JP2948519B2 - Low NOx and low CO combustion equipment - Google Patents

Low NOx and low CO combustion equipment

Info

Publication number
JP2948519B2
JP2948519B2 JP33271395A JP33271395A JP2948519B2 JP 2948519 B2 JP2948519 B2 JP 2948519B2 JP 33271395 A JP33271395 A JP 33271395A JP 33271395 A JP33271395 A JP 33271395A JP 2948519 B2 JP2948519 B2 JP 2948519B2
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
combustion
flame
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33271395A
Other languages
Japanese (ja)
Other versions
JPH08226604A (en
Inventor
敏広 茅原
収 田中
昭典 川上
哲志 中井
和弘 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIURA KENKYUSHO KK
Original Assignee
MIURA KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIURA KENKYUSHO KK filed Critical MIURA KENKYUSHO KK
Priority to JP33271395A priority Critical patent/JP2948519B2/en
Publication of JPH08226604A publication Critical patent/JPH08226604A/en
Application granted granted Critical
Publication of JP2948519B2 publication Critical patent/JP2948519B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、多管式貫流ボイラ等
に用いて好適であって、NOxの生成及びCOの排出を
抑制しつつ高負荷燃焼可能な低NOx及び低CO燃焼装
置に関するものである。
BACKGROUND OF THE INVENTION This invention is a suitable for use in a multi-tubular boiler or the like, while suppressing the discharge of production and CO NOx high load combustible low NOx and low CO combustion Summarize <<br/>.

【0002】[0002]

【従来の技術】近年では、環境汚染問題等により、ボイ
ラにおいても有害燃焼排気物、特にNOx,CO等の一
層の低減が求められている。このような有害燃焼排気物
の低減化対策は種々提案されているが、その低減化対策
の一つとして、バーナの燃焼面に出来るだけ伝熱管を近
づけ、燃焼火炎中に伝熱管群を位置させて、熱交換と同
時に火炎の冷却を行うことでサーマルNOxの発生を出
来るだけ抑制し、かつ高負荷燃焼を実現する技術が知ら
れている。しかしながら、この従来の対策によればNO
xは低減できるもののCO排出量が高めになるという問
題がある。これは、COについてはNOxを低減する燃
焼火炎(燃焼ガスを含む)の急冷効果により反応が凍結
され高温での平衡組織をもった未反応物質をそそままの
形で系外へ排出してしまうという結果を招いていること
が原因の一つと考えられている。この問題を解決すべ
く、高負荷燃焼により発生した火炎の近傍またはこれに
接して置いた冷物体で火炎の温度を1000℃以上、1
500℃以下に制御した後、冷物体の後流側に設けた断
熱空間で火炎中の残留COを酸化反応させてCO2に変
成させる技術が提案されている。
2. Description of the Related Art In recent years, boilers have been required to further reduce harmful combustion exhaust gases, particularly NOx and CO, due to environmental pollution problems and the like. Various measures for reducing such harmful combustion exhaust have been proposed, but one of the measures is to place the heat transfer tubes as close to the combustion surface of the burner as possible and place the heat transfer tube group in the combustion flame. In addition, a technique is known in which the generation of thermal NOx is suppressed as much as possible by cooling the flame at the same time as the heat exchange, and high load combustion is realized. However, according to this conventional measure, NO
Although x can be reduced, there is a problem that CO emission becomes high. This is because, for CO, the reaction is frozen by the quenching effect of the combustion flame (including combustion gas) that reduces NOx, and unreacted substances having an equilibrium structure at high temperatures are discharged out of the system as they are. This is considered to be one of the causes. In order to solve this problem, the temperature of the flame should be 1000 ° C. or higher with a cold object placed near or in contact with the flame generated by high load combustion.
A technique has been proposed in which after controlling the temperature to 500 ° C. or lower, the residual CO in the flame is oxidized and converted into CO 2 in an adiabatic space provided on the downstream side of the cold body.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、この従
来技術を、次のような構成を有する省設置スペース型の
多管式貫流ボイラの低NOx缶体、即ち、互いに平行を
なす一対の伝熱管壁によって燃焼火炎、燃焼ガスが流通
する燃焼・熱交換区域を画成し、燃焼・熱交換区域の一
側に燃焼バーナを配置し、他側から燃焼排ガスを排出
し、該燃焼・熱交換区域内の燃焼火炎、燃焼ガス中に位
置するごとく、互いに略平行で所定の間隔を存して設け
られる多数の伝熱管からなる伝熱管群を配置した構成の
缶体に適用した場合、断熱空間を形成するとCOは低減
できるもののNOxの発生が多くなってしまい、低NO
x缶体の長所が損なわれ、従来の非低NOx仕様のボイ
ラと変わらなくなってしまうという問題がある。又、前
記断熱空間の燃焼ガス流れ方向長さが長いと省スペース
性が損なわれると共に、断熱空間を画成する缶体壁の温
度上昇が大きくなる。この温度上昇を防止するには、缶
体壁の断熱空間側内面に断熱材を施工する必要があり、
装置のコストアップを招く。又、断熱材を施工すると長
期使用によって断熱材が落下する恐れがあり耐久性に問
題があると共に、熱交換効率の低下を招くなどの問題が
あった。
SUMMARY OF THE INVENTION However, this prior art is compared with a low NOx can body of a space-saving multi-tube once-through boiler having the following configuration, that is, a pair of heat transfer tubes parallel to each other. The wall defines a combustion / heat exchange area through which a combustion flame and a combustion gas flow, a combustion burner is arranged on one side of the combustion / heat exchange area, and the exhaust gas is discharged from the other side. When it is applied to a can body having a configuration in which a heat transfer tube group consisting of a number of heat transfer tubes arranged substantially in parallel with each other and at a predetermined interval is arranged as in a combustion flame in a combustion gas, When formed, CO can be reduced, but the generation of NOx increases, resulting in low NO.
There is a problem in that the advantages of the x-can body are lost, and the boiler is no different from a conventional boiler with a non-low NOx specification. Also, if the length of the heat insulating space in the direction of flow of the combustion gas is long, the space saving property is impaired, and the temperature rise of the can body wall defining the heat insulating space becomes large. In order to prevent this temperature rise, it is necessary to install a heat insulating material on the inner surface of the can body wall on the heat insulating space side,
This leads to an increase in equipment cost. In addition, when the heat insulating material is applied, the heat insulating material may fall due to long-term use, and there is a problem in durability and a problem such as a decrease in heat exchange efficiency.

【0004】本願の発明者らは上述の問題に留意し、N
Oxの生成及びCOの排出を抑制しつつ高負荷燃焼可能
な低NOx及び低CO燃焼装置を提供することを技術的
課題とする。
The inventors of the present application have noted the above problems and
It is an object of the present invention to provide a low NOx and low CO combustion apparatus capable of performing high load combustion while suppressing generation of Ox and emission of CO.

