JP3662599B2 - Water tube boiler - Google Patents

Water tube boiler Download PDF

Info

Publication number
JP3662599B2
JP3662599B2 JP28737993A JP28737993A JP3662599B2 JP 3662599 B2 JP3662599 B2 JP 3662599B2 JP 28737993 A JP28737993 A JP 28737993A JP 28737993 A JP28737993 A JP 28737993A JP 3662599 B2 JP3662599 B2 JP 3662599B2
Authority
JP
Japan
Prior art keywords
combustion
water
flame
water pipe
water pipes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28737993A
Other languages
Japanese (ja)
Other versions
JPH07119905A (en
Inventor
昭典 川上
和弘 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP28737993A priority Critical patent/JP3662599B2/en
Publication of JPH07119905A publication Critical patent/JPH07119905A/en
Application granted granted Critical
Publication of JP3662599B2 publication Critical patent/JP3662599B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
この発明は、NOx 及びCOの排出濃度を減少した貫流ボイラ,自然循環式水管ボイラ,強制循環式水管ボイラ等の水管ボイラに関するものである。
【0002】
【従来の技術】
近年では、環境汚染問題により、ボイラにおいても有害燃焼排気物、特にNOx ,CO等の一層の排出濃度の低減が求められている。
このような有害燃焼排気物の排出濃度の低減化対策は種々提案されている。
その低減化対策の一つとして、バーナにできるだけ水管を近づけ、燃焼火炎中に水管群を位置させて、熱交換と同時に火炎の冷却を行うことでthermal NOx の生成をできるだけ抑制し、かつ、高負荷燃焼を実現する技術が米国特許第5,020,479号にて知られている。
【0003】
尚、本書で用いる「燃焼火炎」とは、現在燃焼反応を起している最中の高温ガスのことをいい、この高温ガス中には燃焼を完了していない可燃性予混合ガスと燃焼によって生成された燃焼済みガスとを含む。また、火炎は燃焼ガスと言い換えてもよい。
【0004】
しかしながら、この従来の対策によればNOx の排出濃度は低減できるもののCOの排出濃度が僅かに高めになるという問題がある。その原因の一つは、COについては、NOx を低減するためになされる燃焼火炎の冷却が急冷効果をもたらし、これにより燃焼反応が凍結され一部は高温での平衡濃度のまま未反応物質、つまりCO等として系外に排出してしまうことによるのではないかと考えられている。
この問題を解決すべく、高負荷燃焼により生成した火炎の近傍又は、これに接して置いた冷物体で火炎の温度を1000℃以上、1500℃以下に制御した後、冷物体の後流側に設けた断熱空間で火炎中の残留COを酸化反応させてCO2 に変成させる技術が、特開昭60−78247号公報にて提案されている。
【0005】
【発明が解決しようとする課題】
しかしながら、この技術はCOの排出の低減を目的としてなされたもので、NOx の生成の抑制を目的とはしていない。このため、断熱空間を設ける位置によっては燃焼火炎の断熱空間温度が高くなり、NOx (thermal NOx )が生成されてしまう。
更に、燃焼火炎の流速が大きい場合、断熱空間を燃焼火炎流れ方向の長さを長く確保することで、必要とするCOからCO2 への変成を図ることができるが、そうすると熱効率の低下を招き、缶体の小型化を実現できないという問題がある。
【0006】
更に、一般にボイラなどは要求される熱量によってバーナ手段(燃焼機器)の燃焼量も調整する必要があり、そのため、バーナ手段の燃焼量の調整によっては、上記の冷体物や断熱空間の相対的な位置が相違してしまう。
即ち、バーナ手段と、缶体側の断熱空間,水管の配置は、常用される出力、或は定格出力での燃焼時に、NOx やCOの生成量が少なくなるように決定される。従って、低負荷での燃焼時には燃焼火炎が水管によって有効に急冷されず、そのため、NOx の生成量が増大し、一方、過大な燃焼時においては、バーナ手段前面の水管が過熱するという問題がある。
【0007】
また、バーナ手段は、予混合気や燃料、空気の噴出孔の周囲はこれらの気体の噴出によって十分冷却可能であるが、それ以外の箇所周囲は、上記のような高温のガスに晒されるため、耐熱性に関する工夫が必要である。
【0008】
加えて、上記のような狭い空間で良好な燃焼反応領域を構成する必要があって、バーナ手段側の工夫も必要であり、そのための構造が複雑化していた。
【0009】
【課題を解決するための手段】
この発明は、上記の課題に鑑みてなされたもので、互いに略平行に、かつ間隔を存して燃焼火炎の流通方向に沿って配置され、複数の水管‥‥を含む一対の水管壁と、この水管壁 によって画成される燃焼・熱交換区域 の一側に配置され、複数の火炎を形成し燃焼量を高低に調整する予混合式平面バーナ と、前記燃焼・熱交換区域の他側に設けた燃焼排ガス出口手段 と、互いに略平行で所定の間隔を存して前記予混合式平面バーナ手段からの燃焼火炎と交差するように前記燃焼・熱交換区域のほぼ全域に設けられる多数の水管からなる水管群とを備えるものにおいて、前記水管壁を構成する水管との間に隙間を形成するように前記バーナ手段からの各火炎の境界部分に対応させて複数の水管からなる水管の小グループを配置し、前記予混合式平面バーナからの各火炎を高燃焼量時および低燃焼量時前記隙間に流通させるように構成したことを特徴とする水管ボイラである。
【0010】
【作用】
この発明に係る水管ボイラによれば、燃焼量の高低にかかわらず、バーナ手段の燃焼火炎が水管の隙間から後流側の隙間に向けて確実に流入することになり、燃焼火炎の両側からの水管による冷却により、NOx の生成を抑制する。
【0011】
【実施例】
図1は、この発明を水管ボイラの一種である多管式貫流ボイラに適用した実施例の缶体の横断面を示す概略構成図である。
図面において、多管式貫流ボイラの缶体(1) は、後記バーナ手段(2) から噴出される燃焼火炎の流通方向(缶体の長手方向)に沿って配置した垂直の水管壁(以下、単に管壁と称する)(3),(3) と、互いに略平行であって所定間隔を存して上記管壁(3),(3) 間に燃焼火炎と交差するように配設される多数の略垂直の水管(4)(4)‥‥(水管群を構成する)と、上記管壁(3),(3) 間の一側開口部に配設した予混合式の比較的フラットな火炎を形成するバーナ手段(2) と、上記管壁(3),(3) 間の他側開口部に形成した燃焼排ガス出口手段(以下単に排ガス出口と称する)(5) 等から構成される。管壁(3),(3) は燃焼・熱交換区域(N) を画成する。この排ガス出口(5) は燃焼・熱交換区域(N) の反バーナ側端部に設ければよく、例えば管壁の一部を削除開口して形成することができる。
【0012】
上記バーナ手段(2) は、周知のコルゲートタイプの予混合式平面燃焼バーナを用い、更に、保炎性を高めるために、周知の火炎分割手段などを用いて複数個(図示する実施例では2個)の主火炎を形成する形式のものとしてある。
尚、上記バーナ手段(2) は、上記のコルゲートタイプの予混合式平面燃焼バーナ以外にも、予混合気を噴出する多数の小孔を有するセラミックプレートバーナを用いても良いし、気化燃焼油バーナの他、種々のバーナを用いることも可能である。要するに、複数方向に延びる主火炎を形成するものであれば、1個のバーナ手段に限らず、複数のバーナ手段によるものでも良い。
【0013】
上記管壁(3),(3) は、この実施例では、夫々、複数本の水管(6) を適宜の間隔をおいて燃焼火炎の流通方向に並んで配設され、各水管(6)(6)‥‥の隙間をこれら水管(6)(6)‥‥の軸線方向に沿って延びる平板状のフィン状部材(7)(7)‥‥で閉鎖した構成のものである。
これらの管壁(3),(3) は、実質上互いに平行をなすように適宜の間隔をおいて配置され、各管壁(3),(3) の外側にはカバー体(8),(8) を取付け、管壁(3),(3) との間に断熱空間(9),(9) を形成している。尚、この断熱空間(9),(9) 内には、場合によってはグラスウール等の適宜の断熱材を充填しても良い。
【0014】
水管(4)(4)‥‥は燃焼火炎の流れ方向に配列される3つの水管列X,Y,Z が含まれている。以下の説明では、この各列名X,Y,Z に、バーナ手段(2) から離れる方向に順次添字1,2,3,‥‥を附して管番号(X1),(X2),‥‥,(Y1),(Y2),‥‥,(Z1),(Z2),‥‥とし、管壁(3),(3) を構成する水管(6)(6)‥‥には各列毎に管番号(A1),(A2),‥‥,(B1),(B2),‥‥を夫々附して説明する。
【0015】
上記管壁(3),(3) を構成する水管(6)(6)‥‥及び管壁(3),(3) 間に配置する水管(4)(4)‥‥上端並びに下端は、夫々、上部ヘッダ及び下部ヘッダ(共に図示省略)に連通接続される。そして、この両ヘッダは管壁(3),(3) の上下端部と気密に接合され、管壁(3),(3) と共同して燃焼・熱交換区域(N) の上下左右の四方を気密に区画して燃焼火炎及び燃焼済みガスが缶体外部に漏れないように構成する。そして、残りの2方の開口のうち、一方はバーナ手段(2) を取付け、他方の開口には排気筒(図示省略)を接続する。蒸気ボイラにおいては、通常運転時下部ヘッダの全体と水管(6)(6)‥‥,(4)(4)‥‥の途中までは常時水で満たされ、水管(6)(6)‥‥,(4)(4)‥‥の上部と上部ヘッダ内は蒸気で満たされている。
【0016】
上記管壁(3),(3) 間に配置する複数の水管(4)(4)‥‥は、上述のように3列X,Y,Z を燃焼火炎の流通方向に並列に配設してある。そして、バーナ手段(2) に最も近接し対面する2本の水管(X1),(Z1) は実質上互いに密接する小グループ(以下、密接水管群と称す。)(G) を構成した状態で、上記管壁(3),(3) 間の略中央に配置してある。
この密接水管群(G) 以降の水管は、管壁(3),(3) の水管(6)(6)‥‥を含めて隣り合う列の水管同志は千鳥状配列となっている。また燃焼火炎の流通路となる各水管(6)(6)‥‥,(4)(4)‥‥相互の間隔は、各水管(6) の外径と等しいか、それ以下に設定するのが好ましく、これらの各間隔は、全て同一であっても、互いに異なっていても、前述の条件内にあれば良い。
【0017】
上記のバーナ手段(2) ,バーナ手段(2) の直前に位置する密接水管群(G) ,管壁(3),(3) を構成する最前列側の水管(A1),(B1) 相互の位置関係は以下のように設定してある。
まず、密接水管群(G) を、その両側の管壁(3),(3) を構成する水管(A1),(B1) との間に隙間を形成するように配置する。上記バーナ手段(2) は、その燃焼量に関係なく、主火炎が上記の各隙間に対して侵入するように設ける。
【0018】
更に、上記バーナ手段(2) と密接水管群(G) 並びに水管(A1)(B1)(X1)(Z1)との位置関係は、バーナ手段(2) からの主火炎(燃焼ガスの高温領域)が、予混合気の噴出方向両側の水管(A1)(B1)(X1)(Z1)と接触する位置、即ち、バーナ手段からの燃焼火炎が、バーナ手段(2) に対面する水管への伝熱によって冷却され、温度低下する位置関係としてある。
従って、燃焼火炎が、密接水管群(G) と管壁(3),(3) との間の隙間を通過する際には、その両側の水管(A1)(X1)(Z1)(B1)によって急速に冷却され、温度低下するため、thermal NOx の生成を防止できる。
【0019】
更に、水管(X1),(Y1),(Z1)と水管(A1),(B1) との間の隙間を通過した燃焼火炎は、それら水管より後流側の各水管間の隙間空間においても上述のように燃焼反応を継続しながら上記管壁間を排ガス出口に向けて流通し、その間に、各水管への伝熱を行う。その際にも、燃焼火炎は、燃焼反応を継続しながらその後流側の水管との間で伝熱を行って、温度低下するため、thermal NOx の生成を防止できる。
