁1の一部に燃焼室3内の燃焼ガスGを適量だけガス通路10へショートパスさせる圧力損失緩和用ガス通過口20を形成しているため、燃焼室3内の燃焼ガスGの旋回数に比例して増加する圧力損失を緩和することができ、送風機の大型化等を防止することができる。
This multitubular once-through boiler is the same as that shown in FIG. 1 except that the water cooling walls 1 and 2 are provided with the turning promotion guide body 19 and the inner water cooling wall 1 is formed with a pressure loss reducing gas passage 20. 2 and the same structure as the multi-tube once-through boiler shown in FIG. 2, and the same reference numerals are attached to the same parts and members as those of the multi-tube once-through boiler shown in FIGS. Omitted.
This multitubular once-through boiler can achieve the same effects as the multitubular once-through boiler shown in FIGS. However, this multitubular once-through boiler is provided with a spiral turning promoting guide body 19 in the combustion chamber 3 to promote the turning of the combustion gas G flowing in the combustion chamber 3 so that the combustion gas G is burned. Since the inside of the chamber 3 is swirled by a predetermined number of turns, heat transfer to the inner water cooling wall 1 and the outer water cooling wall 2 is further promoted. Further, this multitubular once-through boiler is formed with a pressure loss reducing gas passage 20 for short-passing an appropriate amount of combustion gas G in the combustion chamber 3 to the gas passage 10 in a part of the inner water cooling wall 1. Therefore, the pressure loss that increases in proportion to the number of revolutions of the combustion gas G in the combustion chamber 3 can be relaxed, and an increase in the size of the blower can be prevented.

一方、本発明の第10の実施形態に係る多管式貫流ボイラは、図16及び図17に示す如く、燃焼室3内に、水管19a(又は給水管)及び水管19aの外周面に長手方向に沿って取り付けられた帯板状のヒレ19bから成る旋回促進用ガイド体19を燃焼室3の上端部側から下端部側へ向かって螺旋状に配置し、当該旋回促進用ガイド体19の水管19aの上下端部を上部ヘッダー7及び下部ヘッダー8に夫々連通状に接続し、又、内側の水冷壁1のヒレ1bに、燃焼室3内の燃焼ガスGの一部をガス通路10内へ短絡的に流入させる圧力損失緩和用ガス通過口20を所定の間隔毎に複数形成したものである。
前記旋回促進用ガイド体19のヒレ19bは、耐熱性金属材やセラミック材等により形成されていることは勿論である。
On the other hand, as shown in FIGS. 16 and 17, the multi-tube once-through boiler according to the tenth embodiment of the present invention is provided in the combustion chamber 3 with a water pipe 19a (or water supply pipe) and an outer peripheral surface of the water pipe 19a in the longitudinal direction. A swirl promoting guide body 19 composed of a strip-like fin 19b attached along the spiral is arranged spirally from the upper end side to the lower end side of the combustion chamber 3, and the water tube of the swirl promoting guide body 19 is arranged. The upper and lower end portions of 19a are connected to the upper header 7 and the lower header 8 in communication with each other, and a part of the combustion gas G in the combustion chamber 3 is introduced into the gas passage 10 to the fin 1b of the inner water cooling wall 1. A plurality of pressure loss mitigating gas passages 20 to be introduced in a short circuit are formed at predetermined intervals.
Of course, the fin 19b of the turning promoting guide body 19 is formed of a heat-resistant metal material, a ceramic material, or the like.