【0005】[0005]

【課題を解決するための手段】この発明は、上記の課題
を解決するためになされたものであって、請求項1の発
明は、複数の伝熱管と隣接する伝熱管同士を連結するヒ
レ状部材とから構成される互いに略平行をなす一対の伝
熱管壁によって燃焼火炎、燃焼ガスが流通する区域を画
成し、同区域の一側に燃焼バーナを配置し、他側に燃焼
排ガス出口を設け、互いに略平行で所定の間隔を存して
設けられる多数の伝熱管からな伝熱管群を、前記燃
バーナの直前の水管と前記予混合式平面燃焼バーナとの
間隔が水管直径の3倍以下となるように、前記燃焼バー
ナに近接させて配置し、前記伝熱管壁の伝熱管列と伝熱
管群の燃焼火炎の流れ方向の伝熱管列との間及び前記伝
熱管群の隣り合う伝熱管列間に前記燃焼バーナの燃焼火
炎が燃焼排ガス出口に向けて流通するように燃焼火炎通
路を形成したものにおいて、前記伝熱管群の所定の伝熱
管列において伝熱管非存在空間を形成し、かつ伝熱管非
存在空間を形成した伝熱管列の隣の伝熱管列には伝熱管
非存在空間を形成しないことにより、複数の前記火炎流
通路が合流する位置に、火炎温度が略1000℃から
300℃で、かつCOが反応活性基及び/又は酸素原子
と反応する前記燃焼火炎及び燃焼ガスの滞留時間を得る
拡大火炎流通路を形成した低NOx及び低CO燃焼装置
を特徴とし、請求項2の発明は、複数の伝熱管と隣接す
る伝熱管同士を連結するヒレ状部材とから構成される互
いに略平行をなす一対の伝熱管壁によって燃焼火炎、燃
焼ガスが流通する区域を画成し、同区域の一側に燃焼バ
ーナを配置し、他側に燃焼排ガス出口を設け、互いに略
平行で所定の間隔を存して設けられる多数の伝熱管から
なり千鳥状に配列される伝熱管群を、前記燃焼バーナの
直前の水管と前記燃焼バーナとの間隔が水管直径の3倍
以下となるように、かつ前記伝熱管壁の伝熱管と前記伝
熱管群の前記伝熱管壁に隣接する伝熱管とが千鳥状とな
るように配置し、前記伝熱管壁の伝熱管列と伝熱管群の
燃焼火炎の流れ方向の伝熱管列との間及び前記伝熱管群
の隣り合う伝熱管列間に前記燃焼バーナの燃焼火炎が燃
焼排ガス出口に向けて流通するように蛇行状の燃焼火炎
通路を形成したものにおいて、前記伝熱管群の所定の伝
熱管列において伝熱管非存在空間を形成し、かつ伝熱管
非存在空間を形成した伝熱管列の隣の伝熱管列には伝熱
管非存在空間を形成しないことにより、複数の前記火炎
流通路が合流する位置に、火炎温度が略1000℃から
1300℃で、かつCOが反応活性基及び/又は酸素原
子と反応する前記燃焼火炎及び燃焼ガスの滞留時間を得
る拡大火炎流通路を形成した低NOx及び低CO燃焼装
置を特徴とし、請求項3の発明は、請求項2において、
伝熱管群の燃焼火炎の流れ方向の伝熱管列が3列からな
り、両側の列において燃焼バーナ側から3番目の伝熱管
部分に伝熱管非存在空間を形成することにより拡大火炎
通路を形成したことを特徴とする低NOx及び低CO燃
焼装置を特徴とし、請求項4の発明は、請求項2におい
て、伝熱管群が燃焼火炎の流れ方向に並ぶ3列からな
り、両側の列において燃焼バーナ側から3番目及び4番
目の伝熱管部分に伝熱管非存在空間を形成することによ
り拡大火炎通路を形成したことを特徴とする低NOx及
び低CO燃焼装置を特徴とするものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and the invention of claim 1 is a fin-like structure for connecting a plurality of heat transfer tubes to adjacent heat transfer tubes. combustion flame by a pair of heat transfer tubes walls forming substantially parallel to each other consisting of a member defining a region where combustion gas flows, the combustion burner is disposed on one side of the zone, the flue gas on the other side the outlet is provided, the spacing of the heat transfer tube group ing of a number of heat transfer tubes disposed at a predetermined interval in substantially parallel, a water pipe immediately before the previous Ki燃 sintered burner and the premix plan combustion burner each other as will be less than 3 times the water tube diameter, the in close proximity to the combustion burner is disposed, and between said the heat transfer tube array in the flow direction of the combustion flame of the heat transfer tube array and the heat transfer tube group of the heat transfer tube wall combustion flame out combustion exhaust gas before Ki燃 sintered burner between heat transfer tubes adjacent rows of tube banks In the one in which the combustion flame passage is formed so as to circulate toward the heat transfer tube row, a heat transfer tube non-existing space is formed in a predetermined heat transfer tube row of the heat transfer tube group, and the heat transfer tube row in which the heat transfer tube non-existing space is formed is adjacent. By not forming a heat transfer tube non-existing space in the heat transfer tube row, the flame temperature is reduced from approximately 1000 ° C. to 1 at a position where the plurality of flame flow passages merge.
3. A low-NOx and low-CO combustion apparatus formed at 300 ° C. and having an extended flame flow passage for obtaining a residence time of the combustion flame and combustion gas in which CO reacts with a reactive group and / or oxygen atom. According to the invention, a combustion flame and an area through which a combustion gas flows are defined by a pair of heat transfer tube walls which are substantially parallel to each other and are formed of a plurality of heat transfer tubes and a fin-shaped member connecting adjacent heat transfer tubes. , the heat transfer tube of the combustion burner is disposed on one side of the area, a flue gas outlet provided on the other side, are arranged in a staggered manner consists of a number of heat transfer tubes disposed at a predetermined interval substantially parallel to each other groups, before distance between the water pipe and the front Ki燃 sintered burner of the preceding Ki燃 sintered burner so is less than 3 times the water tube diameter, and the heat transfer of the heat transfer tube group and the heat transfer tube of the heat transfer tube wall Arrange so that the heat transfer tube adjacent to the heat tube wall is staggered, Combustion flame combustion exhaust gas before Ki燃 sintered burner between the heat transfer tube bank, and between adjacent of the heat transfer tube group in the heat transfer tube array in the flow direction of the combustion flame of the heat transfer tube array and the heat transfer tube group of the heat transfer tube wall In a configuration in which a meandering combustion flame passage is formed so as to flow toward the outlet, a heat transfer tube non-existing space is formed in a predetermined heat transfer tube row of the heat transfer tube group, and a heat transfer tube non-existing space is formed. By not forming a heat transfer tube non-existent space in the heat transfer tube row adjacent to the heat pipe row, the flame temperature is reduced from approximately 1000 ° C. to a position where the plurality of flame flow passages merge.
A low- NOx and low-CO combustion apparatus formed at 1300 ° C. and having an extended flame flow passage for obtaining a residence time of the combustion flame and the combustion gas in which CO reacts with a reactive group and / or an oxygen atom. The invention of claim 3 is based on claim 2,
Heat transfer tube bank in the flow direction of the combustion flame of the heat transfer tube group consists of three columns, the expanded flame passage by forming a heat transfer tube absence space in the third heat transfer tube portions on both sides of the column odor Te from combustion burner side A low NOx and low CO combustion device is characterized in that it is formed. The invention of claim 4 is the invention according to claim 2, wherein the heat transfer tube group is composed of three rows arranged in the flow direction of the combustion flame. characterized in third and fourth low-NOx and low CO combustion apparatus characterized by the formation of the expanded flame passage by forming a heat transfer tube absence space the heat transfer tube portion from the combustion burner side Te is there.