しかも上記バーナ手段(2) の燃焼量に関係なく、主火炎が上記の各隙間に対して侵入するように設けてあるため、ボイラの運転状況に関係なく、常に低NOx ,低COが達成できる。
【0020】
次に、この発明に係る第2の実施例を図2を参照しながら説明する。
この第2の実施例は、第1の実施例の密接水管群を燃焼火炎の流通方向後流側の領域にまで拡大したもので、具体的には、管壁(3),(3) 間に位置する各列の水管のうち、最もバーナ手段(2) 寄りの水管(X1)(Y1)(Z1)でもって実質上互いに密接する密接水管群(G1)を構成したものである。
【0021】
上記の密接水管群(G1)は、3本の水管(X1),(Y1),(Z1)によって三角形状を呈しており、この状態で上記管壁(3),(3) 間の略中央に配置してある。尚、この密接水管群(G1)の後流側の水管の配置は上述の第1の実施例と同様の要領で配置してある。
【0022】
このような配置にすると、上記第1実施例で燃焼に伴って振動や騒音が発生する場合、それらの低減を行うことができる。
即ち、各水管の隙間においては、バーナ手段(2) に近接する側の隙間ほど燃焼火炎(燃焼ガス)の流速が速く、水管の下流側においてその両側に燃焼火炎(燃焼ガス)主流と逆方向に渦巻く渦流(カルマン渦)が発生する。このような渦流が相互に影響を及ぼし合って著しい振動や騒音が発生する場合があるが、上記のように、バーナ手段(2) 直前の密接水管群(G1)を燃焼火炎の流通方向下流側に向けて延長した形状とすることにより、水管(X1)(Z1)の後流両側に発生する渦流を水管(Y1)によって相互に隔絶し、互いに及ぼし合っていた影響を除去し、燃焼に伴う振動、騒音の発生を有効に抑制することができる。
【0023】
尚、以上の第1,2の実施例においては、バーナ手段(2) の火炎の形成数に合せて、バーナ手段(2) の火炎の直前に位置する水管を適宜の水管小グループ(密接水管群)としたことにより、このバーナ手段(2) の直前の水管の熱負荷の調整を行なえるという利点も有している。
【0024】
以上の説明においては、ボイラ缶体を構成する管壁(3),(3) を互いに平行に配置してあり燃焼火炎の流通方向に対しての間隔は同一となっているが、この発明においては、管壁間の間隔が部分的に相違するものであってもよく、また、管壁間の間隔が順次、増加或は減縮するように構成したものであっても良い。
図3に、管壁間の間隔が部分的に相違するボイラに適用した実施例を示す。
【0025】
この第3の実施例は、管壁(3'),(3') 間の間隔を、バーナ手段(2) 側について狭くしたもので、管壁(3')(3')を構成する水管のうちバーナ手段(2) 側の水管(A1)〜(A3),(B1)〜(B3)が構成する管壁部分(以下、前部管壁という)の間隔をその後流側の管壁部分(以下、後部管壁という)の間隔よりも狭くしてある。そのため、この前部管壁間には水管列のうちの中央の1列(Y列)のみが位置し、後部管壁間は上記の各実施例同様3列(X〜Z列)が位置する。尚、水管(A1)〜(A3),(B1)〜(B3)が構成する前部管壁も後部管壁と同様に実質上互いに平行としてある。
【0026】
そして、前部管壁間の略中間に位置する列の水管は2本を密接配置し、この2本の水管(Y1)(Y2)と前部管壁を構成する水管(A1)〜(A3),(B1)〜(B3)とが略千鳥状に配列となるように構成してある。また、上記の前部管壁と密接水管群(G2)との間に形成される隙間の後流には水管(X1)(X2)‥‥,(Z1)(Z2)‥‥が位置することになる。
【0027】
以上の構成により、この第3の実施例においても、上記各実施例と同様にバーナ手段(2) からの燃焼火炎は、その燃焼量に関係なく、前部管壁と密接水管群(G2)との間の隙間に対して確実に侵入し、後部管壁間の水管群の隙間を経て排ガス出口(5) に向かう。そして、この燃焼火炎は、管壁間を流通する際に、燃焼を継続しながら各水管(4)(4)‥‥,(6)(6)‥‥と伝熱を行う。
【0028】
ここで、バーナ手段(2) の燃焼量が少ない場合、即ちボイラが低負荷運転状態の場合は、バーナ手段(2) からの燃焼火炎は短く、この燃焼火炎の高温領域は、主に前部管壁と密接水管群(G2)との伝熱により冷却され、温度低下する。従って、燃焼火炎が、前部管壁と密接水管群(G2)との間の隙間を通過する際には、その両側の水管(A1)〜(A3),(Y1)〜(Y2),(B1)〜(B3)によって急速に冷却され、温度低下するため、thermal NOx の生成を防止できる。そして、前部管壁と密接水管群との間の隙間を通過した燃焼火炎は、それら水管より後流側の各水管間の隙間空間においても上述のように燃焼反応を継続しながら上記管壁間を排ガス出口(5) に向けて流通し、その間に、各水管への伝熱を行う。その際にも、燃焼火炎は、燃焼反応を継続しながらその後流側の水管との間で伝熱を行って、温度低下するため、thermal NOx の生成を防止できる。
【0029】
一方、バーナ手段(2) の燃焼量が多い場合、即ちボイラが高負荷運転状態の場合は、バーナ手段(2) からの燃焼火炎は長く、この燃焼火炎の高温領域は、主に後部管壁とその間の水管群との伝熱により冷却され、温度低下する。従って、燃焼火炎が、前部管壁と密接水管群(G2)との間の隙間を通過する際には、その両側の水管(A1)〜(A3),(Y1)〜(Y2),(B1)〜(B3)によって燃焼火炎の一部が冷却され、後部管壁とその間の水管群の隙間を通過する際には、管(A4)(A5)〜,(X1)(X2)〜,(Y3)(Y4)〜,(Z1)(Z2)〜,(B4)(B5)〜によって急速に冷却され、温度低下する。そして、それら水管より後流側の各水管間の隙間空間においても燃焼反応を継続しながら後部管壁間を排ガス出口(5) に向けて流通し、その間に、各水管への伝熱を行う。その際にも、燃焼火炎は、燃焼反応を継続しながらその後流側の水管との間で伝熱を行って、温度低下するため、thermal NOx の生成を防止できる。
【0030】
従って、この第3の実施例においても、上記各実施例同様にバーナ手段(2) の燃焼量、即ち、ボイラの運転状況に関係なく、確実に燃焼火炎の高温領域を冷却することができ、従って、常に低NOx ,低COが達成できる。
【0031】
加えて、この第3の実施例においては水管(Y1)(Y2)からなる密接水管群(G2)が上記の第2の実施例の密接水管群(G1)に比べ、(燃焼火炎流通方向の長さ)/(燃焼火炎流通方向に対する幅)の値が大きいため、振動・騒音の低減効果が一層向上する。
【0032】
以上の説明においては、1台のボイラ缶体に、火炎を適宜に分割してなる単独のバーナ手段をしたものであるが、この発明においては複数のユニットからなり、各ユニット毎に火炎を形成するようにしたバーナ手段であっても構わない。
【0033】
更に、以上の各実施例の説明では、管壁(3),(3) 間に配列する複数の水管群を、管壁間に3列配置したものであったが、列数はこれに限らず、また偶数列をなす縦列配置の缶体においても適用することができる。
【0034】
加えて、水管の小グループは、以上の各実施例においては水管が互いに実質上密接する密接水管群としてあるが、この発明における水管小グループはこのように必ずしも密接配置する必要はなく、他の水管が構成する水管列(或は水管群)から区画されていればよい。
【0035】
また、以上の第1〜3実施例における管壁(3),(3) は、それぞれ複数本の水管を適宜の間隔をおいて縦列配置し、各水管の隙間を平板状のフィン状部材で閉鎖した構成のものとしたが、この発明では管壁の構造は、各水管を密接状態で配列したものであってもよい。
【0036】
尚、以上の第1〜3の実施例においては、多管式の貫流ボイラであって蒸気を発生するものについて適用した例を説明したが、この発明は温水を生成するものであってもよく、またボイラ形式は貫流ボイラに限らず、自然循環式水管ボイラ,強制循環式水管ボイラ等全ての水管ボイラに適用することができる。
【0037】
【発明の効果】
この発明に係る水管ボイラによれば、燃焼量の高低にかかわらず、バーナ手段の燃焼火炎が水管の隙間から後流側の隙間に向けて確実に流入することになり、燃焼火炎の両側から水管によって冷却する構成となるため、どの燃焼範囲においてもNOx の生成を抑制することができる。
この事により、NOx 低減効果の高い燃焼範囲を従来より飛躍的に拡大することができる。
【図面の簡単な説明】
【図1】この発明に係る水管ボイラにおける缶体構造を示す平面図である。
【図2】第2の実施例を示す要部拡大平面図である。
【図3】第3の実施例を示す要部拡大平面図である。
【符号の説明】
(2) バーナ手段
(3) 管壁(水管壁)
(4) 水管
(5) 排ガス出口(燃焼排ガス出口手段)
(6) 水管
(G) 密接水管群(水管の小グループ)
(G1) 密接水管群(水管の小グループ)
(G2) 密接水管群(水管の小グループ)
(N) 燃焼・熱交換区域
[0001]
[Industrial application fields]
The present invention relates to water tube boilers such as once-through boilers, natural circulation water tube boilers, forced circulation water tube boilers, and the like that have reduced NOx and CO emission concentrations.
[0002]
[Prior art]
In recent years, due to environmental pollution problems, boilers are required to further reduce the concentration of harmful combustion exhaust, particularly NOx and CO.
Various countermeasures for reducing the emission concentration of such harmful combustion exhaust have been proposed.
As one of the reduction measures, the water tube is placed as close as possible to the burner, the water tube group is positioned in the combustion flame, and the generation of thermal NOx is suppressed as much as possible by cooling the flame simultaneously with heat exchange. A technique for realizing load combustion is known from US Pat. No. 5,020,479.
[0003]
The term “combustion flame” used in this document refers to a high-temperature gas that is currently undergoing a combustion reaction. In this high-temperature gas, a combustible premixed gas that has not been combusted and combustion are used. Generated burned gas. A flame may be rephrased as a combustion gas.
[0004]
However, although this conventional measure can reduce the NOx emission concentration, there is a problem that the CO emission concentration is slightly increased. One reason for this is that for CO, the cooling of the combustion flame, which is done to reduce NOx, has a quenching effect, whereby the combustion reaction is frozen and some of the unreacted material remains at an equilibrium concentration at high temperatures. In other words, it is thought that it may be due to discharge outside the system as CO or the like.