尚、この多管式貫流ボイラは、燃焼室3内に水管19a及びヒレ19bから成る旋回促進用ガイド体19を配置したこと及び内側の水冷壁1に圧力損失緩和用ガス通過口20を形成したこと以外は、図1及び図2に示す多管式貫流ボイラと同様構造に構成されており、図1及び図2の多管式貫流ボイラと同じ部位・部材には同一の参照番号を付し、その詳細な説明を省略する。
この多管式貫流ボイラは、図14及び図15に示す多管式貫流ボイラと同様の作用効果を奏することができる。
This multitubular once-through boiler has a swirl promoting guide body 19 including a water pipe 19a and a fin 19b disposed in the combustion chamber 3, and a gas passage 20 for reducing pressure loss is formed in the inner water cooling wall 1. Except for this, it has the same structure as the multi-tube once-through boiler shown in FIGS. 1 and 2, and the same parts and members as those of the multi-tube once-through boiler shown in FIGS. Detailed description thereof will be omitted.
This multitubular once-through boiler can achieve the same effects as the multitubular once-through boiler shown in FIGS. 14 and 15.

尚、上記各実施の形態に係る多管式貫流ボイラに於いては、多管式貫流ボイラの構造を呈しているが、燃焼室3を水冷壁で形成したボイラであれば、他の構造を呈するボイラとしても良い。例えば、本発明は、自然循環ボイラや強制循環ボイラ等の構造にしても良い。   The multi-tube once-through boiler according to each of the above embodiments has the structure of a multi-tube once-through boiler, but other structures can be used as long as the combustion chamber 3 is a water-cooled wall. It may be a boiler to be presented. For example, the present invention may have a structure such as a natural circulation boiler or a forced circulation boiler.

上記第5の実施形態に係る多管式貫流ボイラ(図7に示すもの)に於いては、焚き口4にガス燃料供給管5及び燃焼用空気供給管6を接続し、焚き口4からガス燃料Fと燃焼用空気Aを燃焼室3内に噴出させて一次燃焼させた後、空気供給口17から二次燃焼用空気A′を燃焼室3内に噴出させて一次燃焼ガスを二次燃焼させるようにしたが、他の実施形態に係る多管式還流ボイラに於いては、焚き口4に予混合ガスF′を供給する予混合ガス供給管16を接続し、焚き口4から予混合ガスF′を燃焼室3内に噴出させて一次燃焼させた後、空気供給口17から二次燃焼用空気A′を燃焼室3内に噴出させて一次燃焼ガスを二次燃焼させるようにしても良い。   In the multitubular once-through boiler (shown in FIG. 7) according to the fifth embodiment, the gas fuel supply pipe 5 and the combustion air supply pipe 6 are connected to the firing port 4, and the gas is fed from the firing port 4. After fuel F and combustion air A are jetted into the combustion chamber 3 for primary combustion, secondary combustion air A ′ is jetted from the air supply port 17 into the combustion chamber 3 to secondary combustion the primary combustion gas. However, in the multi-tube recirculation boiler according to another embodiment, the premixed gas supply pipe 16 for supplying the premixed gas F ′ to the nozzle 4 is connected and premixed from the nozzle 4. After the gas F ′ is jetted into the combustion chamber 3 for primary combustion, the secondary combustion air A ′ is jetted from the air supply port 17 into the combustion chamber 3 so that the primary combustion gas is secondary burned. Also good.

上記第5の実施形態に係る多管式貫流ボイラ(図7に示すもの)に於いては、焚き口4の下流側領域に空気供給口17を一つだけ形成する二段燃焼構造としているが、他の実施形態に係る多管式還流ボイラに於いては、焚き口4の下流側領域に複数の空気供給口17を形成し、燃焼用空気Aを多段に吹き込んで燃焼させる多段燃焼構造としても良い。   The multitubular once-through boiler according to the fifth embodiment (shown in FIG. 7) has a two-stage combustion structure in which only one air supply port 17 is formed in the downstream region of the firing port 4. In the multi-tube recirculation boiler according to another embodiment, a plurality of air supply ports 17 are formed in the downstream region of the firing port 4, and the combustion air A is blown into multiple stages to burn. Also good.