【0006】[0006]

【作用】請求項1〜4の発明によれば、燃焼バーナから
の燃焼火炎は近接する伝熱管群により冷却されること
で、NOxの発生が低減され、拡大火炎通路ではNOx
の発生が抑制されつつ、COがCO2 に変成されCOの
排出量が低減される。即ち、拡大火炎通路においては、
燃焼火炎及び燃焼ガスは残留COを酸化反応させてCO
2 に変成させるに十分な温度であり、しかもこの局部的
通路において燃焼火炎、燃焼ガスの滞留時間が得られる
ので、残留COは酸化反応してCO2 に変成してCOが
低減され、かつ拡大火炎通路の燃焼火炎、燃焼ガス温度
がサーマルNOxの発生の少ない温度域にあるので、N
Oxの発生が抑制される。又、拡大火炎通路は両側を伝
熱管列で挟まれる、即ち拡大火炎通路の両側に伝熱管が
配置されるので、局所的な高温部分を生ずることがな
く、COを低減しつつNOx発生が抑制される。更に、
燃焼火炎通路が蛇行状に形成されている場合には、異な
る蛇行状火炎流通路を流れて来る燃焼火炎、燃焼ガスは
拡大火炎通路にて合流し、混合するが、その混合、滞留
の効果が大きいので、未反応COと反応活性基(OH)
及び/又は酸素原子(O)との接触が積極的に行われる
結果、比較的狭い空間にもかかわらず大きいCO低減が
なされる。
SUMMARY OF] According to the invention of claim 1, the combustion flame from the combustion burner that is cooled by heat transfer tube group in the vicinity, the generation of NOx is reduced, NOx is an enlarged flame passage
CO is converted to CO 2 and CO emission is reduced while the generation of CO is suppressed. That is, in the expanded flame passage,
The combustion flame and combustion gas oxidize the residual CO to produce CO2
Since the temperature is sufficient to convert to 2 and the residence time of the combustion flame and combustion gas is obtained in this local passage, the residual CO is oxidized and converted to CO 2 to reduce CO and expand. Since the combustion flame and the combustion gas temperature in the flame passage are in the temperature range where the generation of thermal NOx is small, N
Ox generation is suppressed. In addition, since the expanded flame passage is sandwiched on both sides by the heat transfer tube rows, that is, the heat transfer tubes are arranged on both sides of the expanded flame passage, no local high-temperature portion is generated, and the generation of NOx is suppressed while reducing CO. Is done. Furthermore,
When the combustion flame passage is formed in a meandering shape, the combustion flame and the combustion gas flowing through the different meandering flame flow passages join and mix in the expanded flame passage. Unreacted CO and reactive active group (OH)
And / or aggressive contact with oxygen atoms (O) results in a large CO reduction despite the relatively small space.

【0007】[0007]

【実施例】図1〜4は、この発明に係る低NOx及び低
CO燃焼方法を実現する装置の一実施例を示すものであ
る。図1を参照して、(K) は多管式貫流ボイラの角型缶
体で、(10)(10)は、多数の伝熱管(11)(11)…を互いに略
平行で所定間隔を存して縦列配置し燃焼・熱交換区域
(N) を画成した伝熱管壁、(20)(20)…は、互いに略平行
であって所定間隔を存して上記伝熱管壁(10)(10)間に配
列される複数の略垂直伝熱管で、燃焼・熱交換区域内の
伝熱管群を構成する。(40)は、上記伝熱管壁(10)(10)間
の一側開口部に配設した燃焼バーナ、(C) は、上記伝熱
管壁(10)(10)間の他側開口部に形成した燃焼排ガス出口
を示す。この燃焼排ガス出口は燃焼・熱交換区域(N) の
反バーナ側端部に設ければ良く、例えば伝熱管壁(10)の
一部を削除開口して形成することが出来る。伝熱管(20)
(20)…の燃焼火炎流れ方向の伝熱管列(X)(Y)(Z) には以
下各列毎に管番号(X1)(X2)…,(Y1)(Y2) …,(Z1)(Z2) …
を、伝熱管(11)(11)…の伝熱管列(A)(B)には各列毎に管
番号(A1)(A2)…,(B1)(B2) …をそれぞれ付して説明す
る。図2、3を参照して、上記伝熱管壁(10)(10)を構成
する伝熱管(11)(11)…及び伝熱管壁(10)(10)間に配置す
る伝熱管(20)(20)…の上端並びに下端は、それぞれ、上
部ヘッダ(13)及び下部ヘッダ(14)に接続されている。
1 to 4 show an embodiment of an apparatus for realizing a low NOx and low CO combustion method according to the present invention. Referring to FIG. 1, (K) is a rectangular can body of a multi-tube once-through boiler, and (10) (10) are a plurality of heat transfer tubes (11) (11). Combustion and heat exchange areas
The heat transfer tube walls defining (N), (20), (20) are substantially parallel to each other and are arranged between the heat transfer tube walls (10) (10) at predetermined intervals. The heat transfer tube group in the combustion / heat exchange area is constituted by the substantially vertical heat transfer tubes. (40) is a combustion burner arranged at one side opening between the heat transfer tube walls (10) and (10), and (C) is another side opening between the heat transfer tube walls (10) and (10). 4 shows a combustion exhaust gas outlet formed in the section. This combustion exhaust gas outlet may be provided at the end of the combustion / heat exchange section (N) on the side opposite to the burner, and can be formed, for example, by removing and opening a part of the heat transfer tube wall (10). Heat transfer tube (20)
In (20), the heat transfer tube rows (X), (Y), and (Z) in the combustion flame flow direction have the following tube numbers (X1) (X2) ..., (Y1) (Y2) ..., (Z1) (Z2)…
The heat transfer tube rows (A) and (B) of the heat transfer tubes (11) and (11) are each given a tube number (A1) (A2)... (B1) (B2). I do. With reference to FIGS. 2 and 3, heat transfer tubes (11) (11)... Constituting the heat transfer tube walls (10) (10) and heat transfer tubes (10) and (10) disposed between the heat transfer tube walls (10) (10) The upper and lower ends of (20), (20) are connected to an upper header (13) and a lower header (14), respectively.

【0008】上記伝熱管壁(10)は、この実施例では、そ
れぞれ複数本の伝熱管(11)を適宜の間隔をおいて縦列配
置し、各伝熱管(11)(11)…の隙間を、これら伝熱管(11)
(11)…の軸線方向に沿って延びる平板状のフィン状部材
(12)(12)…で閉鎖した構成のもので、これら伝熱管壁(1
0)(10)は、実質上互いに平行をなすように適宜の間隔を
おいて配置される。
In this embodiment, the heat transfer tube wall (10) has a plurality of heat transfer tubes (11) arranged in tandem at appropriate intervals, and a gap between the heat transfer tubes (11) (11). The heat transfer tubes (11)
(11) A flat fin-shaped member extending along the axial direction of
(12) (12) ... The structure is closed by these heat transfer tube walls (1
0) and (10) are arranged at appropriate intervals so as to be substantially parallel to each other.