In order to solve this problem, the temperature of the flame is controlled to 1000 ° C. or more and 1500 ° C. or less in the vicinity of the flame generated by high-load combustion or in contact with the flame, and then on the downstream side of the cold object. Japanese Laid-Open Patent Application No. 60-78247 proposes a technique for oxidizing residual CO in a flame in an adiabatic space to convert it into CO2.
[0005]
[Problems to be solved by the invention]
However, this technique has been made for the purpose of reducing CO emissions, and is not aimed at suppressing the production of NOx. For this reason, depending on the position where the heat insulation space is provided, the heat insulation space temperature of the combustion flame becomes high, and NOx (thermal NOx) is generated.
Furthermore, when the combustion flame has a high flow velocity, it is possible to achieve the transformation from the required CO to CO2 by ensuring the length of the heat insulation space in the direction of the combustion flame flow, but this leads to a decrease in thermal efficiency, There is a problem that miniaturization of the can body cannot be realized.
[0006]
Furthermore, in general, a boiler or the like needs to adjust the combustion amount of the burner means (combustion equipment) according to the required amount of heat. For this reason, depending on the adjustment of the combustion amount of the burner means, Position will be different.
That is, the arrangement of the burner means, the heat insulation space on the can body side, and the water pipe are determined so that the amount of NOx and CO produced is reduced during combustion at the normal output or rated output. Therefore, the combustion flame is not effectively quenched by the water pipe at the time of combustion at a low load, so that the amount of NOx generated increases, while the water pipe at the front of the burner means is overheated at the time of excessive combustion. .
[0007]
The burner means can sufficiently cool the pre-mixed gas, fuel, and air injection holes by these gas injections, but the other parts are exposed to the high-temperature gas as described above. In addition, a device for heat resistance is necessary.
[0008]
In addition, it is necessary to configure a good combustion reaction region in the narrow space as described above, and it is also necessary to devise the burner means side, and the structure for that is complicated.
[0009]
[Means for Solving the Problems]
The present invention has been made in view of the above problems, and is disposed substantially parallel to each other and spaced along the flow direction of the combustion flame, and includes a pair of water pipe walls including a plurality of water pipes. A premixed planar burner which is arranged on one side of the combustion / heat exchange zone defined by the water pipe wall and forms a plurality of flames to adjust the combustion amount to high and low, and the other combustion / heat exchange zone A plurality of exhaust gas outlet means provided on the side of the combustion / heat exchange section so as to intersect with the combustion flame from the premixed planar burner means at a predetermined interval substantially parallel to each other. A water pipe group comprising a plurality of water pipes corresponding to the boundary portions of the flames from the burner means so as to form a gap between the water pipes constituting the water pipe wall. Place a small group of the premixed type A water pipe boiler characterized in that each flame from a flat burner is configured to circulate through the gap when the combustion amount is high and when the combustion amount is low.
[0010]
[Action]
According to the water tube boiler of the present invention, regardless of the amount of combustion, the combustion flame of the burner means surely flows from the gap of the water tube toward the gap on the downstream side, and from both sides of the combustion flame. NOx generation is suppressed by cooling with water pipes.
[0011]
【Example】
FIG. 1 is a schematic configuration diagram showing a cross section of a can body of an embodiment in which the present invention is applied to a multi-tube once-through boiler which is a kind of water tube boiler.
In the drawing, the can body (1) of the multi-tube once-through boiler is a vertical water pipe wall (hereinafter referred to as the longitudinal direction of the can body) (hereinafter referred to as the longitudinal direction of the can body) ejected from the burner means (2). (Referred to simply as the pipe wall) and (3), (3) and the pipe walls (3), (3) so as to intersect the combustion flame between the pipe walls (3), (3) with a predetermined distance therebetween. A number of substantially vertical water pipes (4) (4) (which constitutes a group of water pipes) and one of the premixed comparatively arranged at one side opening between the pipe walls (3) and (3). Composed of burner means (2) for forming a flat flame and combustion exhaust gas outlet means (hereinafter simply referred to as exhaust gas outlet) (5) formed at the other side opening between the pipe walls (3) and (3) Is done. Tube walls (3) and (3) define a combustion and heat exchange zone (N). The exhaust gas outlet (5) may be provided at the end of the combustion / heat exchange zone (N) opposite to the burner. For example, a part of the tube wall may be removed and opened.
[0012]