上記第6、第7、第8、第9及び第10の実施形態に係る多管式貫流ボイラ(図8、図10、図12、図14及び図16に示すもの)に於いては、焚き口4を一つだけ形成し、当該焚き口4にガス燃料供給管5及び燃焼用空気供給管6を接続するようにしたが、他の実施形態に係る多管式還流ボイラに於いては、ガス燃料供給管5及び燃焼用空気供給管6に替えて焚き口4に予混合ガス供給管16を接続しても良く、又、焚き口4を複数形成しても良く、或いは焚き口4と空気供給口17の両方を形成するようにしても良い。   In the multi-pipe once-through boilers according to the sixth, seventh, eighth, ninth and tenth embodiments (shown in FIGS. 8, 10, 12, 14 and 16) Only one port 4 is formed, and the gas fuel supply pipe 5 and the combustion air supply pipe 6 are connected to the firing port 4. However, in the multitubular reflux boiler according to another embodiment, Instead of the gas fuel supply pipe 5 and the combustion air supply pipe 6, the premixed gas supply pipe 16 may be connected to the gas outlet 4, or a plurality of gas outlets 4 may be formed. Both air supply ports 17 may be formed.

上記第6、第7及び第8の実施形態に係る多管式貫流ボイラ(図8、図10及び図12に示すもの)に於いては、伝熱水管9a等に略円弧状のフィン18、三角形状のフィン18、帯板状のフィン18を適宜の配置で取り付けるようにしたが、フィン18の形状や取り付け位置、取り付け方法等は、熱交換率の向上を図ることができれば如何なるものであっても良い。   In the multi-pipe once-through boiler according to the sixth, seventh and eighth embodiments (shown in FIGS. 8, 10 and 12), the heat transfer water pipe 9a and the like have a substantially arc-shaped fin 18, The triangular fins 18 and the strip-shaped fins 18 are attached in an appropriate arrangement, but the shape, attachment position, attachment method, etc. of the fins 18 are not limited as long as the heat exchange rate can be improved. May be.

上記第9の実施形態に係る多管式貫流ボイラ(図14及び図15に示すもの)に於いては、内側の水冷壁1及び外側の水冷壁2の両方にヒレ状の旋回促進用ガイド体19を取り付けるようにしたが、他の実施形態に係る多管式貫流ボイラに於いては、内側の水冷壁1及び外側の水冷壁2の何れか一方にヒレ状の旋回促進用ガイド体19を取り付けるようにしても良い。   In the multi-pipe once-through boiler according to the ninth embodiment (shown in FIGS. 14 and 15), both the inner water-cooling wall 1 and the outer water-cooling wall 2 have fin-like turning promoting guide bodies. However, in the multi-pipe once-through boiler according to another embodiment, a fin-shaped swirl promoting guide body 19 is provided on either the inner water-cooling wall 1 or the outer water-cooling wall 2. You may make it attach.

上記第10の実施形態に係る多管式貫流ボイラ(図16及び図17に示すもの)に於いては、燃焼室3内にヒレ19b付の水管19aから成る旋回促進用ガイド体19を配置するようにしたが、他の実施形態に係る多管式貫流ボイラに於いては、水管19aの直径が大きく、この水管19aを燃焼室3内に配置したときに内側の水冷壁1と外側の水冷壁2との間の隙間が小さくなる場合には、ヒレ19を省略するようにしても良い。即ち、旋回促進用ガイド体19を水管19a(又は給水管)のみから形成し、これを燃焼室3内に螺旋状に配置するようにしても良い。   In the multitubular once-through boiler according to the tenth embodiment (shown in FIGS. 16 and 17), a swirl promoting guide body 19 comprising a water pipe 19a with a fin 19b is disposed in the combustion chamber 3. However, in the multi-tube once-through boiler according to another embodiment, the diameter of the water pipe 19a is large, and when the water pipe 19a is disposed in the combustion chamber 3, the inner water cooling wall 1 and the outer water cooling are provided. If the gap between the wall 2 and the wall 2 is small, the fins 19 may be omitted. That is, the turning promoting guide body 19 may be formed only from the water pipe 19 a (or the water supply pipe), and this may be spirally arranged in the combustion chamber 3.