【0009】上記伝熱管壁(10)(10)間に配置される複数
の伝熱管(20)(20)…は、適宜の配列、例えば図示するよ
うに、3列(X)(Y)(Z) の縦列配置で配置されており、伝
熱管壁(10)(10)の伝熱管(11)(11)…を含めて隣合う列の
伝熱管同士は千鳥状配置となっている。また、燃焼火
炎、燃焼ガスの流通路となる各伝熱管(11)(11)…,(20)
(20)…相互の間隙(間隔)は、各伝熱管(11)(20)の直径
と略等しいか、それ以下に設定するのが好ましく、これ
らの各間隙は、全て同一であっても、互いに異なってい
ても、前述の条件内にあればよい。
A plurality of heat transfer tubes (20) (20) arranged between the heat transfer tube walls (10) (10) are appropriately arranged, for example, three rows (X) (Y) as shown in the figure. (Z), and the heat transfer tubes in adjacent rows including the heat transfer tubes (11), (11) ... of the heat transfer tube walls (10), (10) are staggered. . In addition, each heat transfer tube (11) (11) ..., (20) serving as a flow path for combustion flame and combustion gas
(20) ... The gap (interval) between them is preferably set to be approximately equal to or less than the diameter of each heat transfer tube (11) (20). Even if all these gaps are the same, Even if they are different from each other, they may be within the above-mentioned conditions.

【0010】上記の伝熱管(20)(20)…のうち、NOxの
発生を抑制しつつCOを低減させるに適した特定温度域
の位置を予め実験により求めて、この位置に伝熱管非存
在空間(VX3)(VZ3)を有する図1の缶体を構成する。実施
例では特定温度域を燃焼火炎(燃焼ガス)温度が約10
00℃〜1300℃の温度域とし、図12に示す伝熱管
配列を有する缶体(K')を用い、図5に示すボイラ装置に
て実験により特定温度域の位置を求めた。尚、図12で
曲線1は流路1での温度曲線、曲線2は流路2での温度
曲線である。図12から本実施例では伝熱管列(X) の伝
熱管(X3)と伝熱管列(Z) の伝熱管(Z3)の位置に伝熱管非
存在空間(VX3)(VZ3)を形成し、伝熱管列(X) 及び伝熱管
列(Z) と隣り合う伝熱管列(Y) には伝熱管非存在空間を
形成せず、伝熱管非存在空間(VX3)(VZ3)と連続する伝熱
管非存在空間を形成しない。この伝熱管非存在空間(VX
3)(VZ3)は、比較的狭いながらも(広さが伝熱管間間隙
部の広さの2倍と伝熱管断面積とを加えた広さ)、燃焼
ガス、火炎の滞留をもたらす局部的滞留空間として機能
し、上流の高温燃焼火炎領域で発生した残留COを反応
活性基と反応させて酸化させCOの低減をもたらすとと
もに、火炎温度が比較的低いのでNOxの発生を抑制す
ることができる。伝熱管非存在空間(VX3)(VZ3)での燃焼
ガス滞留時間は計算によると、インプット:8.66Nm3 /
h, 流路幅:0.0615m,流路断面積:0.0246m 2 , 燃焼ガ
ス温度:1200℃とした時、約9.5msec と推測される。図
1の実施例では、伝熱管非存在空間(VX3)(VZ3)の周囲
に、それぞれ伝熱管(A3)(A4)(X4)(Y3)(Y2)(X2)、伝熱管
(Y2)(Y3)(Z4)(B4)(B3)(Z2)が位置し、伝熱管非存在空間
(VX3)(VZ3)における高温部位の発生を防止しNOxの発
生を抑制すると共に、省スペース性、熱効率性を良好に
保つよう構成している。伝熱管非存在空間(VX3)(VZ3)の
上流側には、伝熱管(11)(11)…(伝熱管壁の伝熱管列)
と伝熱管(20)(20)…(伝熱管群の伝熱管列)との間及び
伝熱管(20)(20)…の伝熱管列同士の間に各伝熱管(11)(1
1)…,(20)(20)…相互の間隙からなる4本の蛇行状の火
炎流通路(R1)(R2)(R3)(R4)が形成され、伝熱管非存在空
間(VX3)(VZ3)はそれぞれ2本の火炎流通路(R1)(R2)、(R
3)(R4)の合流部位に形成され、拡大火炎流通路(R13)(R3
4)を構成している。その結果、伝熱管非存在空間(VX3)
(VZ3)では異なる火炎流通路を流れて来た燃焼ガスが混
合し、この混合により未反応COと反応活性基及び/又
は酸素原子との接触を積極的に行わせるとともに、燃焼
ガスの高温滞留時間を長くすることで効果的なCO低減
を行わせるよう構成している。
Among the above heat transfer tubes (20), a position in a specific temperature range suitable for reducing CO while suppressing the generation of NOx is determined in advance by experiments, and no heat transfer tube exists at this position. The can body of FIG. 1 having the space (VX3) (VZ3) is configured. In the embodiment, the combustion flame (combustion gas) temperature is about 10 in a specific temperature range.
Using a can body (K ′) having a heat transfer tube arrangement shown in FIG. 12 and a boiler apparatus shown in FIG. 5, the position of the specific temperature area was determined by experiments using a temperature range of 00 ° C. to 1300 ° C. In FIG. 12, curve 1 is a temperature curve in the flow path 1 and curve 2 is a temperature curve in the flow path 2. From FIG. 12, in this embodiment, the heat transfer tube non-existent space (VX3) (VZ3) is formed at the position of the heat transfer tube (X3) of the heat transfer tube array (X) and the heat transfer tube (Z3) of the heat transfer tube array (Z). The heat transfer tube row (X) and the heat transfer tube row (Y) adjacent to the heat transfer tube row (Z) do not have a heat transfer tube non-existent space, and are continuous with the heat transfer tube non-existent space (VX3) (VZ3). Does not form a non-existent space. This heat transfer tube non-existing space (VX
3) Although (VZ3) is relatively narrow (the width is twice the width of the gap between heat transfer tubes and the cross-sectional area of the heat transfer tubes), it is a local area that causes combustion gas and flame to stagnate. It functions as a stagnation space and reacts the residual CO generated in the upstream high-temperature combustion flame region with the reactive group to oxidize it, thereby reducing CO. In addition, since the flame temperature is relatively low, the generation of NOx can be suppressed. . According to the calculation, the residence time of the combustion gas in the non-existent space (VX3) (VZ3) is calculated as input: 8.66Nm 3 /
h, channel width: 0.0615m, channel cross section: 0.0246m 2 , combustion gas temperature: 1200 ° C, it is estimated to be about 9.5msec. In the embodiment of FIG. 1, the heat transfer tubes (A3), (A4), (X4), (Y3), (Y2), (X2), and the heat transfer tubes around the heat transfer tube non-existent spaces (VX3) and (VZ3), respectively.
(Y2) (Y3) (Z4) (B4) (B3) (Z2)
(VX3) and (VZ3) are configured to prevent the generation of high-temperature portions and suppress the generation of NOx, and to maintain good space saving and thermal efficiency. On the upstream side of the heat transfer tube non-existent space (VX3) (VZ3), heat transfer tubes (11), (11) ... (heat transfer tube row on the heat transfer tube wall)
And each of the heat transfer tubes (11) (1) between the heat transfer tubes (20) (20) ... (the heat transfer tube rows of the heat transfer tube group) and between the heat transfer tube rows of the heat transfer tubes (20) (20) ...
1)…, (20) (20)… Four meandering flame flow passages (R1) (R2) (R3) (R4) consisting of mutual gaps are formed, and the heat transfer tube non-existent space (VX3) ( VZ3) has two flame passages (R1) (R2), (R
3) formed at the junction of (R4) and the expanded flame flow passage (R13) (R3
4) is configured. As a result, the heat transfer tube non-existing space (VX3)
In (VZ3), the combustion gases flowing through different flame flow passages are mixed, and the mixing allows the unreacted CO to positively contact with the reactive groups and / or oxygen atoms, and the high temperature retention of the combustion gas. The configuration is such that effective CO reduction is performed by lengthening the time.