The burner means (2) uses a well-known corrugated type premixed planar combustion burner, and further uses a well-known flame dividing means or the like (2 in the illustrated embodiment to improve flame holding). Of the main flame).
The burner means (2) may be a ceramic plate burner having a large number of small holes for ejecting premixed gas or a vaporized combustion oil in addition to the corrugated type premixed planar combustion burner. In addition to the burner, various burners can be used. In short, as long as it forms a main flame extending in a plurality of directions, it is not limited to one burner means, but may be a plurality of burner means.
[0013]
In this embodiment, the pipe walls (3) and (3) are each provided with a plurality of water pipes (6) arranged side by side in the flow direction of the combustion flame at appropriate intervals, and each water pipe (6) (6) The gap is closed by a flat fin-like member (7) (7) extending along the axial direction of these water pipes (6), (6).
These tube walls (3), (3) are arranged at appropriate intervals so as to be substantially parallel to each other, and the cover bodies (8), (3) are disposed outside the tube walls (3), (3). (8) is attached, and heat insulation spaces (9) and (9) are formed between the pipe walls (3) and (3). In addition, the heat insulating spaces (9) and (9) may be filled with an appropriate heat insulating material such as glass wool in some cases.
[0014]
The water pipe (4) (4)... Includes three water pipe rows X, Y, and Z arranged in the flow direction of the combustion flame. In the following description, subscripts 1, 2, 3,... Are added to the column names X, Y, Z in the direction away from the burner means (2), and pipe numbers (X1), (X2),. ..., (Y1), (Y2), ..., (Z1), (Z2), ..., and the water pipes (6), (6), ... that make up the pipe walls (3), (3) Each pipe number (A1), (A2),..., (B1), (B2),.
[0015]
It said tube wall (3), (3) water pipes constituting the (6) (6) ‥‥ and tube wall (3), (3) water pipe disposed between (4) (4) upper and lower ends of ‥‥ is These are connected in communication with an upper header and a lower header (both not shown). These headers are airtightly joined to the upper and lower ends of the pipe walls (3) and (3), and together with the pipe walls (3) and (3), the upper and lower and left and right sides of the combustion / heat exchange zone (N) The four sides are airtightly divided so that the combustion flame and the burned gas do not leak outside the can body. Of the remaining two openings, one is attached with the burner means (2), and the other opening is connected with an exhaust pipe (not shown). In a steam boiler, the entire lower header and the water pipe (6) (6) ..., (4) (4) ... are always filled with water during normal operation, and the water pipe (6) (6) ... , (4) (4) ... The upper and upper headers are filled with steam.
[0016]
The plurality of water pipes (4), (4) arranged between the pipe walls (3), (3) are arranged in parallel with the three rows X, Y, Z in the flow direction of the combustion flame as described above. It is. The two water pipes (X1) and (Z1) that are closest to the burner means (2) and face each other constitute a small group (hereinafter referred to as a close water pipe group) (G) that is substantially in close contact with each other. The tube walls (3) and (3) are arranged approximately at the center.
The water pipes after this close water pipe group (G) are arranged in a staggered arrangement in the adjacent water pipes including the water pipes (6), (6) of the pipe walls (3), (3). Also, each water pipe (6) (6) ..., (4) (4) ..., the flow path of the combustion flame, is set so that the mutual distance is equal to or less than the outer diameter of each water pipe (6). These intervals may be the same or different from each other as long as they are within the above-described conditions.
[0017]
The above-mentioned burner means (2), the close water pipe group (G) located immediately before the burner means (2), and the water pipes (A1), (B1) on the foremost side constituting the pipe walls (3), (3) The positional relationship of is set as follows.
First, the close water pipe group (G) is arranged so as to form a gap between the water pipes (A1) and (B1) constituting the pipe walls (3) and (3) on both sides thereof. The burner means (2) is provided so that the main flame enters the gaps regardless of the amount of combustion.
[0018]
Furthermore, the positional relationship between the burner means (2), the close water pipe group (G), and the water pipes (A1) (B1) (X1) (Z1) depends on the main flame (the high temperature region of the combustion gas) from the burner means (2). ) Is in contact with the water pipes (A1) (B1) (X1) (Z1) on both sides of the premixed gas ejection direction, that is, the combustion flame from the burner means is directed to the water pipe facing the burner means (2). The positional relationship is that the temperature is lowered by cooling by heat transfer.
Therefore, when the combustion flame passes through the gap between the close water pipe group (G) and the pipe walls (3), (3), the water pipes (A1) (X1) (Z1) (B1) on both sides Therefore, thermal NOx generation can be prevented.
[0019]
Furthermore, the combustion flame that has passed through the gap between the water pipes (X1), (Y1), (Z1) and the water pipes (A1), (B1) is also in the gap space between the water pipes on the downstream side of these water pipes. While continuing a combustion reaction as mentioned above, it distribute | circulates between the said tube walls toward an exhaust gas exit, and heat-transfer to each water pipe is performed in the meantime. Also in this case, the combustion flame conducts heat between the downstream water pipes while continuing the combustion reaction, and the temperature is lowered, so that generation of thermal NOx can be prevented.