上記第9の実施形態に係る多管式貫流ボイラ(図14及び図15に示すもの)に於いては、両水冷壁1,2にヒレ状の旋回促進用ガイド体19を取り付け、又、上記第10の実施形態に係る多管式貫流ボイラ(図16及び図17に示すもの)に於いては、燃焼室3内にヒレ19b付の水管19aから成る旋回促進用ガイド体19を配置するようにしたが、他の実施形態に係る多管式貫流ボイラに於いては、燃焼室3内にヒレ状の旋回促進用ガイド体19と水管19aから成る旋回促進用ガイド体19の両方を配設するようにしても良い。   In the multi-pipe once-through boiler according to the ninth embodiment (shown in FIGS. 14 and 15), fin-shaped swirl promoting guide bodies 19 are attached to both water cooling walls 1 and 2, and In the multi-pipe once-through boiler according to the tenth embodiment (shown in FIGS. 16 and 17), a turning promoting guide body 19 including a water pipe 19a with a fin 19b is arranged in the combustion chamber 3. However, in the multitubular once-through boiler according to another embodiment, both the fin-like swirl promoting guide body 19 and the swirl promoting guide body 19 including the water pipe 19a are disposed in the combustion chamber 3. You may make it do.

上記第9及び第10の実施形態に係る多管式貫流ボイラ(図14乃至図17に示すもの)に於いては、伝熱水管群9の各伝熱水管9aにフィン18を設けていないが、他の実施形態に係る多管式貫流ボイラに於いては、各伝熱水管9aの外周面と内側の水冷壁1を形成する水管1aのガス通路10に対向する面に、略円弧状のフィン18、三角形状のフィン18、帯板状のフィン18を適宜の配置で取り付けるようにしても良い。   In the multi-pipe once-through boiler according to the ninth and tenth embodiments (shown in FIGS. 14 to 17), the fins 18 are not provided in the heat transfer water tubes 9 a of the heat transfer water tube group 9. In the multi-tube once-through boiler according to another embodiment, the outer circumferential surface of each heat transfer water tube 9a and the surface facing the gas passage 10 of the water tube 1a forming the inner water cooling wall 1 are substantially arc-shaped. The fins 18, the triangular fins 18, and the strip-shaped fins 18 may be attached in an appropriate arrangement.

本発明の第1の実施形態に係る多管式貫流ボイラの概略縦断面図である。1 is a schematic longitudinal sectional view of a multitubular once-through boiler according to a first embodiment of the present invention. 図1に示す多管式貫流ボイラの概略横断面図である。It is a schematic cross-sectional view of the multitubular once-through boiler shown in FIG. 本発明の第2の実施形態に係る多管式貫流ボイラの概略縦断面図である。It is a schematic longitudinal cross-sectional view of the multi-tube type once-through boiler which concerns on the 2nd Embodiment of this invention. 図3に示す多管式貫流ボイラの概略横断面図である。FIG. 4 is a schematic cross-sectional view of the multitubular once-through boiler shown in FIG. 3. 本発明の第3の実施形態に係る多管式貫流ボイラの概略横断面図である。It is a schematic cross-sectional view of the multitubular once-through boiler according to the third embodiment of the present invention. 本発明の第4の実施形態に係る多管式貫流ボイラの概略横断面図である。It is a schematic cross-sectional view of the multitubular once-through boiler according to the fourth embodiment of the present invention. 本発明の第5の実施形態に係る多管式貫流ボイラの概略横断面図である。FIG. 9 is a schematic cross-sectional view of a multitubular once-through boiler according to a fifth embodiment of the present invention. 本発明の第6の実施形態に係る多管式貫流ボイラの概略縦断面図である。It is a schematic longitudinal cross-sectional view of the multi-tube type once-through boiler which concerns on the 6th Embodiment of this invention. 図8に示す多管式貫流ボイラの概略横断面図である。It is a schematic cross-sectional view of the multitubular once-through boiler shown in FIG. 本発明の第7の実施形態に係る多管式貫流ボイラの概略縦断面図である。It is a schematic longitudinal cross-sectional view of the multi-tube type once-through boiler which concerns on the 7th Embodiment of this invention. 図10に示す多管式貫流ボイラの概略横断面図である。It is a schematic cross-sectional view of the multi-tube once-through boiler shown in FIG. 本発明の第8の実施形態に係る多管式貫流ボイラの概略縦断面図である。It is a schematic longitudinal cross-sectional view of the multi-tube type once-through boiler which concerns on the 8th Embodiment of this invention. 図12に示す多管式貫流ボイラの概略横断面図である。It is a schematic cross-sectional view of the multi-tube once-through boiler shown in FIG. 本発明の第9の実施形態に係る多管式貫流ボイラの概略縦断面図である。It is a schematic longitudinal cross-sectional view of the multitubular once-through boiler which concerns on the 9th Embodiment of this invention. 図14に示す多管式貫流ボイラの概略横断面図である。It is a schematic cross-sectional view of the multi-tube once-through boiler shown in FIG. 本発明の第10の実施形態に係る多管式貫流ボイラの概略縦断面図である。It is a schematic longitudinal cross-sectional view of the multitubular once-through boiler which concerns on the 10th Embodiment of this invention. 図16に示す多管式貫流ボイラの概略横断面図である。It is a schematic cross-sectional view of the multi-tube once-through boiler shown in FIG.