【0011】上記燃焼バーナ(40)は、好ましくは予混合
式平面燃焼バーナ、例えば波板(41)と平板(42)とを交互
に積層して、多数の燃料噴出用小孔(43)を形成し、フレ
ーム分割板(44)で燃焼面を左右に分割した予混合式平面
燃焼バーナが用いられるが、予混合気を噴出する多数の
小孔を有するセラミックプレートバーナを用いても良い
し、気化燃焼油バーナの他種々のバーナを用いることも
可能である。この燃焼バーナ(40)の直前に位置する伝熱
管(20)との間隙は、所定距離、例えば、伝熱管(20)の直
径の略3倍に等しいか、それ以下に設定してあり、ま
た、伝熱管壁(10)如き距離を基準として設定してある。
[0011] The combustion burner (40) is preferably a premixed planar combustion burner, for example, a corrugated plate (41) and a flat plate (42) alternately stacked to form a large number of small fuel injection holes (43). A premixing type flat combustion burner is used in which the combustion surface is divided into right and left by a frame dividing plate (44), but a ceramic plate burner having a large number of small holes for ejecting a premixed gas may be used, It is also possible to use various burners other than the vaporized combustion oil burner. The gap with the heat transfer tube (20) located immediately before the combustion burner (40) is set to a predetermined distance, for example, approximately equal to or less than three times the diameter of the heat transfer tube (20), and The distance is set as a reference, such as the heat transfer tube wall (10).

【0012】以上の構成において、燃焼バーナ(40)から
の燃焼火炎は、各伝熱管(11)(11)…,(20)(20)…間の隙
間空間においても燃焼を継続しながら、4本の燃焼火炎
流通路(R1)(R2)(R3)(R4)を通って排ガス出口(C) 方向へ
向けて流通し、その間に、各伝熱管(11)(11)…,(20)(2
0)…への伝熱(熱交換)を行うが、その際、燃焼バーナ
(40)と直前の伝熱管(20)及び各伝熱管(11)(10)…,(20)
(20)…の間隙を上述の如く狭く設定してあるため、燃焼
火炎及び燃焼ガスは高い流速を維持した状態で燃焼排ガ
ス出口(C) に向けて流通し、極めて高い接触伝熱率でも
って冷却される。
In the above configuration, the combustion flame from the combustion burner (40) continues to burn even in the interstitial spaces between the heat transfer tubes (11) (11)..., (20) (20). It flows through the combustion flame flow passages (R1) (R2) (R3) (R4) toward the exhaust gas outlet (C), during which the heat transfer tubes (11) (11) ..., (20) (2
0) to transfer heat (heat exchange) to the combustion burner
(40) and the heat transfer tube (20) immediately before and each heat transfer tube (11) (10) ..., (20)
(20) Since the gap is set to be narrow as described above, the combustion flame and combustion gas flow toward the combustion exhaust gas outlet (C) while maintaining a high flow velocity, and have an extremely high contact heat transfer rate. Cooled.

【0013】火炎流通路(R1)(R2)(R3)(R4)を通過した燃
焼火炎及び燃焼ガスは拡大火炎通路(R12)(R34)で合流す
る。ここでは、燃焼火炎及び燃焼ガスの温度は約100
0℃〜1300℃であるので、NOxの生成が抑制さ
れ、燃焼ガスはその高温滞留効果によって、上流の高温
燃焼火炎領域で発生したCOが反応活性基(ラジカル)
及び/又は酸素原子と反応し酸化してCOが減少する。
又、各伝熱管非存在空間(VX3)(VZ3)の周囲には伝熱管が
配置され、即ち、所定距離の位置に伝熱面(伝熱管)が
存在するために温度上昇は約50℃程度にとどまり、反
応温度上昇が抑制されて、NOxの発生が抑制される。
更に、各伝熱管非存在空間(VX3)(VZ3)では異なる火炎流
通路(R1)(R2)、(R3)(R4)を流れて来た燃焼ガスが衝突混
合し、この混合により未反応COと反応活性基及び/又
は酸素原子との接触が積極的に行われ、かつ混合による
渦流の発生により燃焼ガスの高温滞留時間が長くなり、
COは大幅に低減する。
The combustion flame and the combustion gas having passed through the flame flow passages (R1), (R2), (R3), and (R4) merge in the expanded flame passages (R12) and (R34). Here, the temperature of the combustion flame and combustion gas is about 100
Since the temperature is 0 ° C. to 1300 ° C., the generation of NOx is suppressed, and the CO generated in the upstream high-temperature combustion flame region becomes a reactive active group (radical) due to the high-temperature retention effect of the combustion gas.
And / or reacts with oxygen atoms to oxidize and reduce CO.
In addition, heat transfer tubes are arranged around each heat transfer tube non-existent space (VX3) (VZ3), that is, the temperature rise is about 50 ° C due to the presence of a heat transfer surface (heat transfer tube) at a predetermined distance. , The rise in the reaction temperature is suppressed, and the generation of NOx is suppressed.
Further, in each heat transfer tube non-existent space (VX3) (VZ3), the combustion gas flowing through the different flame flow passages (R1) (R2) and (R3) (R4) collide and mix, and the unreacted CO And the active group and / or oxygen atoms are positively contacted with each other, and the high-temperature residence time of the combustion gas becomes longer due to the generation of a vortex due to mixing,
CO is significantly reduced.

【0014】上記した効果は実験によって確かめられて
いるので、以下にこれを説明する。実験に用いた装置は
図4に示され、図1〜3に示す構成の缶体(K) 、予混合
気をバーナ(40)へ供給するダクト(D) 及びウインドボッ
クス(W) 、燃焼排ガス出口(C) に接続するエコノマイザ
(給水予熱器)(E) 、蒸気取り出し管(J) 、ダクト(D)
に接続する送風機 (図示しない) 、排気筒(H) 、混合を
良くする為にダクト(D) に設けた金網(M1)(M2)等からな
り、燃料ガスはプロパンを用いてダクト(D)の部位(N)
から供給する。蒸気圧力は4.5〜5.0kg/cm2
に保ち、過剰空気率を送風機の回転数の調整により変化
させて、各酸素濃度において排出されるNOx、CO濃
度を測定した。
The above-mentioned effect has been confirmed by experiments, and will be described below. The apparatus used in the experiment is shown in FIG. 4, and has a can body (K) having the structure shown in FIGS. 1-3, a duct (D) for supplying a premixed gas to the burner (40), a wind box (W), and flue gas. Economizer (feed preheater) (E), steam extraction pipe (J), duct (D) connected to outlet (C)
Consists of a blower (not shown), exhaust stack (H), wire mesh (M1) (M2) provided in duct (D) for better mixing, and fuel gas using propane duct (D). Site (N)
Supplied from The steam pressure is 4.5-5.0 kg / cm 2 G
And the excess air ratio was changed by adjusting the rotation speed of the blower, and the NOx and CO concentrations discharged at each oxygen concentration were measured.