In addition, since the main flame is provided so as to enter the gaps regardless of the amount of combustion of the burner means (2), low NOx and low CO can always be achieved regardless of the operating conditions of the boiler. .
[0020]
Next, a second embodiment according to the present invention will be described with reference to FIG.
In this second embodiment, the close water pipe group of the first embodiment is expanded to the region on the downstream side in the flow direction of the combustion flame. Specifically, the pipe wall (3), (3) The water pipes (G1) that are in close contact with each other are constructed by the water pipes (X1), (Y1), and (Z1) closest to the burner means (2).
[0021]
The close water pipe group (G1) has a triangular shape formed by three water pipes (X1), (Y1), and (Z1), and in this state, a substantially central position between the pipe walls (3) and (3). It is arranged in. The arrangement of the water pipes on the downstream side of the close water pipe group (G1) is arranged in the same manner as in the first embodiment.
[0022]
With this arrangement, when vibrations and noises are generated with combustion in the first embodiment, they can be reduced.
That is, in each water pipe gap, the flow rate of the combustion flame (combustion gas) is higher in the gap closer to the burner means (2), and on the downstream side of the water pipe, the opposite side of the main flow of the combustion flame (combustion gas) A swirling vortex (Karman vortex) is generated. Such vortices may affect each other and generate significant vibrations and noises.However, as described above, the close water pipe group (G1) immediately before the burner means (2) is placed downstream of the combustion flame flow direction. The vortex generated on both sides of the wake of the water pipe (X1) (Z1) is isolated from each other by the water pipe (Y1) by removing the influence of each other. Generation of vibration and noise can be effectively suppressed.
[0023]
In the first and second embodiments described above, according to the number of flames formed in the burner means (2), the water pipe located immediately before the flame of the burner means (2) is replaced with an appropriate water pipe small group (close water pipe). Group), the heat load of the water pipe immediately before the burner means (2) can be adjusted.
[0024]
In the above description, the pipe walls (3), (3) constituting the boiler can body are arranged in parallel to each other, and the interval with respect to the flow direction of the combustion flame is the same. In this case, the interval between the tube walls may be partially different, or the interval between the tube walls may be sequentially increased or reduced.
FIG. 3 shows an embodiment applied to a boiler in which the interval between tube walls is partially different.
[0025]
In this third embodiment, the interval between the tube walls (3 '), (3') is narrowed on the burner means (2) side, and the water pipes constituting the tube walls (3 ', 3') Among them, the interval between the pipe wall parts (hereinafter referred to as the front pipe wall) formed by the water pipes (A1) to (A3) and (B1) to (B3) on the burner means (2) side It is narrower than the interval (hereinafter referred to as the rear tube wall). Therefore, only one central row (Y row) of the water tube rows is located between the front tube walls, and three rows (X to Z rows) are located between the rear tube walls as in the above embodiments. . Incidentally, the front tube walls formed by the water pipes (A1) to (A3) and (B1) to (B3) are also substantially parallel to each other like the rear tube wall.
[0026]
The two water pipes arranged in the middle between the front pipe walls are closely arranged, and the two water pipes (Y1) (Y2) and the water pipes (A1) to (A3) constituting the front pipe wall are arranged. ), (B1) to (B3) are arranged in a substantially zigzag pattern. In addition, water pipes (X1) (X2) ..., (Z1) (Z2) ... are located in the wake of the gap formed between the front pipe wall and the close water pipe group (G2). become.
[0027]
With the above configuration, also in the third embodiment, the combustion flame from the burner means (2) is in close contact with the front tube wall (G2) regardless of the amount of combustion as in the above embodiments. It surely enters the gap between the two and passes through the gap of the water pipe group between the rear pipe walls toward the exhaust gas outlet (5). The combustion flame conducts heat transfer with each water pipe (4) (4) (6) (6) ... while continuing to burn as it circulates between the pipe walls.
[0028]
Here, when the combustion amount of the burner means (2) is small, that is, when the boiler is in a low load operation state, the combustion flame from the burner means (2) is short, and the high temperature region of this combustion flame is mainly the front part. Cooled by heat transfer between the tube wall and the close water tube group (G2), the temperature drops. Therefore, when the combustion flame passes through the gap between the front tube wall and the close water tube group (G2), the water tubes (A1) to (A3), (Y1) to (Y2), ( B1) to (B3) are rapidly cooled and the temperature is lowered, so that generation of thermal NOx can be prevented. The combustion flame that has passed through the gap between the front pipe wall and the close water pipe group continues the combustion reaction as described above even in the gap space between the water pipes on the downstream side of these water pipes, while the above-mentioned pipe wall. The air flows toward the exhaust gas outlet (5), and heat is transferred to each water pipe during that time. Also in this case, the combustion flame conducts heat between the downstream water pipes while continuing the combustion reaction, and the temperature is lowered, so that generation of thermal NOx can be prevented.