符号の説明Explanation of symbols

1は内側の水冷壁、1aは水管、1bはヒレ、2は外側の水冷壁、2aは水管、2bはヒレ、3は燃焼室、4は焚き口、7は上部ヘッダー、8は下部ヘッダー、9は伝熱水管群、9aは伝熱水管、10はガス通路、11はガス通過口、17は空気供給口、18はフィン、19は旋回促進用ガイド体、20は圧力損失緩和用ガス通過口、Aは燃焼用空気、A′は二次燃焼用空気、Cはサイクロン火炎、Fはガス燃料、F′は予混合ガス、Gは燃焼ガス、Z1は一次燃焼ゾーン、Z2は二次燃焼ゾーン。   1 is an inner water cooling wall, 1a is a water pipe, 1b is a fin, 2 is an outer water cooling wall, 2a is a water pipe, 2b is a fin, 3 is a combustion chamber, 4 is a spout, 7 is an upper header, 8 is a lower header, 9 is a heat transfer water tube group, 9a is a heat transfer water tube, 10 is a gas passage, 11 is a gas passage port, 17 is an air supply port, 18 is a fin, 19 is a swirl promoting guide body, and 20 is a gas passage for reducing pressure loss. Mouth, A for combustion air, A 'for secondary combustion air, C for cyclone flame, F for gas fuel, F' for premixed gas, G for combustion gas, Z1 for primary combustion zone, Z2 for secondary combustion zone.

Claims (9)