【0015】図6、7に実施例(伝熱管非存在空間を形
成した例)の測定結果を示している。この結果から分か
るように、図9〜10に示す伝熱管非存在空間を形成し
ていない従来の缶体(K')を用いた測定結果と比較して、
NOxは殆ど変化がなく、CO濃度は従来例では24〜
27ppmあったものが、9〜10ppm(いずれもO
2 0%換算)と63%もの減少効果が得られた。又、こ
の低いCOレベルの範囲が、例えば従来例での最低値を
敷居値とすれば、O2 2.5〜7.2%と測定範囲のほ
ぼ全域まで広がっており、少々劣悪な燃焼状態において
も、COの排出濃度が低く保たれることを意味してい
る。
FIGS. 6 and 7 show measurement results of the embodiment (an example in which a heat transfer tube non-existing space is formed). As can be seen from the results, as compared with the measurement results using the conventional can body (K ′) not forming the heat transfer tube non-existent space shown in FIGS.
NOx hardly changes, and the CO concentration is 24 to
9 ppm to 10 ppm (all O
20 % conversion) and a 63% reduction effect were obtained. Also, if the range of this low CO level is, for example, the threshold value in the conventional example as a threshold value, it is O 2 2.5 to 7.2%, which extends to almost the entire measurement range, and a slightly poor combustion state. This also means that the emission concentration of CO is kept low.

【0016】図8にはNOx、COの反応率を示し、C
Oの減少が伝熱管非存在空間で急激に減少していること
が分かる。尚、図11に図8に対応する従来例の特性図
を示している。
FIG. 8 shows the reaction rates of NOx and CO.
It can be seen that the decrease of O is sharply reduced in the heat transfer tube non-existing space. FIG. 11 is a characteristic diagram of a conventional example corresponding to FIG.

【0017】上記の実施例において、伝熱管の特定温度
域を略1000℃から1300℃としたのは、次の理由
によっても裏づけられる。即ち、COの低温度(150
0℃以下)での酸化反応が、次式に従うとすれば、−d
[CO]/dt=1.2×1011[CO] [ O2 ] 0.3 [ H2 O]
0.5 exp (-8050/T)各温度域における反応の速度は図1
3に示すようになり、極力、高温部分に伝熱管非存在空
間を形成することによって構造的に容易にCOを低減で
きる。しかし、NOx反応速度係数と燃焼ガス温度の関
係を示す図14によれば、1400℃以上の部分に伝熱
管非存在空間を形成すれば、高温滞留時間が長くなる分
だけサーマルNOxが多く発生するので、この温度帯域
は避ける必要があるからである。
The reason why the specific temperature range of the heat transfer tube is set to approximately 1000 ° C. to 1300 ° C. in the above embodiment is also supported by the following reasons. That is, the low temperature of CO (150
If the oxidation reaction at 0 ° C. or lower follows the following equation, then -d
[CO] /dt=1.2×10 11 [CO] [O 2 ] 0.3 [H 2 O]
0.5 exp (-8050 / T)
As shown in FIG. 3, CO can be easily reduced structurally by forming a heat transfer tube non-existent space in a high temperature portion as much as possible. However, according to FIG. 14 showing the relationship between the NOx reaction rate coefficient and the combustion gas temperature, if the heat transfer tube non-existing space is formed at a temperature of 1400 ° C. or higher, more thermal NOx is generated due to the longer high-temperature residence time. Therefore, it is necessary to avoid this temperature zone.

【0018】本発明は上記実施例に限定されるものでは
なく、バーナ及び伝熱管は垂直方向でなく、水平方向に
配設した装置にも本発明は適用可能である。又、図15
に示すように、伝熱管非存在空間は、燃焼ガスの流れ方
向に延設した形状にしても良い。又、上記実施例では伝
熱管非存在空間の周囲には伝熱管(11)と伝熱管(20)を配
置しているが、伝熱管(20)の列数が多い場合、伝熱管(2
0)のみを配置してもよい。又、図1で(Y0)にて示す部分
に伝熱管を挿入し一層の低NOxを図るよう構成しても
良い。又、本発明は多管式の温水ボイラ、水管ボイラ等
に適用可能である。
The present invention is not limited to the above embodiment. The present invention is also applicable to a device in which the burners and the heat transfer tubes are arranged not in the vertical direction but in the horizontal direction. In addition, FIG. 15
As shown in (1), the heat transfer tube non-existing space may have a shape extending in the flow direction of the combustion gas. Further, in the above embodiment, the heat transfer tubes (11) and the heat transfer tubes (20) are arranged around the heat transfer tube non-existent space, but when the number of rows of the heat transfer tubes (20) is large, the heat transfer tubes (2
Only 0) may be arranged. Further, a heat transfer tube may be inserted into a portion indicated by (Y0) in FIG. 1 so as to further reduce NOx. Further, the present invention is applicable to a multi-tube hot water boiler, a water tube boiler, and the like.

【0019】[0019]

【発明の効果】以上のように、この発明によれば、予混
合式燃焼バーナによる燃焼火炎伝熱管群にて急冷され、
NOxの発生が低減されるが、同冷却の際にCOが発生
する。然るに、本発明の拡大火炎通路は、冷却の際に発
生した残留COを酸化反応させてCO2 に変成させる滞
留時間を得られるように、かつサーマルNOxの発生が
少ない伝熱管群中の温度域に形成されているので、拡大
火炎通路に流入する燃焼火炎、燃焼ガスはこの拡大火炎
通路においてNOxの発生が抑制されつつ、燃焼火炎、
燃焼ガス中の残留COは燃焼火炎、燃焼ガスの滞留によ
り酸化反応してCO 2 に変成しCOの排出が低減され
る。又、拡大火炎通路は両側を伝熱管列で挟まれる、即
ち拡大火炎通路の両側に伝熱管が配置されるので、局所
的な高温部分を生ずる断熱空間とならず、COを低減し
つつNOx発生が抑制することができる。又、拡大火炎
通路は、局部的に狭く形成されるので、省スペース性、
熱効率性に優れた缶体を提供できる。更に、伝熱管群の
配置を千鳥状として火炎通路を蛇行状とすることで、異
なる蛇行状火炎流通路を流れて来る燃焼火炎、燃焼ガス
が拡大火炎通路にて合流し、混合する際に、混合及び滞
留効果が大きく、未反応COと反応活性基(OH)及び
/又は酸素原子(O)との接触が積極的に行われる結
果、比較的狭い空間にもかかわらず大きいCO低減がな
される。又、断熱空間を形成した従来例の欠点を解消で
きる効果もある。このように本発明によれば産業的価値
の大きい予混合式燃焼バーナを用いた低NOx、低CO
燃焼方法及び装置を提供できる。
As described above, according to the present invention, the quenching is performed in the combustion flame heat transfer tube bank by the premixed combustion burner,
Although the generation of NOx is reduced, CO is generated during the cooling. However, expanding the flame passage of the present invention, the residual CO generated during cooling so as to obtain a residence time to shift to CO 2 by oxidation reaction, and a temperature range of generating less heat transfer tube group thermal NOx Since the combustion flame and the combustion gas flowing into the expanded flame passage are formed in the expanded flame passage, while the generation of NOx is suppressed in the expanded flame passage, the combustion flame,
Residual CO in the combustion gas is discharged by the oxidation reaction was transformed into CO 2 CO is reduced by staying in the combustion flame, the combustion gases. In addition, since the expanded flame passage is sandwiched on both sides by a heat transfer tube row, that is, heat transfer tubes are arranged on both sides of the expanded flame passage, it does not become an adiabatic space where a local high-temperature portion is generated, and NOx is generated while reducing CO while reducing CO. Can be suppressed. In addition, since the enlarged flame passage is locally formed to be narrow, space saving,
A can body having excellent heat efficiency can be provided. Furthermore, by making the arrangement of the heat transfer tube groups staggered and making the flame passage meandering, when the combustion flame and the combustion gas flowing through the different meandering flame flow passages join in the expanded flame passage and mix, The mixing and retention effects are large, and the unreacted CO is positively brought into contact with the reactive groups (OH) and / or oxygen atoms (O). As a result, a large amount of CO is reduced in a relatively small space. . Also, there is an effect that the disadvantage of the conventional example in which the heat insulating space is formed can be eliminated. Thus, according to the present invention, low NOx and low CO using a premixed combustion burner of great industrial value
A combustion method and apparatus can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明における一実施例の缶体の概略構造を
例示する平面図である。
FIG. 1 is a plan view illustrating the schematic structure of a can according to one embodiment of the present invention.

【図2】同実施例の缶体カバーを外した状態の缶体側面
図である。
FIG. 2 is a side view of the can body of the embodiment with the can body cover removed.

【図3】同実施例の缶体の要部断面図である。FIG. 3 is a sectional view of a main part of the can body of the embodiment.

【図4】同実施例のバーナの斜視図である。FIG. 4 is a perspective view of the burner of the embodiment.

【図5】この発明における一実施例装置全体の外観斜視
図である。
FIG. 5 is an external perspective view of the entire apparatus according to the embodiment of the present invention.

【図6】同実施例の缶体のNOx、CO排出特性図であ
る。
FIG. 6 is a graph showing NOx and CO emission characteristics of the can of the embodiment.

【図7】同実施例の缶体の異なるインプット時のNO
x、CO排出特性図である。
FIG. 7 is a diagram showing NO when the can of the embodiment is differently input.
It is a x, CO discharge characteristic diagram.

【図8】同実施例の缶体内のNOx生成、CO減少、反
応率特性図である。
FIG. 8 is a graph showing NOx generation, CO reduction, and reaction rate characteristics in a can of the embodiment.

【図9】従来例の缶体のNOx、CO排出特性図であ
る。
FIG. 9 is a graph showing NOx and CO emission characteristics of a conventional can body.

【図10】従来例の缶体の異なるインプット時のNO
x、CO排出特性図である。
FIG. 10: NO at different input of the can of the conventional example
It is a x, CO discharge characteristic diagram.

【図11】従来例の缶体内のNOx生成、CO減少、反
応率特性図である。
FIG. 11 is a characteristic diagram of NOx generation, CO reduction, and reaction rate in a can of a conventional example.

【図12】従来例における缶体内燃焼ガス温度特性図で
ある。
FIG. 12 is a diagram showing a combustion gas temperature characteristic in a can in a conventional example.

【図13】COの酸化減少反応速度と燃焼ガス温度の関
係を示す特性図である。
FIG. 13 is a characteristic diagram showing the relationship between the CO oxidation reduction reaction rate and the combustion gas temperature.

【図14】NOx反応速度係数と燃焼ガス温度の関係を
示す特性図である。
FIG. 14 is a characteristic diagram showing a relationship between a NOx reaction rate coefficient and a combustion gas temperature.

【図15】この発明の他の実施例の缶体の概略構造を示
す平面図である。
FIG. 15 is a plan view showing a schematic structure of a can according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

(10) … 伝熱管壁 (11) … 伝熱管 (12) … フィン状部材 (20) … 伝熱管 (40) … 燃焼バーナ (C) … 燃焼排ガス出口 (VX3)(VZ3)(VY3)(VX4)(VZ4) … 伝熱管非存在空間 (R1)(R2)(R3)(R4) … 火炎流通路 (R12)(R34)…拡大火炎通路 (10)… heat transfer tube wall (11)… heat transfer tube (12)… fin-shaped member (20)… heat transfer tube (40)… combustion burner (C)… combustion exhaust gas outlet (VX3) (VZ3) (VY3) ( VX4) (VZ4)… Heat transfer tube non-existing space (R1) (R2) (R3) (R4)… Flame flow passage (R12) (R34)… Expanded flame passage

フロントページの続き (72)発明者 池田 和弘 愛媛県松山市堀江町7番地 三浦工業株 式会社 内 審査官 鈴木 敏史 (56)参考文献 特開 平4−356602(JP,A) 特開 昭60−78247(JP,A) 実開 平2−62201(JP,U) (58)調査した分野(Int.Cl.6,DB名) F22B 21/04 Continuation of the front page (72) Inventor Kazuhiro Ikeda 7 Horie-cho, Matsuyama-shi, Ehime Miura Industrial Co., Ltd. Examiner Toshifumi Suzuki (56) References JP-A-4-356602 (JP, A) JP-A-60- 78247 (JP, A) Hikaru Hei 2-62201 (JP, U) (58) Field surveyed (Int. Cl. 6 , DB name) F22B 21/04