[0029]
On the other hand, when the combustion amount of the burner means (2) is large, that is, when the boiler is in a high load operation state, the combustion flame from the burner means (2) is long, and the high temperature region of this combustion flame is mainly the rear pipe wall. And cooled by heat transfer with the water tube group in between. Therefore, when the combustion flame passes through the gap between the front tube wall and the close water tube group (G2), the water tubes (A1) to (A3), (Y1) to (Y2), ( When a part of the combustion flame is cooled by B1) to (B3) and passes through the gap between the rear pipe wall and the water pipe group therebetween, the pipes (A4) (A5) to (X1) (X2) to It is cooled rapidly by (Y3) (Y4) ~, (Z1) (Z2) ~, (B4) (B5) ~, and the temperature drops. Then, in the gap space between the water pipes on the downstream side of these water pipes, the combustion reaction is continued to flow between the rear pipe walls toward the exhaust gas outlet (5), and in the meantime, heat is transferred to each water pipe. . Also in this case, the combustion flame conducts heat between the downstream water pipes while continuing the combustion reaction, and the temperature is lowered, so that generation of thermal NOx can be prevented.
[0030]
Therefore, also in the third embodiment, the high temperature region of the combustion flame can be reliably cooled regardless of the combustion amount of the burner means (2), that is, the operating condition of the boiler, as in the above embodiments. Therefore, low NOx and low CO can always be achieved.
[0031]
In addition, in this third embodiment, the close water pipe group (G2) consisting of the water pipes (Y1) (Y2) is compared with the close water pipe group (G1) of the second embodiment (in the direction of combustion flame flow). Since the value of (length) / (width with respect to the combustion flame flow direction) is large, the vibration / noise reduction effect is further improved.
[0032]
In the above description, the single burner means obtained by appropriately dividing the flame into one boiler can body is composed of a plurality of units in the present invention, and a flame is formed for each unit. The burner means may be used.
[0033]
Furthermore, in the description of each of the above embodiments, a plurality of water pipe groups arranged between the pipe walls (3) and (3) are arranged in three rows between the pipe walls, but the number of rows is not limited to this. In addition, the present invention can also be applied to the cans arranged in a tandem row forming even rows.
[0034]
In addition, although the small group of water pipes is a close water pipe group in which the water pipes are substantially in close contact with each other in each of the above embodiments, the small group of water pipes in this invention does not necessarily need to be closely arranged in this manner. What is necessary is just to partition from the water pipe row | line (or water pipe group) which a water pipe comprises.
[0035]
Further, the pipe walls (3) and (3) in the first to third embodiments described above are arranged with a plurality of water pipes arranged in tandem at appropriate intervals, and the gaps between the water pipes are made of flat fin-like members. In the present invention, the structure of the tube wall may be a structure in which the water tubes are arranged in close contact with each other.
[0036]
In the above first to third embodiments, an example in which a multi-tube type once-through boiler that generates steam has been described. However, the present invention may generate hot water. The boiler type is not limited to the once-through boiler, but can be applied to all water pipe boilers such as a natural circulation water pipe boiler and a forced circulation water pipe boiler.
[0037]
【The invention's effect】
According to the water tube boiler according to the present invention, regardless of the amount of combustion, the combustion flame of the burner means surely flows from the gap of the water tube toward the gap on the wake side, and the water tubes from both sides of the combustion flame. Therefore, the production of NOx can be suppressed in any combustion range.
As a result, the combustion range having a high NOx reduction effect can be dramatically expanded as compared with the conventional case.
[Brief description of the drawings]
FIG. 1 is a plan view showing a can structure in a water tube boiler according to the present invention.
FIG. 2 is an enlarged plan view of an essential part showing a second embodiment.
FIG. 3 is an enlarged plan view of an essential part showing a third embodiment.
[Explanation of symbols]
(2) Burner means
(3) Pipe wall (water pipe wall)
(4) Water pipe
(5) Exhaust gas outlet (combustion exhaust gas outlet means)
(6) Water pipe
(G) Close water pipe group (small group of water pipes)
(G1) Close water pipe group (small group of water pipes)
(G2) Close water pipe group (small group of water pipes)
(N) Combustion / heat exchange zone