複数の水管及びヒレから成る二つの環状の水冷壁を同心円状に配設して内側の水冷壁と外側の水冷壁との間に環状の燃焼室を形成し、両水冷壁の各水管の上下端部を上部ヘッダー及び下部ヘッダーに夫々連通状に接続して成る多管式貫流ボイラであって、前記外側の水冷壁の上端部に燃焼室の上端部側に開口する焚き口を形成し、又、内側の水冷壁の下端部にガス通過口を形成し、前記焚き口から燃焼室内にガス燃料と燃焼用空気又はガス燃料と燃焼用空気を混合させて成る予混合ガスを燃焼室壁面に沿ってその接線方向へ噴出して燃焼させ、燃焼室内に燃焼室壁面に沿うサイクロン火炎を形成すると共に、燃焼ガスを燃焼室内で旋回させながら燃焼室内を上方から下方へ向かって流すようにしたことを特徴とする多管式貫流ボイラ。 Two annular water cooling walls composed of a plurality of water pipes and fins are concentrically arranged to form an annular combustion chamber between the inner water cooling wall and the outer water cooling wall, and the upper and lower sides of the water pipes of both water cooling walls. A multi-tube type once-through boiler having end portions connected to an upper header and a lower header in communication with each other, and forming an opening at the upper end portion of the outer water cooling wall on the upper end side of the combustion chamber, In addition, a gas passage port is formed at the lower end of the inner water cooling wall, and a premixed gas obtained by mixing gas fuel and combustion air or gas fuel and combustion air from the opening into the combustion chamber is applied to the combustion chamber wall surface. along by burning and ejected to the tangential direction, to form a cyclone flame along the combustion chamber wall surface in the combustion chamber and the combustion chamber while swirling the combustion gas in the combustion chamber to flow toward the top to the bottom This is a multi-tube type once-through boiler. 環状の燃焼室内に燃焼室の上端部側から下端部側へ向かう螺旋状の旋回促進用ガイド体を配設し、当該旋回促進用ガイド体により燃焼室内を流れる燃焼ガスの旋回を促進させるようにしたことを特徴とする請求項1に記載の多管式貫流ボイラ。 A spiral turning promotion guide body from the upper end side to the lower end side of the combustion chamber is disposed in the annular combustion chamber so that the turning of the combustion gas flowing in the combustion chamber is promoted by the turning promotion guide body. The multi-pipe once-through boiler according to claim 1, wherein 内側の水冷壁の一部に燃焼室内を旋回しながら流れる燃焼ガスの一部を燃焼室の下流側にあるガス通路へ導く圧力損失緩和用ガス通過口を形成し、燃焼室内の燃焼ガスの一部を前記圧力損失緩和用ガス通過口からガス通路へショートパスさせるようにしたことを特徴とする請求項1又は請求項2に記載の多管式貫流ボイラ。   A gas passage for reducing pressure loss is formed in a part of the inner water cooling wall to guide a part of the combustion gas flowing while swirling in the combustion chamber to a gas passage on the downstream side of the combustion chamber. The multi-tube type once-through boiler according to claim 1 or 2, wherein a short path is made from the pressure loss reducing gas passage to the gas passage. 内側の水冷壁で囲まれた空間内に上下端部が上部ヘッダー及び下部ヘッダーに夫々連通状に接続された複数本の伝熱水管から成る伝熱水管群を配設すると共に、前記伝熱水管群と内側の水冷壁との隙間及び伝熱水管群の隙間に煙道へ連通するガス通路を形成し、又、内側の水冷壁の下端部に燃焼室内の下方へ流れた燃焼ガスを前記ガス通路へ均一に流入させる複数のガス通過口を形成したことを特徴とする請求項1、請求項2又は請求項3に記載の多管式貫流ボイラ。 A heat transfer water tube group comprising a plurality of heat transfer water tubes whose upper and lower ends are connected to the upper header and the lower header in communication with each other is disposed in a space surrounded by an inner water cooling wall, and the heat transfer water tube the gas passage communicating with the flue formed in the gaps of the gap and the heat transfer water tube group of the group and the inner water wall, also the combustion gas flowing downward in the combustion chamber to the lower end of the inner water wall The multi-pipe once-through boiler according to claim 1, 2 or 3, wherein a plurality of gas passage ports for uniformly flowing into the gas passage are formed. 外側の水冷壁の上端部に燃焼室の上端部側に開口する複数の焚き口を形成し、各焚き口から燃焼室内にガス燃料と燃焼用空気又はガス燃料と燃焼用空気を混合させて成る予混合ガスを燃焼室壁面に沿ってその接線方向へ噴出して燃焼させるようにしたことを特徴とする請求項1、請求項2、請求項3又は請求項4に記載の多管式貫流ボイラ。 A plurality of nozzles that open to the upper end of the combustion chamber are formed at the upper end of the outer water cooling wall, and gas fuel and combustion air or gas fuel and combustion air are mixed from each nozzle into the combustion chamber. 