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複数の伝熱管と隣接する伝熱管同士を連
結するヒレ状部材とから構成される互いに略平行をなす
一対の伝熱管壁によって燃焼火炎、燃焼ガスが流通する
区域を画成し、同区域の一側に燃焼バーナを配置し、他
側に燃焼排ガス出口を設け、互いに略平行で所定の間隔
を存して設けられる多数の伝熱管からな伝熱管群を、
記燃焼バーナの直前の水管と前記燃焼バーナとの間隔
が水管直径の3倍以下となるように、前記燃焼バーナに
近接させて配置し、前記伝熱管壁の伝熱管列と伝熱管群
の燃焼火炎の流れ方向の伝熱管列との間及び前記伝熱管
群の隣り合う伝熱管列間に前記燃焼バーナの燃焼火炎が
燃焼排ガス出口に向けて流通するように燃焼火炎通路を
形成したものにおいて、前記伝熱管群の所定の伝熱管列
において伝熱管非存在空間を形成し、かつ伝熱管非存在
空間を形成した伝熱管列の隣の伝熱管列には伝熱管非存
在空間を形成しないことにより、複数の前記火炎流通路
が合流する位置に、火炎温度が略1000℃から130
℃で、かつCOが反応活性基及び/又は酸素原子と反
応する前記燃焼火炎及び燃焼ガスの滞留時間を得る拡大
火炎流通路を形成したことを特徴とする低NOx及び低
CO燃焼装置。
A pair of substantially parallel heat transfer tube walls, each of which is composed of a plurality of heat transfer tubes and a fin-shaped member connecting adjacent heat transfer tubes, defines an area through which a combustion flame and a combustion gas flow. and a combustion burner disposed on one side of the area, provided the flue gas outlet on the other side, the heat transfer tube group ing of a number of heat transfer tubes disposed at a predetermined interval in substantially parallel to each other,
And the interval between the water pipe and the front Ki燃 sintered burner immediately before the previous Ki燃 sintered burner is equal to or less than 3 times the water tube diameter, the in close proximity to the combustion burner is disposed, the heat transfer tube array of the heat transfer tube wall combustion and as combustion flame before Ki燃 sintered burner between and between heat transfer tubes adjacent rows of the heat transfer tube group in the heat transfer tube array in the flow direction of the combustion flame of the heat transfer tube group flows toward the flue gas outlet In the case where a flame passage is formed, a heat transfer tube non-existing space is formed in a predetermined heat transfer tube row of the heat transfer tube group, and a heat transfer tube row is adjacent to the heat transfer tube row in which the heat transfer tube non-existing space is formed. By not forming the non-existing space, the flame temperature is increased from approximately 1000 ° C. to 130 ° at the position where the plurality of flame flow passages join.
A low NOx and low CO combustion apparatus characterized by forming an expanded flame flow passage at 0 ° C. and obtaining a residence time of the combustion flame and combustion gas in which CO reacts with a reactive group and / or an oxygen atom.
【請求項2】 複数の伝熱管と隣接する伝熱管同士を連
結するヒレ状部材とから構成される互いに略平行をなす
一対の伝熱管壁によって燃焼火炎、燃焼ガスが流通する
区域を画成し、同区域の一側に燃焼バーナを配置し、他
側に燃焼排ガス出口を設け、互いに略平行で所定の間隔
を存して設けられる多数の伝熱管からなり千鳥状に配列
される伝熱管群を、前記燃焼バーナの直前の水管と前
焼バーナとの間隔が水管直径の3倍以下となるよう
に、かつ前記伝熱管壁の伝熱管と前記伝熱管群の前記伝
熱管壁に隣接する伝熱管とが千鳥状となるように配置
し、前記伝熱管壁の伝熱管列と伝熱管群の燃焼火炎の流
れ方向の伝熱管列との間及び前記伝熱管群の隣り合う伝
熱管列間に前記燃焼バーナの燃焼火炎が燃焼排ガス出口
に向けて流通するように蛇行状の燃焼火炎通路を形成し
たものにおいて、前記伝熱管群の所定の伝熱管列におい
て伝熱管非存在空間を形成し、かつ伝熱管非存在空間を
形成した伝熱管列の隣の伝熱管列には伝熱管非存在空間
を形成しないことにより、複数の前記火炎流通路が合流
する位置に、火炎温度が略1000℃から1300
で、かつCOが反応活性基及び/又は酸素原子と反応す
る前記燃焼火炎及び燃焼ガスの滞留時間を得る拡大火炎
流通路を形成したことを特徴とする低NOx及び低CO
燃焼装置。
2. An area in which a combustion flame and a combustion gas flow are defined by a pair of heat transfer tube walls which are substantially parallel to each other and are composed of a plurality of heat transfer tubes and a fin-like member connecting adjacent heat transfer tubes. and, heat the combustion burner disposed on one side of the area, a flue gas outlet provided on the other side, are arranged in a staggered manner it consists of a number of heat transfer tubes disposed at a predetermined interval substantially parallel to each other the heat pipe group, before water pipe just before the Ki燃 grilled burner and before Symbol
As the distance between the combustion burner so that the following three times the water tube diameter, and the heat transfer tubes adjacent said heat transfer tube wall of the heat transfer tube group and the heat transfer tube of the heat transfer tube wall is staggered placed, the combustion of pre Ki燃 sintered burner between and between heat transfer tubes adjacent rows of the heat transfer tube group in the heat transfer tube array in the flow direction of the combustion flame of the heat transfer tube array and the heat transfer tube group of the heat transfer tube wall In a meandering combustion flame passage formed so that a flame flows toward a combustion exhaust gas outlet, a heat transfer tube non-existing space is formed in a predetermined heat transfer tube row of the heat transfer tube group, and a heat transfer tube non-existing space is formed. By not forming a heat transfer tube non-existent space in the heat transfer tube row adjacent to the heat transfer tube row in which the flame is formed, the flame temperature is increased from approximately 1000 ° C. to 1300 ° C. at a position where the plurality of flame flow passages merge.
And an expanded flame flow passage for obtaining a residence time of the combustion flame and combustion gas in which CO reacts with a reactive group and / or an oxygen atom.
Combustion equipment.
【請求項3】 請求項2において、伝熱管群の燃焼火炎
の流れ方向の伝熱管列が3列からなり、両側の列におい
て燃焼バーナ側から3番目の伝熱管部分に伝熱管非存在
空間を形成することにより拡大火炎通路を形成したこと
を特徴とする低NOx及び低CO燃焼装置。
3. The heat transfer tube group according to claim 2, wherein the heat transfer tube group has three heat transfer tube rows in the flow direction of the combustion flame.
Third low NOx and low CO combustion apparatus characterized by the formation of the expanded flame passage heat transfer tube portion by forming the heat transfer tube absence space from the combustion burner side Te.
【請求項4】 請求項2において、伝熱管群が燃焼火炎
の流れ方向に並ぶ3列からなり、両側の列において燃
バーナ側から3番目及び4番目の伝熱管部分に伝熱管非
存在空間を形成することにより拡大火炎通路を形成した
ことを特徴とする低NOx及び低CO燃焼装置。
4. The method of claim 2, consists of three columns tube banks are arranged in the flow direction of the combustion flame, the heat transfer tube absence from combustion burner side in the third and fourth of the heat transfer tube portion Te sides of the column odor A low NOx and low CO combustion apparatus characterized by forming an expanded flame passage by forming a space.
JP33271395A 1995-11-27 1995-11-27 Low NOx and low CO combustion equipment Expired - Lifetime JP2948519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33271395A JP2948519B2 (en) 1995-11-27 1995-11-27 Low NOx and low CO combustion equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33271395A JP2948519B2 (en) 1995-11-27 1995-11-27 Low NOx and low CO combustion equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP26805592A Division JP3221582B2 (en) 1992-09-09 1992-09-09 Low NOx and low CO combustion device

Publications (2)

Publication Number Publication Date
JPH08226604A JPH08226604A (en) 1996-09-03
JP2948519B2 true JP2948519B2 (en) 1999-09-13

Family

ID=18258039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33271395A Expired - Lifetime JP2948519B2 (en) 1995-11-27 1995-11-27 Low NOx and low CO combustion equipment

Country Status (1)

Country Link
JP (1) JP2948519B2 (en)

Also Published As

Publication number Publication date
JPH08226604A (en) 1996-09-03

Similar Documents

Publication Publication Date Title
JP3221582B2 (en) Low NOx and low CO combustion device
WO1990007084A1 (en) Square multi-pipe once-through boiler
JP2948519B2 (en) Low NOx and low CO combustion equipment
JPH08226612A (en) Combustion method of low nox and low co
JP2000065306A (en) LOW NOx AND LOW CO COMBUSTION DEVICE
JP3662599B2 (en) Water tube boiler
JP3180938B2 (en) Water tube boiler and combustion method thereof
JP2824619B2 (en) Square multi-tube type once-through boiler
JP3368887B2 (en) Low NOx and low CO combustion method
JP3384975B2 (en) Water tube boiler
JPH0684103U (en) Boiler with water tube group
JP2583273Y2 (en) Square multi-tube type once-through boiler
JPH0835604A (en) Water-tube boiler
JPH0791613A (en) Combustion device
JPH0835603A (en) Water-tube boiler
JPH09145001A (en) Water tube boiler and combustion method thereof
JP3568300B2 (en) Water tube boiler
JP3310932B2 (en) boiler
JP3185792B2 (en) boiler
JPH0814362B2 (en) Boiler system with combustion gas recirculation mechanism
JPH10246403A (en) Water tube boiler
JPH07119928A (en) Burner
JP2000240909A (en) Duct burner and duct burner apparatus
JP3581928B2 (en) Small once-through boiler
JP2932956B2 (en) Waste heat recovery water pipe boiler

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080702

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100702

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110702

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20130702

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 14