Claims (1)

互いに略平行に、かつ間隔を存して燃焼火炎の流通方向に沿って配置され、複数の水管(6)(6)‥‥を含む一対の水管壁(3),(3) と、この水管壁(3),(3) によって画成される燃焼・熱交換区域(N) の一側に配置され、複数の火炎を形成し燃焼量を高低に調整する予混合式平面バーナ(2) と、前記燃焼・熱交換区域(N) の他側に設けた燃焼排ガス出口手段(5) と、互いに略平行で所定の間隔を存して前記予混合式平面バーナ手段(2)からの燃焼火炎と交差するように前記燃焼・熱交換区域(N)のほぼ全域に設けられる多数の水管(4)(4)‥‥からなる水管群とを備えるものにおいて、前記水管壁(3),(3)を構成する水管との間に隙間を形成するように前記バーナ手段(2) からの各火炎の境界部分に対応させて複数の水管からなる水管の小グループ(G),(G1),(G2) を配置し、前記予混合式平面バーナ(2)からの各火炎を高燃焼量時および低燃焼量時前記隙間に流通させるように構成したことを特徴とする水管ボイラ。A pair of water pipe walls (3), (3) arranged in parallel with each other and spaced along the flow direction of the combustion flame and including a plurality of water pipes (6) (6). A premixed planar burner (2), which is arranged on one side of the combustion / heat exchange zone (N) defined by the water pipe walls (3) and (3), forms multiple flames and adjusts the combustion amount to high and low. ), The flue gas outlet means (5) provided on the other side of the combustion / heat exchange zone (N), and the premixed planar burner means (2) substantially parallel to each other at a predetermined interval. A water pipe group comprising a plurality of water pipes (4), (4),... Provided in almost the entire area of the combustion / heat exchange zone (N) so as to intersect with the combustion flame, the water pipe wall (3) , (3) a small group of water pipes (G), (G1) consisting of a plurality of water pipes corresponding to the boundary portion of each flame from the burner means (2) so as to form a gap with the water pipes constituting (3) ), (G2) Water tube boiler, characterized by being configured so that each flame from engagement formula plan burner (2) is circulated in said gap at high combustion amount and at low combustion amount.
JP28737993A 1993-10-21 1993-10-21 Water tube boiler Expired - Lifetime JP3662599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28737993A JP3662599B2 (en) 1993-10-21 1993-10-21 Water tube boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28737993A JP3662599B2 (en) 1993-10-21 1993-10-21 Water tube boiler

Publications (2)

Publication Number Publication Date
JPH07119905A JPH07119905A (en) 1995-05-12
JP3662599B2 true JP3662599B2 (en) 2005-06-22

Family

ID=17716597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28737993A Expired - Lifetime JP3662599B2 (en) 1993-10-21 1993-10-21 Water tube boiler

Country Status (1)

Country Link
JP (1) JP3662599B2 (en)

Also Published As

Publication number Publication date
JPH07119905A (en) 1995-05-12

Similar Documents

Publication Publication Date Title
JP3221582B2 (en) Low NOx and low CO combustion device
US5746159A (en) Combustion device in tube nested boiler and its method of combustion
US7647898B2 (en) Boiler and low-NOx combustion method
US20040072110A1 (en) Combustion method and apparatus for NOx reduction
JP3662599B2 (en) Water tube boiler
JP3533461B2 (en) Water tube boiler
JP2507407Y2 (en) Square multi-tube once-through boiler
JPH08303703A (en) Water tube boiler
JP2948519B2 (en) Low NOx and low CO combustion equipment
JPH07119928A (en) Burner
JP3606310B2 (en) Premixed swirl combustor
JP3185792B2 (en) boiler
JPH08110002A (en) Water tube boiler
JP2000240909A (en) Duct burner and duct burner apparatus
JP2000065306A (en) LOW NOx AND LOW CO COMBUSTION DEVICE
JP2824619B2 (en) Square multi-tube type once-through boiler
JP2004060984A (en) Low nox combustor
JP3368887B2 (en) Low NOx and low CO combustion method
JP3180938B2 (en) Water tube boiler and combustion method thereof
JP3310932B2 (en) boiler
JPH0791601A (en) Water-tube boiler
JP2933055B2 (en) Square multi-tube type once-through boiler
JPH0791613A (en) Combustion device
JPH0814362B2 (en) Boiler system with combustion gas recirculation mechanism
JP2933060B2 (en) Square multi-tube type once-through boiler

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050324

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120401

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 9

EXPY Cancellation because of completion of term