5. A multi-tube once-through boiler according to claim 1, wherein the premixed gas is jetted in the tangential direction along the combustion chamber wall surface and burned. . 焚き口の下流側位置で且つ外側の水冷壁の上端部に燃焼室の上端部側に開口する二次燃焼用空気の空気供給口を少なくとも一つ形成し、前記焚き口から燃焼室内に噴出されるガス燃料と燃焼用空気又は予混合ガスを空気比1以下の条件下で燃焼させて焚き口の下流側領域に一次燃焼ゾーンを形成し、又、前記空気供給口から燃焼室内に二次燃焼用空気を燃焼室壁面に沿ってその接線方向へ噴出して一次燃焼ゾーンで発生した一次燃焼ガスと撹拌混合すると共に、当該一次燃焼ガスを全空気比1.1〜1.5の条件下で燃焼させて空気供給口の下流側領域に二次燃焼ゾーンを形成するようにしたことを特徴とする請求項1、請求項2、請求項3、請求項4又は請求項5に記載の多管式貫流ボイラ。 At least one air supply port for secondary combustion air that opens to the upper end of the combustion chamber is formed at the upper end of the water cooling wall on the downstream side of the soot and is blown into the combustion chamber from the soot. Gas fuel and combustion air or premixed gas are burned under conditions of an air ratio of 1 or less to form a primary combustion zone in the downstream region of the firing port, and secondary combustion from the air supply port into the combustion chamber The working air is jetted in the tangential direction along the wall surface of the combustion chamber and mixed with the primary combustion gas generated in the primary combustion zone, and the primary combustion gas is mixed under the condition of the total air ratio of 1.1 to 1.5. 6. The multipipe according to claim 1, wherein a secondary combustion zone is formed in a downstream region of the air supply port by combustion. Type once-through boiler. 少なくとも伝熱水管群を形成する各伝熱水管の外周面に、複数のフィンを相対する伝熱水管に対して交互に且つ伝熱水管の長手方向に垂直に取り付け、ガス通過口からガス通路内に流入した燃焼ガスがガス通路の一端部側から他端部側へジグザグ状に流れるようにしたことを特徴とする請求項4、請求項5又は請求項6に記載の多管式貫流ボイラ。   At least on the outer peripheral surface of each heat transfer water tube forming the heat transfer water tube group, a plurality of fins are attached to the opposite heat transfer water tube and perpendicular to the longitudinal direction of the heat transfer water tube, and from the gas passage port to the gas passage The multi-pipe once-through boiler according to claim 4, 5, or 6, wherein the combustion gas flowing into the gas passage flows in a zigzag shape from one end side to the other end side of the gas passage. 少なくとも伝熱水管群を形成する各伝熱水管の外周面に、複数のフィンを隣接する伝熱水管に対して階段状に且つ伝熱水管の長手方向に垂直に取り付け、ガス通過口からガス通路内に流入した燃焼ガスがガス通路の一端部側から他端部側へ旋回しながら流れるようにしたことを特徴とする請求項4、請求項5又は請求項6に記載の多管式貫流ボイラ。   At least on the outer peripheral surface of each heat transfer water tube forming the heat transfer water tube group, a plurality of fins are attached to the adjacent heat transfer water tube in a stepwise manner and perpendicular to the longitudinal direction of the heat transfer water tube. The multi-pipe once-through boiler according to claim 4, 5 or 6, wherein the combustion gas flowing into the gas passage is swirled from one end side to the other end side of the gas passage. . 少なくとも伝熱水管群を形成する各伝熱水管の外周面に、複数のフィンを放射状に且つ伝熱水管の長手方向に平行に取り付け、ガス通過口からガス通路内に流入した燃焼ガスがガス通路の一端部側から他端部側へフィンと接触しながら流れるようにしたことを特徴とする請求項4、請求項5又は請求項6に記載の多管式貫流ボイラ。   A plurality of fins are attached radially and parallel to the longitudinal direction of the heat transfer water pipe on the outer peripheral surface of each heat transfer water pipe forming at least the heat transfer water pipe group, and the combustion gas flowing into the gas passage from the gas passage port is the gas passage. The multi-pipe once-through boiler according to claim 4, wherein the multi-tube type once-through boiler is configured to flow while coming into contact with the fin from one end side to the other end side.
JP2004007570A 2004-01-15 2004-01-15 Multi-pipe once-through boiler Expired - Fee Related JP4309771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004007570A JP4309771B2 (en) 2004-01-15 2004-01-15 Multi-pipe once-through boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004007570A JP4309771B2 (en) 2004-01-15 2004-01-15 Multi-pipe once-through boiler

Publications (2)

Publication Number Publication Date
JP2005201514A JP2005201514A (en) 2005-07-28
JP4309771B2 true JP4309771B2 (en) 2009-08-05

Family

ID=34821162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004007570A Expired - Fee Related JP4309771B2 (en) 2004-01-15 2004-01-15 Multi-pipe once-through boiler

Country Status (1)

Country Link
JP (1) JP4309771B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107631324A (en) * 2017-09-05 2018-01-26 中国联合重型燃气轮机技术有限公司 fuel-air mixer

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4729382B2 (en) * 2005-10-27 2011-07-20 株式会社タクマ Multi-pipe once-through boiler
JP4857025B2 (en) * 2006-05-18 2012-01-18 株式会社タクマ Multi-pipe once-through boiler
JP5473342B2 (en) * 2008-02-27 2014-04-16 大阪瓦斯株式会社 Fluid heating device, superheated steam generator, and hot water supply device
CN101818892B (en) * 2010-05-04 2012-07-18 张建臣 Straw fuel flying furnace
CN105444184A (en) * 2015-12-09 2016-03-30 张建臣 Harmless garbage incineration furnace
JP2018054174A (en) * 2016-09-27 2018-04-05 株式会社 フュー・テクノロジー Once-through boiler device and boiler system
CN116877971B (en) * 2023-09-08 2023-11-14 山东华骏金成能源设备有限公司 Vehicle-mounted mobile high-dryness flue gas two-return steam injection boiler and use method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107631324A (en) * 2017-09-05 2018-01-26 中国联合重型燃气轮机技术有限公司 fuel-air mixer

Also Published As

Publication number Publication date
JP2005201514A (en) 2005-07-28

Similar Documents

Publication Publication Date Title
US6089855A (en) Low NOx multistage combustor
JP4264004B2 (en) Improved burner system with low NOx emission
CA2226202C (en) Water-tube boiler
CA2226019C (en) Water-tube boiler and burner
US5746159A (en) Combustion device in tube nested boiler and its method of combustion
US7647898B2 (en) Boiler and low-NOx combustion method
CN110631260B (en) Cylindrical gap type full-premixing water-cooling combustion head
JP2955432B2 (en) Cyclone combustion
JP4309771B2 (en) Multi-pipe once-through boiler
JP4729382B2 (en) Multi-pipe once-through boiler
JP5936400B2 (en) Tubular flame burner and radiant tube heating device
JP2006189188A (en) Solid fuel burner and combustion method
JP4400921B2 (en) Multi-pipe once-through boiler
US4255136A (en) Furnace for heat treatment of wire materials
RU2062405C1 (en) Combustion chamber
JP6732960B2 (en) Method for burning fuel and boiler
CN115493296A (en) Short-flow ultra-compact gas boiler with adjustable premixed combustion and local back combustion coupling
JP4857025B2 (en) Multi-pipe once-through boiler
JP2019211095A (en) Oil-fired burners and multitube once-through boiler
JPS61256113A (en) Surface combustion burner and heat exchanger utilizing this burner
JP3947153B2 (en) Multi-pipe once-through boiler
JP2005156132A (en) Premix type gas burner and boiler
JP3772922B2 (en) Once-through boiler
CN116447592A (en) Ammonia-hydrogen fusion zero-carbon combustor
JP3310932B2 (en) boiler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090430

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090508

R150 Certificate of patent or registration of utility model

Ref document number: 4309771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150515

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees