JPH1067966A - Coated metal member - Google Patents

Coated metal member

Info

Publication number
JPH1067966A
JPH1067966A JP8247234A JP24723496A JPH1067966A JP H1067966 A JPH1067966 A JP H1067966A JP 8247234 A JP8247234 A JP 8247234A JP 24723496 A JP24723496 A JP 24723496A JP H1067966 A JPH1067966 A JP H1067966A
Authority
JP
Japan
Prior art keywords
coating
coated
resin
mpa
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8247234A
Other languages
Japanese (ja)
Other versions
JP3618485B2 (en
Inventor
Naomitsu Nishihata
直光 西畑
Kiyomi Ouchi
清美 大内
Masato Tada
正人 多田
Yoshikatsu Satake
義克 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP24723496A priority Critical patent/JP3618485B2/en
Priority to CA002185938A priority patent/CA2185938A1/en
Priority to EP96306817A priority patent/EP0765895A3/en
Publication of JPH1067966A publication Critical patent/JPH1067966A/en
Application granted granted Critical
Publication of JP3618485B2 publication Critical patent/JP3618485B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a coated metal member having the coating layer of a polyarylene sulfide resin which can stably and continuously be coated without causing the breakage of the resin, when continuously coated on a metal substrate by a melt extrusion method, which does not generate cracks in the coating layer, when thermally treated after coated, and which is excellent in heat resistance, freon gas resistance, flame retardancy, chemical resistance, radiation resistance, low temperature resistance, electric insulation, mechanical properties, etc. SOLUTION: This coated metal member is produced by coating a metal substrate with a polyarylene sulfide resin. Therein, the polyarylene sulfide resin has an extension viscosity of >=10,000 Pa.s at 310 deg.C and at a shear speed of 400/sec, and the heating crystallization temperature of the polyarylene sulfide resin coating layer measured by a differential scanning calorimeter is lower by >=6 deg.C than that of the non-oriented amorphous sheet of the polyarylene sulfide resin.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ポリアリーレンス
ルフィド樹脂被覆金属部材に関し、さらに詳しくは、耐
熱性、耐フレオン性、難燃性、耐薬品性、耐放射線性、
低温物性、電気絶縁性、機械的物性等に優れたポリアリ
ーレンスルフィド樹脂被覆金属部材に関する。本発明の
被覆金属部材は、自動車や船舶のコントロールケーブル
用索導管やコントロールケーブル用内索、耐熱性コイル
やモーター等の巻線、自動車ソレノイドリード線、コン
プレッサー等の耐フレオン電線、変圧器の巻線、原子力
発電所用の耐放射線性機器配線、及びケーブル、金属
棒、金属管、その他の耐熱電線、シース管、ワイヤーな
どの広範な分野で利用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polyarylene sulfide resin-coated metal member, and more particularly, to heat resistance, freon resistance, flame resistance, chemical resistance, radiation resistance, and the like.
The present invention relates to a polyarylene sulfide resin-coated metal member having excellent low-temperature properties, electrical insulation properties, mechanical properties, and the like. The coated metal member of the present invention includes a cable conduit for a control cable of an automobile or a ship, an inner cable for a control cable, a winding of a heat-resistant coil or a motor, a solenoid wire of a vehicle, a fringe-resistant electric wire such as a compressor, and a winding of a transformer. It is used in a wide range of fields, such as wires, radiation-resistant equipment wiring for nuclear power plants, and cables, metal rods, metal tubes, other heat-resistant wires, sheath tubes, and wires.

【0002】[0002]

【従来の技術】ポリフェニレンスルフィド樹脂(以下、
PPS樹脂と略記)に代表されるポリアリーレンスルフ
ィド樹脂(以下、PAS樹脂と略記)は、耐熱性、耐薬
品性、難燃性、電気絶縁性等に優れたエンジニアリング
プラスチックとして広範な分野で使用されている。この
ような優れた諸特性を生かして、PAS樹脂を電線、金
属棒等の被覆用樹脂として使用することが期待され、具
体的な提案もなされている。例えば、特開昭60−18
5306号公報には、310℃、剪断速度200/秒で
測定した溶融粘度が300〜100,000ポイズで、
孔径0.5mmのノズルから310℃で溶融押出をして
紡糸した場合の第一次延伸倍率が10以上のPPS樹脂
を、金属導線上に溶融押出してエナメル線型被覆電線を
製造する方法が提案されている。特開昭62−1433
07号公報には、メルトインデックスが0.5〜100
g/10minのPPS樹脂組成物を導体上に押し出し
て成形した絶縁電線が提案されている。
2. Description of the Related Art Polyphenylene sulfide resin (hereinafter, referred to as polyphenylene sulfide resin)
Polyarylene sulfide resin (hereinafter abbreviated as PAS resin) represented by PPS resin is used in a wide range of fields as an engineering plastic having excellent heat resistance, chemical resistance, flame retardancy, electrical insulation and the like. ing. Taking advantage of such excellent properties, it is expected that PAS resins will be used as coating resins for electric wires, metal rods, and the like, and specific proposals have been made. For example, JP-A-60-18
No. 5306 discloses a melt viscosity of 300 to 100,000 poise measured at 310 ° C. and a shear rate of 200 / sec.
A method has been proposed in which a PPS resin having a primary draw ratio of 10 or more when melt-extruded at 310 ° C. from a nozzle having a hole diameter of 0.5 mm and spun is melt-extruded onto a metal conductor to produce an enameled wire. ing. JP-A-62-1433
No. 07 discloses a melt index of 0.5 to 100.
There has been proposed an insulated wire formed by extruding a g / 10 min PPS resin composition onto a conductor.

【0003】しかし、PAS樹脂を金属導線などの金属
基材上に溶融押出して被覆層を連続的に形成しようとす
ると、該樹脂の延伸性が悪いため、樹脂切れ等を引き起
こしやすく、安定して被覆物を得ることが困難であっ
た。また、PAS樹脂被覆金属部材を、被覆後、高温下
にさらして樹脂を結晶化させると、被覆層が割れるとい
う問題があった。一般に、溶融押出法より、金属基材上
に樹脂を連続被覆する場合、該樹脂は、溶融状態で延伸
される。このとき、樹脂切れを生ずることなく、均一な
被覆層が安定して得られることが必要である。さらに、
被覆後に熱処理を行っても、被覆層に割れが生じないこ
とが必要である。しかしながら、従来、被覆電線などの
用途に好適な物性を有する金属被覆用PAS樹脂は、見
いだされていなかったのが現状である。
However, if a PAS resin is melt-extruded onto a metal substrate such as a metal conductor to form a coating layer continuously, the resin is poor in stretchability, so that the resin is likely to be cut out and stably. It was difficult to obtain a coating. Further, when the PAS resin-coated metal member is coated and exposed to a high temperature to crystallize the resin, there is a problem that the coating layer is cracked. Generally, when a resin is continuously coated on a metal substrate by a melt extrusion method, the resin is stretched in a molten state. At this time, it is necessary that a uniform coating layer can be stably obtained without causing resin breakage. further,
Even if heat treatment is performed after coating, it is necessary that the coating layer does not crack. However, a PAS resin for metal coating having physical properties suitable for applications such as coated electric wires has not been found so far.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、溶融
押出法により金属基材上に連続被覆を行った場合に、樹
脂切れを起こすことなく安定して連続被覆することがで
き、しかも被覆後に熱処理した場合に、被覆層の割れを
生じることがないポリアリーレンスルフィド樹脂被覆金
属部材を提供することにある。また、本発明の目的は、
耐熱性、耐フレオン性、難燃性、耐薬品性、耐放射線
性、低温物性、電気絶縁性、機械的物性等に優れたポリ
アリーレンスルフィド樹脂の被覆層が形成された被覆金
属部材を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for continuously coating a metal substrate by a melt extrusion method without causing resin breakage. An object of the present invention is to provide a polyarylene sulfide resin-coated metal member that does not cause cracks in a coating layer when heat treatment is performed later. The object of the present invention is
Provide a coated metal member formed with a polyarylene sulfide resin coating layer having excellent heat resistance, freon resistance, flame retardancy, chemical resistance, radiation resistance, low-temperature physical properties, electrical insulation properties, mechanical properties, and the like. It is in.

【0005】本発明者らは、前記従来技術の問題点を克
服するために鋭意研究した結果、特定の伸長粘度を有す
るPAS樹脂を用い、かつ、金属基材上への被覆条件を
選択して、示差走査熱量計(DSC)により測定される
PAS樹脂被覆層(被膜)の昇温結晶化温度がPAS樹
脂プレスシートの昇温結晶化温度よりも5℃以上低くす
ることにより、前記目的を達成できることを見いだし
た。この場合、PAS樹脂被覆層のひずみ10%の時の
強度が降伏強度の0.93倍以上であることが好まし
い。このような被覆条件を選択することにより、被覆後
に熱処理してPAS樹脂を結晶化させた場合に、被覆層
に割れを生じることがなく、しかも厳しい熱老化試験ま
たは熱処理条件下での熱履歴を受けた後においても、3
0%以上の伸度を保持する被覆層を得ることができる。
The inventors of the present invention have conducted intensive studies to overcome the above-mentioned problems of the prior art, and have found that a PAS resin having a specific elongational viscosity is used, and a coating condition on a metal substrate is selected. The object is achieved by lowering the temperature-rise crystallization temperature of the PAS resin coating layer (coating) measured by a differential scanning calorimeter (DSC) by 5 ° C. or more than the temperature-rise crystallization temperature of the PAS resin press sheet. I found what I could do. In this case, the strength of the PAS resin coating layer at a strain of 10% is preferably 0.93 times or more of the yield strength. By selecting such coating conditions, when the PAS resin is crystallized by heat treatment after coating, the coating layer does not crack and the heat history under severe heat aging tests or heat treatment conditions is reduced. Even after receiving
A coating layer having an elongation of 0% or more can be obtained.

【0006】PAS樹脂としては、完全な直鎖型樹脂で
あってもよいが、アルカリ金属硫化物とジハロ芳香族化
合物をトリハロ芳香族化合物の存在下に重合して得られ
る分岐型PAS樹脂であることが好ましい。このような
選択されたPAS樹脂を被覆した被覆電線などの被覆金
属部材は、PAS樹脂被覆層が、耐熱性、難燃性、耐薬
品性、耐フレオン性、耐放射線性、電気絶縁性、低温特
性などPAS樹脂が本来有する優れた特性を示すだけで
はなく、耐屈曲性、引張強度、可撓性、耐候性などの物
性にも優れている。本発明は、これらの知見に基づいて
完成するに至ったものである。
[0006] The PAS resin may be a completely linear resin, but is a branched PAS resin obtained by polymerizing an alkali metal sulfide and a dihalo aromatic compound in the presence of a trihalo aromatic compound. Is preferred. Such a coated metal member such as a coated electric wire coated with the selected PAS resin has a PAS resin coating layer having heat resistance, flame retardancy, chemical resistance, freon resistance, radiation resistance, electrical insulation, and low temperature. The PAS resin not only exhibits excellent properties inherent in PAS resin such as properties, but also has excellent properties such as flex resistance, tensile strength, flexibility, and weather resistance. The present invention has been completed based on these findings.

【0007】[0007]

【課題を解決するための手段】本発明によれば、金属基
材上に、ポリアリーレンスルフィド樹脂を被覆してなる
被覆金属部材において、ポリアリーレンスルフィド樹脂
の310℃、剪断速度400/秒における伸長粘度が1
0,000Pa・s以上であって、かつ、示差走査熱量
計により測定されるポリアリーレンスルフィド樹脂被覆
層の昇温結晶化温度がポリアリーレンスルフィド樹脂の
無配向非晶シートの昇温結晶化温度よりも6℃以上低い
ことを特徴とする被覆金属部材が提供される。
According to the present invention, in a coated metal member comprising a metal substrate coated with a polyarylene sulfide resin, elongation of the polyarylene sulfide resin at 310 ° C. and a shear rate of 400 / sec. Viscosity 1
The crystallization temperature of the polyarylene sulfide resin coating layer measured by a differential scanning calorimeter is not less than 000 Pa · s, and is higher than the crystallization temperature of the non-oriented amorphous sheet of the polyarylene sulfide resin. Is also lower than 6 ° C.

【0008】[0008]

【発明の実施の形態】本発明で使用するPAS樹脂は、
アルカリ金属硫化物とジハロ芳香族化合物のみから得ら
れる直鎖型樹脂を用いることができるが、伸長粘度が1
0,000Pa・s以上と十分に高いので、アルカリ金
属硫化物とジハロ芳香族化合物を反応させるに際し、三
官能モノマーであるトリハロ芳香族化合物を少量共存さ
せて得られる分岐型樹脂であることが望ましい。ただ
し、低分子量のPAS樹脂を空気の存在下に酸化架橋
(キュアリング)して得られる架橋型樹脂は、溶融延伸
の際にゲル状物が発生し、加工性が劣悪であることに加
えて、被覆層の強度、金属基材への密着性、耐摩耗性、
絶縁破壊抵抗性、耐熱性等の点で実用性に乏しい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The PAS resin used in the present invention comprises:
A linear resin obtained from only an alkali metal sulfide and a dihalo aromatic compound can be used, but the elongational viscosity is 1%.
Since the reaction is sufficiently high at 000 Pa · s or more, it is preferable that a branched resin obtained by allowing a small amount of a trihaloaromatic compound, which is a trifunctional monomer, to coexist when reacting an alkali metal sulfide with a dihaloaromatic compound. . However, the cross-linked resin obtained by oxidatively cross-linking (curing) a low-molecular-weight PAS resin in the presence of air generates a gel-like substance during melt stretching, and has poor processability. , Coating layer strength, adhesion to metal substrate, abrasion resistance,
Poor practicality in terms of insulation resistance and heat resistance.

【0009】本発明で使用するPAS樹脂の伸長粘度
は、10,000Pa・s以上と大きいことが必要であ
り、好ましくは10,000〜300,000Pa・
s、より好ましくは10,000〜200,000Pa
・sである。ここで、伸長粘度(Shear and
Elongnational Viscosity)
は、F.N.Cogswellの方法〔Polym.E
ng.Sci.12,p.64(1972)〕にしたが
って、算出することができるが、詳細な測定法は、後記
する。PAS樹脂の伸長粘度が低すぎると、PAS樹脂
の分子量または分岐度が不足し、金属基材上に溶融押出
して被覆層を連続的に形成しようとすると、該樹脂の延
伸性が悪いため、樹脂切れ等を引き起こしやすく、安定
して被覆物を得ることが困難な場合がある。また、PA
S樹脂の伸長粘度が低すぎると、被覆層の破断伸度が小
さくなるため、耐屈曲性や可撓性が不満足なものとな
り、しかも被覆金属部材を、被覆後、高温下にさらして
樹脂を結晶化させると、被覆層が割れ易くなる。PAS
樹脂の伸長粘度が高すぎると、加工性が低下したり、被
覆層の耐屈曲性や可撓性が低下するおそれがあり、ま
た、被覆の際の金属基材の引取速度を小さくしなければ
ならないので、生産性が低下する。PAS樹脂の310
℃、剪断速度1200/秒で測定した溶融粘度ηは、5
0Pa・s以上であることが好ましい。
[0009] The elongational viscosity of the PAS resin used in the present invention must be as large as 10,000 Pa · s or more, preferably 10,000 to 300,000 Pa · s.
s, more preferably 10,000 to 200,000 Pa
-It is s. Here, the extensional viscosity (Shear and
Elongational visibility)
Is F. N. Cogswell's method [Polym. E
ng. Sci. 12 , p. 64 (1972)], and a detailed measuring method will be described later. If the elongational viscosity of the PAS resin is too low, the molecular weight or the degree of branching of the PAS resin is insufficient, and if the coating layer is continuously formed by melt extrusion on a metal substrate, the stretchability of the resin is poor. It is easy to cause cutting and the like, and it may be difficult to obtain a stable coating. Also, PA
If the elongational viscosity of the S resin is too low, the elongation at break of the coating layer will be small, and the bending resistance and flexibility will be unsatisfactory. When crystallized, the coating layer is easily broken. PAS
If the elongational viscosity of the resin is too high, the processability may be reduced, or the bending resistance or flexibility of the coating layer may be reduced, and unless the take-up speed of the metal substrate during coating is reduced. The productivity is reduced. 310 of PAS resin
At a shear rate of 1200 / sec.
It is preferably at least 0 Pa · s.

【0010】PAS樹脂は、常法に従って、極性有機溶
媒中で、アルカリ金属硫化物とジハロ芳香族化合物を反
応させることにより得ることができる。分岐型PAS樹
脂を得るには、アルカリ金属硫化物とジハロ芳香族化合
物をトリハロ芳香族化合物の存在下に重合し、その際、
各モノマーの割合や重合条件を適切なものとする。アル
カリ金属硫化物としては、例えば、硫化ナトリウム、硫
化カリウム、硫化リチウム、硫化ルビジウム、硫化セシ
ウム、及びこれらの混合物などが挙げられる。また、ア
ルカリ金属硫化物は、常法により反応容器中でin s
ituで生成させてもよい。これらのアルカリ金属硫化
物は、水和物、水性混合物、または無水物の形で用いる
ことができる。アルカリ金属硫化物中に微量存在するア
ルカリ金属重硫化物やアルカリ金属チオ硫酸塩と反応さ
せるために、少量のアルカリ金属水酸化物を添加して、
これらの不純物を除去するか、あるいは硫化物へ転化さ
せてもよい。これらの中でも硫化ナトリウムが最も安価
であるため、工業的には好ましい。
The PAS resin can be obtained by reacting an alkali metal sulfide with a dihalo aromatic compound in a polar organic solvent according to a conventional method. In order to obtain a branched PAS resin, an alkali metal sulfide and a dihalo aromatic compound are polymerized in the presence of a trihalo aromatic compound.
The ratio of each monomer and the polymerization conditions are made appropriate. Examples of the alkali metal sulfide include sodium sulfide, potassium sulfide, lithium sulfide, rubidium sulfide, cesium sulfide, and a mixture thereof. Further, the alkali metal sulfide, in s in a reaction vessel in a conventional manner
It may be generated by itu . These alkali metal sulfides can be used in the form of hydrates, aqueous mixtures, or anhydrides. In order to react with alkali metal bisulfide and alkali metal thiosulfate present in trace amounts in alkali metal sulfide, a small amount of alkali metal hydroxide is added,
These impurities may be removed or converted to sulfide. Among them, sodium sulfide is industrially preferable because it is the cheapest.

【0011】ジハロ芳香族化合物としては、例えば、p
−ジクロロベンゼン、m−ジクロロベンゼン、o−ジク
ロロベンゼン、p−ジブロモベンゼン等のジハロベンゼ
ン;2,5−ジクロロトルエン、1−メトキシ−2,5
−ジクロロベンゼン等の置換ジハロベンゼン;1,4−
ジクロロナフタレン等のジハロナフタレン;4,4′−
ジクロロビフェニル、3,3′−ジクロロビフェニル等
のジハロビフェニル;3,5−ジクロロ安息香酸等のジ
ハロ安息香酸;4,4′−ジクロロベンゾフェノン等の
ジハロベンゾフェノン;4,4′−ジクロロジフェニル
スルホン、3,3′−ジクロロジフェニルスルフォン等
のジハロジフェニルスルホン;4,4′−ジクロロジフ
ェニルエーテル等のジハロフェニルエーテル;などを挙
げることができる。これらの中でも、経済性や物性等の
観点から、ジハロベンゼンが好ましく、p−ジクロロベ
ンゼンなどのp−ジハロベンゼンがより好ましい。特
に、ジハロ芳香族化合物として、p−ジハロベンゼン
を、好ましくは70重量%以上、より好ましくは80重
量%以上、さらに好ましくは90重量%以上の割合で含
有するものが好ましい。
Examples of the dihalo aromatic compound include, for example, p
Dihalobenzenes such as -dichlorobenzene, m-dichlorobenzene, o-dichlorobenzene and p-dibromobenzene; 2,5-dichlorotoluene, 1-methoxy-2,5
Substituted dihalobenzenes such as dichlorobenzene; 1,4-
Dihalonaphthalene such as dichloronaphthalene; 4,4′-
Dihalobiphenyls such as dichlorobiphenyl and 3,3'-dichlorobiphenyl; dihalobenzoic acids such as 3,5-dichlorobenzoic acid; dihalobenzophenones such as 4,4'-dichlorobenzophenone;4,4'-dichlorodiphenylsulfone , 3,3'-dichlorodiphenylsulfone and the like; dihalophenylethers such as 4,4'-dichlorodiphenylether; and the like. Among these, dihalobenzene is preferred from the viewpoints of economy and physical properties, and p-dihalobenzene such as p-dichlorobenzene is more preferred. In particular, as the dihalo aromatic compound, a compound containing p-dihalobenzene in a proportion of preferably 70% by weight or more, more preferably 80% by weight or more, and further preferably 90% by weight or more is preferable.

【0012】トリハロ芳香族化合物としては、例えば、
1,2,3−トリクロロベンゼン、1,2,3−トリブ
ロモベンゼン、1,2,4−トリクロロベンゼン、1,
2,4−トリブロモベンゼン、1,3,5−トリクロロ
ベンゼン、1,3,5−トリブロモベンゼン、1,3−
ジクロロ−5−ブロムベンゼン等のトリハロベンゼン;
トリハロベンゼンのアルキル置換体;これらの混合物等
が挙げられる。これらの中でも、経済性、反応性、物性
等の観点から、1,2,4−トリハロベンゼン、1,
3,5−トリハロベンゼン、及び1,2,3−トリクロ
ロベンゼンが好ましい。
Examples of the trihalo aromatic compound include, for example,
1,2,3-trichlorobenzene, 1,2,3-tribromobenzene, 1,2,4-trichlorobenzene, 1,
2,4-tribromobenzene, 1,3,5-trichlorobenzene, 1,3,5-tribromobenzene, 1,3-
Trihalobenzenes such as dichloro-5-bromobenzene;
Alkyl-substituted trihalobenzenes; mixtures thereof. Among these, 1,2,4-trihalobenzene, 1,2
3,5-Trihalobenzene and 1,2,3-trichlorobenzene are preferred.

【0013】ポリアリーレンスルフィド樹脂の製造方法
としては、水を含有する極性有機溶媒中で、アルカリ金
属硫化物とジハロ芳香族化合物とを、所望によりトリハ
ロ芳香族化合物の存在下に、重縮合反応させる方法を採
用することができる。水としては、例えば、アルカリ金
属硫化物の水和水、添加水、反応水、アルカリ金属硫化
物水溶液の水などが挙げられる。有機アミド溶媒として
は、例えば、N−メチルピロリドン、N−エチルピロリ
ドン、N,N−ジメチルホルムアミド、N,N−ジメチ
ルアセトアミド、N−メチルカプロラクタム、ジメチル
イミダゾリジノン、テトラメチル尿素、ヘキサメチルホ
スホン酸アミドなどが挙げられる。これらの中でも、経
済性や安定性の観点から、N−メチル−2−ピロリドン
(NMP)が特に好ましい。
As a method for producing a polyarylene sulfide resin, an alkali metal sulfide and a dihalo aromatic compound are subjected to a polycondensation reaction in a polar organic solvent containing water, optionally in the presence of a trihalo aromatic compound. A method can be adopted. Examples of the water include water of hydration of an alkali metal sulfide, added water, reaction water, and water of an aqueous solution of an alkali metal sulfide. Examples of the organic amide solvent include N-methylpyrrolidone, N-ethylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylcaprolactam, dimethylimidazolidinone, tetramethylurea, and hexamethylphosphonamide And the like. Among these, N-methyl-2-pyrrolidone (NMP) is particularly preferred from the viewpoint of economy and stability.

【0014】仕込みジハロ芳香族化合物のモル数aと仕
込みアルカリ金属硫化物のモル数bとの比a/bは、通
常、0.95〜1.10、好ましくは0.98〜1.0
8、より好ましくは1.00〜1.06の範囲内になる
ように調製する。トリハロ芳香族化合物は、仕込みアル
カリ金属硫化物1モルに対して、通常、0.0002〜
0.01モル、好ましくは0.0004〜0.009モ
ル、より好ましくは0.0005〜0.007モルの範
囲内となるように調整して、重合反応系に添加する。
The ratio a / b of the number of moles a of the charged dihalo-aromatic compound to the number of moles b of the charged alkali metal sulfide is usually 0.95 to 1.10, preferably 0.98 to 1.0.
8, more preferably in the range of 1.00 to 1.06. The trihaloaromatic compound is usually used in an amount of 0.0002 to 1 mol of the charged alkali metal sulfide.
It is adjusted to be in a range of 0.01 mol, preferably 0.0004 to 0.009 mol, more preferably 0.0005 to 0.007 mol, and added to the polymerization reaction system.

【0015】仕込みアルカリ金属化合物1モルに対し
て、トリハロ芳香族化合物が0.0002モル未満で
は、生成PAS樹脂の分子量が十分に高くない場合、溶
融状態における弾性が十分でないことがあり、溶融状態
から直接延伸すると、必要な配向をさせることができな
いことがある。このため、得られた被覆層の靭性が低下
する。逆に、トリハロ芳香族化合物が0.01モル超過
では、生成PAS樹脂の溶融粘度と分岐度も高くなり、
被覆時に樹脂切れを引き起こし、連続して均一な被覆物
を得ることが困難となるため好ましくない。重合反応系
へのトリハロ芳香族化合物の添加は、重合の初期であっ
ても後期であってもよいが、初期の場合の方が少量の添
加でもより効果的である。
If the amount of the trihaloaromatic compound is less than 0.0002 mol per mol of the charged alkali metal compound, the elasticity in the molten state may not be sufficient if the molecular weight of the produced PAS resin is not sufficiently high. If the film is stretched directly from the film, the necessary orientation may not be obtained. For this reason, the toughness of the obtained coating layer decreases. Conversely, when the amount of the trihalo aromatic compound exceeds 0.01 mol, the melt viscosity and the degree of branching of the formed PAS resin also increase,
It is not preferable because resin breakage occurs at the time of coating and it becomes difficult to obtain a uniform coating continuously. The addition of the trihaloaromatic compound to the polymerization reaction system may be at the early stage or late stage of the polymerization, but in the initial stage, the addition of a small amount is more effective.

【0016】重合方法については、従来公知の方法を採
用することができ、特に限定されないが、具体例とし
て、例えば、仕込みアルカリ金属硫化物1モル当たり
0.5〜2.4モルの水が存在する状態で、150〜2
35℃の温度で反応を行って、ジハロ芳香族化合物の転
化率50〜98モル%程度まで反応させ、次いで、仕込
みアルカリ金属硫化物1モル当たり2.5〜7.0モル
の水を反応系内に存在させて、245〜280℃の温度
に昇温して反応を継続する方法を挙げることができる。
極性有機溶媒の使用量は、アルカリ金属硫化物1モル当
たり、通常、0.2〜2.0kg、好ましくは0.3〜
1.0kgである。
As the polymerization method, a conventionally known method can be adopted and is not particularly limited. Specific examples include, for example, 0.5 to 2.4 mol of water per mol of the charged alkali metal sulfide. 150-2
The reaction is carried out at a temperature of 35 ° C. until the conversion of the dihalo aromatic compound reaches about 50 to 98 mol%, and then 2.5 to 7.0 mol of water per mol of the charged alkali metal sulfide is added to the reaction system. And continuing the reaction by raising the temperature to a temperature of 245 to 280 ° C.
The amount of the polar organic solvent used is usually 0.2 to 2.0 kg, preferably 0.3 to 2.0 mol per mol of the alkali metal sulfide.
1.0 kg.

【0017】上記PAS樹脂を用いて連続して金属基材
の被覆を行うには、押出機を用いて該樹脂の融点以上、
好ましくは(融点+5℃)〜370℃、より好ましくは
(融点+20℃)〜350℃の範囲の温度で溶融させた
後、パリソンを形成させながらダイ外被覆により金属基
材上に被覆する。被覆工程中、被覆金属体(即ち、被覆
金属部材)は、ピンチローラ等によって一定の速度で引
き取られ、ダイを通過した直後、均一な被覆層が連続し
て形成される。次いで、被覆金属体は、冷却ゾーンで冷
却された後、通常、巻き取り機等によって巻き取られ
る。
In order to continuously coat a metal base material using the above PAS resin, the extruder is used to extrude the resin at a temperature equal to or higher than the melting point of the resin.
After melting at a temperature preferably in the range of (melting point + 5 ° C.) to 370 ° C., more preferably in the range of (melting point + 20 ° C.) to 350 ° C., it is coated on a metal substrate by die outer coating while forming a parison. During the coating process, the coated metal body (that is, the coated metal member) is drawn at a constant speed by a pinch roller or the like, and immediately after passing through the die, a uniform coating layer is continuously formed. Next, the coated metal body is cooled in a cooling zone, and then usually wound up by a winder or the like.

【0018】本発明では、(1)DSCにより測定され
るPAS樹脂被覆層の昇温結晶化温度がPAS樹脂の無
配向非晶シートの昇温結晶化温度よりも6℃以上低いこ
とが必要であり、さらに、(2)PAS樹脂被覆層のひ
ずみ10%の時の強度が降伏強度の好ましくは0.93
倍以上、より好ましくは0.95倍以上であること、
(3)120〜290℃の熱処理温度で熱処理した後の
PAS樹脂被覆層の結晶化度が15〜40%の範囲内で
あること、(4)熱処理した後のPAS樹脂被覆層のひ
ずみ10%の時の強度が降伏強度の0.95倍以上であ
ること、(5)熱処理した後のPAS樹脂層の破断伸度
が30%以上であること等が望ましい。
In the present invention, (1) it is necessary that the heating crystallization temperature of the PAS resin coating layer measured by DSC is lower than the heating crystallization temperature of the non-oriented amorphous sheet of PAS resin by 6 ° C. or more. And (2) the strength of the PAS resin coating layer at a strain of 10% is preferably 0.93 of the yield strength.
Times or more, more preferably 0.95 times or more,
(3) The crystallinity of the PAS resin coating layer after heat treatment at a heat treatment temperature of 120 to 290 ° C. is in the range of 15 to 40%, (4) The strain of the PAS resin coating layer after heat treatment is 10% It is desirable that the strength at this time is 0.95 times or more of the yield strength, and (5) the elongation at break of the PAS resin layer after the heat treatment is 30% or more.

【0019】本発明では、PAS樹脂被覆層の昇温結晶
化温度(X)とPAS樹脂の無配向非晶シートの昇温結
晶化温度(Y)との差(X−Y=ΔTc1)が6℃より
大きいこと、すなわち、ΔTc1≦−6℃であることが
必要であり、この差が6℃未満であると、PAS樹脂被
覆層の破断伸度が小さくなり、被覆層の耐屈曲性や可撓
性が低下する。ΔTc1の範囲は、通常、−35℃≦Δ
Tc1≦−6℃、好ましくは−25℃≦ΔTc1≦−7℃
である。
In the present invention, the difference (X−Y = ΔTc 1 ) between the elevated crystallization temperature (X) of the PAS resin coating layer and the elevated crystallization temperature (Y) of the non-oriented amorphous sheet of the PAS resin is determined. It is necessary to be greater than 6 ° C., that is, ΔTc 1 ≦ −6 ° C. If the difference is less than 6 ° C., the elongation at break of the PAS resin coating layer becomes small, and the bending resistance of the coating layer becomes small. And the flexibility is reduced. The range of ΔTc 1 is usually −35 ° C. ≦ Δ
Tc 1 ≦ −6 ° C., preferably −25 ° C. ≦ ΔTc 1 ≦ −7 ° C.
It is.

【0020】引張試験により測定されるPAS樹脂被覆
層のひずみ10%の時の強度(B)は、降伏強度(A)
の0.93倍以上(B/A≧0.93)であることが好
ましく、0.95倍以上であることがより好ましい。こ
の比率(B/A)が0.93倍よりも小さいと(B/A
<0.93)、PAS樹脂被覆層の破断伸度が小さくな
り、被覆層の耐屈曲性や可撓性が低下する。この比率
(B/A)は、より好ましくは0.93≦B/A≦2で
あり、さらに好ましくは0.95≦B/A≦1.8であ
る。
The strength (B) at a strain of 10% of the PAS resin coating layer measured by a tensile test is the yield strength (A)
Is preferably 0.93 times or more (B / A ≧ 0.93), more preferably 0.95 times or more. If this ratio (B / A) is smaller than 0.93 times, (B / A
<0.93), the elongation at break of the PAS resin coating layer decreases, and the bending resistance and flexibility of the coating layer decrease. This ratio (B / A) more preferably satisfies 0.93 ≦ B / A ≦ 2, and still more preferably 0.95 ≦ B / A ≦ 1.8.

【0021】120〜290℃の熱処理温度で熱処理し
た後のPAS樹脂被覆層の結晶化度は、10〜40%の
範囲内であることが好ましい。本発明の被覆層は、PA
S樹脂が分子鎖配向しているため、結晶化度が例えば3
0%以上になるまで熱処理されていても、十分な伸度を
有している。すなわち、熱処理後のPAS樹脂被覆層の
ひずみ10%の時の強度(B)は、好ましくは降伏強度
(A)の0.95倍以上であり、また、熱処理後のPA
S樹脂層の破断伸度は、好ましくは30%以上である。
The degree of crystallinity of the PAS resin coating layer after heat treatment at a heat treatment temperature of 120 to 290 ° C. is preferably in the range of 10 to 40%. The coating layer of the present invention comprises PA
Since the S resin has a molecular chain orientation, the crystallinity is, for example, 3
Even if it is heat-treated until it becomes 0% or more, it has sufficient elongation. That is, the strength (B) at a strain of 10% of the PAS resin coating layer after the heat treatment is preferably 0.95 times or more of the yield strength (A).
The elongation at break of the S resin layer is preferably 30% or more.

【0022】金属基材上に、このような物性を有するP
AS樹脂被覆層を形成する方法としては、PAS樹脂の
伸長粘度(λ400)に合わせて、被覆時の面積引き落と
し率(R1)を選択する方法がある。一般に、PAS樹
脂の伸長粘度が小さいほど面積引き落とし率を高く設定
し、逆に、PAS樹脂の伸長粘度が高いほど面積引き落
とし率を低く設定すればよい。すなわち、分子量や分岐
度が大きいほど、面積引き落とし率が小さくても、被覆
層のPAS樹脂が配向し易くなる。ここで、面積引き落
とし率(R1)とは、押出機のダイから溶融押出した樹
脂の断面積を被覆層の断面積で割った値である。被覆電
線の場合を例にとると、面積引き落とし率は、次式で示
される。 面積引き落とし率(R1)=[(ダイ内径)2 −(マン
ドレル外径)2]/[(被覆電線外径2 −(導線外
径)2
On a metal substrate, P having such physical properties
As a method of forming the AS resin coating layer, there is a method of selecting an area reduction rate (R1) at the time of coating according to the elongational viscosity (λ 400 ) of the PAS resin. Generally, the lower the elongational viscosity of the PAS resin, the higher the area withdrawal rate is set, and conversely, the higher the elongational viscosity of the PAS resin, the lower the area withdrawal rate is set. That is, the larger the molecular weight and the degree of branching, the more easily the PAS resin of the coating layer is oriented even if the area withdrawal rate is small. Here, the area withdrawal rate (R1) is a value obtained by dividing the cross-sectional area of the resin melt-extruded from the die of the extruder by the cross-sectional area of the coating layer. Taking the case of a covered electric wire as an example, the area withdrawal rate is expressed by the following equation. Area drop rate (R1) = [(die inner diameter) 2 − (mandrel outer diameter) 2 ] / [(covered wire outer diameter 2 − (conductor outer diameter) 2 ]

【0023】本発明では、PAS樹脂被覆層のひずみ1
0%の時の強度(B)は、降伏強度(A)の0.93倍
以上であることが好ましいので、B/A≧0.93とな
る面積引き落とし率(R1)を伸長粘度(λ400)との
関係で選択することが望ましい。後記の各実施例及び比
較例の実験データを解析すると、対数曲線の変換式モデ
ルが良好に適合することが判明した。そして、金属基材
上に、PAS樹脂を被覆する場合、下記の関係式(1)
及び(2)を満足するように、使用するPAS樹脂の伸
長粘度(λ400)と面積引き落とし率(R1)を選定す
ればよいことが判明した。
In the present invention, the strain of the PAS resin coating layer is 1
Since the strength (B) at 0% is preferably 0.93 times or more of the yield strength (A), the area withdrawing ratio (R1) satisfying B / A ≧ 0.93 is determined by the elongational viscosity (λ 400). It is desirable to select in relation to the above. Analysis of the experimental data of each of the following Examples and Comparative Examples revealed that the logarithmic curve conversion equation model fit well. When a PAS resin is coated on a metal substrate, the following relational expression (1) is used.
It was found that the elongational viscosity (λ 400 ) and the area reduction rate (R1) of the PAS resin to be used should be selected so as to satisfy (2) and (3).

【0024】[0024]

【数1】 式中の各記号の意味は、以下のとおりである。 A:PAS樹脂被覆層の降伏強度(MPa)、 B:PAS樹脂被覆層のひずみ10%時の強度(MP
a)、 λ400:310℃、剪断速度400/秒におけるPAS
樹脂の伸長粘度(Pa・s)、 R1:PAS樹脂の被覆時の面積引落し率(%)。
(Equation 1) The meaning of each symbol in the formula is as follows. A: yield strength (MPa) of the PAS resin coating layer, B: strength (MP) at a strain of 10% of the PAS resin coating layer
a), λ 400 : PAS at 310 ° C., shear rate 400 / sec.
Elongational viscosity of resin (Pa · s), R1: Area withdrawal rate (%) when coating with PAS resin.

【0025】この式を適用するには、例えば、PAS樹
脂の伸長粘度(λ400)とB/Aの値を定め、それらの
値を満足する面積引き落とし率(R1)の値を式(2)
から算出する。式(2)は、好ましくはB/A≧0.9
5〔式(3)〕である。これらの式(1)及び(2)を
満足する条件下で被覆を行い、ΔTc1≦−6℃の要件
を満足させると、良好な結果を得ることができる。本発
明では、被覆層の結晶化度及び機械的物性をコントロー
ルし、所望の被覆金属体を得るために、押出機のダイか
ら溶融樹脂を押し出し、パリソンを形成して金属基材を
被覆した後、ピンチローラへ至るまでの間で、必要に応
じ加熱ゾーンを設けて被覆金属体を熱処理することがで
きる。被覆金属体の熱処理温度は、通常、120〜29
0℃、好ましくは130〜270℃である。熱処理時間
(すなわち、加熱ゾーンでの滞在時間)は、生産性、被
覆膜厚、引き取り速度、樹脂の結晶化速度、及び結晶化
温度により変わり、一概には規定できないが、通常、
0.1秒以上10分間以下の時間である。
To apply this formula, for example, the values of the elongational viscosity (λ 400 ) and B / A of the PAS resin are determined, and the value of the area reduction rate (R1) satisfying those values is calculated by formula (2).
Is calculated from Equation (2) preferably satisfies B / A ≧ 0.9
5 [Equation (3)]. Good results can be obtained by coating under conditions satisfying these formulas (1) and (2) and satisfying the requirement of ΔTc 1 ≦ −6 ° C. In the present invention, after controlling the crystallinity and mechanical properties of the coating layer and extruding the molten resin from a die of an extruder to obtain a desired coated metal body, forming a parison and coating the metal base material In addition, a heating zone can be provided as necessary before reaching the pinch roller to heat-treat the coated metal body. The heat treatment temperature of the coated metal body is usually from 120 to 29.
0 ° C., preferably 130 to 270 ° C. The heat treatment time (that is, the residence time in the heating zone) varies depending on the productivity, the coating film thickness, the take-up speed, the crystallization speed of the resin, and the crystallization temperature, and cannot be specified unconditionally.
The time is from 0.1 second to 10 minutes.

【0026】また、本発明では、被覆層の結晶化度及び
機械的物性をコントロールし、所望の被覆体を得るため
に、一旦引き取った被覆金属体を必要に応じ熱処理する
ことができる。この場合、被覆金属体の熱処理温度は、
通常、120〜290℃、好ましくは130〜270℃
の範囲である。熱処理時間は、生産性、膜厚、引き取り
速度、樹脂の結晶化速度及び結晶化温度により変わり、
一概には規定できないが、通常1秒以上100時間以下
の時間である。120℃未満の温度で熱処理を行うと、
十分に結晶化することができず、高温での寸法安定性あ
るいは表面性が損なわれることがあるため好ましくな
い。290℃を越える温度で熱処理を行うと、被覆層の
変形により、表面性が損なわれることがある。熱処理時
間が1秒未満では、十分に結晶化することができず、高
温での寸法安定性あるいは表面性が損なわれることがあ
り、好ましくない。また、熱処理時間が長過ぎると、被
覆層の変形により表面性が損なわれるので、好ましくな
い。
Further, in the present invention, in order to control the crystallinity and mechanical properties of the coating layer and to obtain a desired coating, the coated metal body once taken out can be subjected to a heat treatment if necessary. In this case, the heat treatment temperature of the coated metal body is
Usually 120-290 ° C, preferably 130-270 ° C
Range. Heat treatment time depends on productivity, film thickness, take-up speed, crystallization speed and crystallization temperature of resin,
Although it cannot be specified unconditionally, the time is usually from 1 second to 100 hours. When heat treatment is performed at a temperature lower than 120 ° C.,
Crystallization cannot be sufficiently performed, and dimensional stability at high temperatures or surface properties may be impaired, which is not preferable. When heat treatment is performed at a temperature exceeding 290 ° C., the surface properties may be impaired due to deformation of the coating layer. If the heat treatment time is less than 1 second, crystallization cannot be sufficiently performed, and dimensional stability or surface properties at high temperatures may be impaired, which is not preferable. On the other hand, if the heat treatment time is too long, the surface properties are impaired due to deformation of the coating layer, which is not preferable.

【0027】熱処理による被覆層の樹脂の結晶化度は、
被覆層のPAS樹脂の配向が小さい場合には、通常、3
0%以下とすることが好ましいが、伸長粘度が10,0
00Pa・以上のPAS樹脂を使用し、適切な面積引き
落とし率を選択して配向を高めると、熱処理により結晶
化度を30%を越えて高めても、十分な伸度を保持し、
被覆層が脆くなるおそれがない。被覆層の樹脂の結晶化
度は、好ましくは15〜40%、より好ましくは17〜
35%の範囲とすることが好ましい。
The crystallinity of the resin of the coating layer due to the heat treatment is:
When the orientation of the PAS resin in the coating layer is small, usually 3
0% or less, but the elongational viscosity is 10.0% or less.
By using a PAS resin of 00 Pa · or more and selecting an appropriate area reduction rate to enhance the orientation, even if the crystallinity is increased beyond 30% by heat treatment, sufficient elongation is maintained,
There is no possibility that the coating layer becomes brittle. The crystallinity of the resin of the coating layer is preferably 15 to 40%, more preferably 17 to 40%.
It is preferable to set the range to 35%.

【0028】本発明における樹脂、被覆金属体において
は、本発明の目的を損なわない範囲において、PAS樹
脂の他に、混合可能な少量の別の成分を含んでいてもよ
い。他の成分としては、例えば、シリカ、タルク、マイ
カ、カオリン、炭酸カルシウム、リン酸マグネシウム、
ガラス等の、粒状、粉末状あるいは鱗片状の無機充填
剤、ポリテトラフルオロエチレン、四フッ化・六フッ化
エチレンコポリマー、エチレン・テトラフルオロエチレ
ンコポリマー等のフッ素系樹脂、ガラス繊維、炭素繊
維、マイカセラミック繊維等の繊維状の無機充填剤、シ
リコン系エラストマー、アクリル系エラストマー、オレ
フィン系エラストマー、ポリアミド系エラストマー、フ
ッ素系エラストマー等の耐衝撃剤、他の熱可塑性樹脂、
熱硬化性樹脂、カップリング剤、滑剤、離型剤、安定
剤、核剤等が例示される。
The resin and the coated metal body of the present invention may contain a small amount of other components that can be mixed, in addition to the PAS resin, as long as the object of the present invention is not impaired. As other components, for example, silica, talc, mica, kaolin, calcium carbonate, magnesium phosphate,
Granular, powdery or scaly inorganic fillers such as glass, fluorine-based resins such as polytetrafluoroethylene, tetrafluoride / hexafluoroethylene copolymer, ethylene / tetrafluoroethylene copolymer, glass fiber, carbon fiber, mica Fibrous inorganic fillers such as ceramic fibers, silicone-based elastomers, acrylic-based elastomers, olefin-based elastomers, polyamide-based elastomers, impact-resistant agents such as fluorine-based elastomers, other thermoplastic resins,
Examples thereof include a thermosetting resin, a coupling agent, a lubricant, a release agent, a stabilizer, and a nucleating agent.

【0029】本発明のPAS樹脂は、金属基材との密着
性に優れているが、例えば、被覆電線などのように、作
業上、被覆層が金属基材に対して適度なストリップ性を
有することが要求される分野では、少量の離型剤を樹脂
中に含有させることができる。離型剤としては、例え
ば、ペンタエリスリトールトリステアレート、ジアステ
アリルペンタエリスリトールジホスフェートなどの脂肪
酸エステル類を挙げることができる。このような離型剤
を配合することにより、金属基材と樹脂被覆層との間の
密着性を適度に弱めて、ストリップ性を有する樹脂被覆
金属部材を得ることができる。離型剤は、樹脂100重
量部に対して、通常、0.1〜3重量部の割合で使用す
る。安定剤としては、PAS樹脂用の公知のものを用い
ることができるが、樹脂を押出機のダイから安定的に溶
融押出して被覆するには、例えば、水酸化バリウムなど
が好ましい。安定剤は、樹脂100重量部に対して、通
常、0.1〜3重量部の割合で使用する。
Although the PAS resin of the present invention has excellent adhesion to a metal substrate, for example, the coating layer has an appropriate stripping property with respect to the metal substrate in operation such as a coated electric wire. In the field where it is required, a small amount of release agent can be contained in the resin. Examples of the release agent include fatty acid esters such as pentaerythritol tristearate and diastearyl pentaerythritol diphosphate. By blending such a release agent, the adhesiveness between the metal base material and the resin coating layer is appropriately weakened, and a resin-coated metal member having strip properties can be obtained. The release agent is usually used at a ratio of 0.1 to 3 parts by weight with respect to 100 parts by weight of the resin. Known stabilizers for PAS resins can be used as the stabilizer, but for stably melt-extruding the resin from a die of an extruder to coat the resin, for example, barium hydroxide is preferable. The stabilizer is used usually in a ratio of 0.1 to 3 parts by weight based on 100 parts by weight of the resin.

【0030】金属基材としては、電線等の金属導体(金
属導線)、金属棒、金属管、ワイヤー等の長尺の金属基
材が挙げられる。PAS樹脂被覆層の厚みは、各用途及
び所望の物性に応じて適宜定めることができる。本発明
によれば、耐熱性、耐フレオン性、難燃性、耐薬品性、
耐放射線性、低温物性、電気絶縁性、機械的物性等に優
れたPAS樹脂からなる被覆層が形成された被覆電線な
どの樹脂被覆金属部材が得られる。その具体例として
は、自動車や船舶のコントロールケーブル用索導管やコ
ントロールケーブル用内索、耐熱性コイルやモーターの
巻線、自動車ソレノイドリード線、コンプレッサーの耐
フレオン電線、変圧器の巻線、原子力発電所用の耐放射
線性機器配線、及びケーブル、金属棒、金属管、その他
の耐熱配線、シース管、ワイヤー等の被覆金属部材が挙
げられる。
Examples of the metal substrate include long metal substrates such as metal conductors (metal conductors) such as electric wires, metal rods, metal tubes, and wires. The thickness of the PAS resin coating layer can be appropriately determined according to each application and desired physical properties. According to the present invention, heat resistance, freon resistance, flame retardancy, chemical resistance,
A resin-coated metal member such as a coated electric wire having a coating layer made of a PAS resin having excellent radiation resistance, low-temperature physical properties, electrical insulation properties, mechanical properties, and the like is obtained. Specific examples include cable conduits for control cables of automobiles and ships, inner cables for control cables, heat-resistant coils and motor windings, automotive solenoid lead wires, compressor Freon-resistant wires, transformer windings, nuclear power generation Required radiation-resistant equipment wiring, and coated metal members such as cables, metal rods, metal tubes, other heat-resistant wiring, sheath tubes, and wires.

【0031】[0031]

【実施例】以下に実施例及び比較例を挙げて、本発明に
ついてより具体的に説明する。なお、各種物性の測定法
は、次のとおりである。 (1)伸長粘度 ・試験機:東洋精機社製キャピログラフ ・測定温度:310℃ ・キャピラリー:径=1mm、長さ20mm、流入角
90度、径=0.3mm、長さ0.2mm、流入角1
80度 ・伸長粘度の算出:F.N.Cogswellのモデル
を仮定し、算出した。 (2)引張試験 ・試験機:島津製作所社製オートグラフAG−2000
E ・測定温度:23℃ ・標線間距離:50mm ・引張速度:50mm/min ・強度は、荷重を試験前の断面積で除して算出した。 (3)昇温結晶化温度(Tc1) ・試験機:パーキン・エルマー社製DSC7 ・温度時間プロファイル:30℃で3分間保持した後、
200℃まで20℃/分の温度で昇温した。 ・試料重量:5〜6mg (4)結晶化度 密度勾配管法により被覆樹脂の密度を測定し、結晶密度
1.43/cm3及び非晶密度1.3195g/cm3
基準にして、体積分率により、測定密度から結晶化度を
算出した。
The present invention will be described more specifically below with reference to examples and comparative examples. In addition, the measuring method of various physical properties is as follows. (1) Elongational viscosity ・ Testing machine: Capillograph manufactured by Toyo Seiki Co., Ltd. ・ Measurement temperature: 310 ° C. ・ Capillary: diameter = 1 mm, length 20 mm, inflow angle 90 °, diameter = 0.3 mm, length 0.2 mm, inflow angle 1
80 degrees-Calculation of elongational viscosity: F. N. The calculation was performed assuming the Cogswell model. (2) Tensile test ・ Testing machine: Autograph AG-2000 manufactured by Shimadzu Corporation
E · Measurement temperature: 23 ° C · Distance between marked lines: 50 mm · Tensile speed: 50 mm / min · Strength was calculated by dividing the load by the cross-sectional area before the test. (3) Temperature rise crystallization temperature (Tc 1 ) ・ Testing machine: DSC7 manufactured by Perkin-Elmer Co. ・ Temperature time profile: After holding at 30 ° C. for 3 minutes,
The temperature was raised to 200 ° C. at a temperature of 20 ° C./min. Sample Weight: 5 to 6 mg (4) to measure the density of the coating resin by crystallinity density gradient tube method, based on the crystal density 1.43 / cm 3 and amorphous density of 1.3195g / cm 3, the volume The crystallinity was calculated from the measured density by the fraction.

【0032】[実施例1]ポリマー合成例1(ポリマーP1) 含水硫化ソーダ(純度46.10%)373kg、及び
N−メチルピロリドン(以下、NMPと略記)800k
gをチタン張り重合缶に仕込み、窒素ガス雰囲気下で徐
々に約200℃まで昇温しながら、54.4モルの硫化
水素と共に、水142kgを留出させた。次に、p−ジ
クロルベンゼン(以下、p−DCBと略記)320.6
kg、1,2,4−トリクロルベンゼン0.796kg
とNMP274kgとの混合溶液を供給して、220℃
にて1時間重合反応を行った後、230℃に昇温し、3
時間重合反応を行った。次に、水76.5kgを圧入
し、255℃で1時間反応を行った後、240℃に降温
して3時間重合を継続した。冷却後、反応混合液を目開
き150μm(100メッシュ)のスクリーンで篩分け
して粒状ポリマーを分離し、アセトン洗、水洗をそれぞ
れ4回行った後、脱水し、乾燥したポリマーを得た。
Example 1 Polymer Synthesis Example 1 (Polymer P1) 373 kg of hydrous sodium sulfide (purity 46.10%) and N-methylpyrrolidone (hereinafter abbreviated as NMP) 800 k
g was charged into a titanium-clad polymerization vessel, and 142 kg of water was distilled off together with 54.4 mol of hydrogen sulfide while gradually raising the temperature to about 200 ° C. in a nitrogen gas atmosphere. Next, p-dichlorobenzene (hereinafter abbreviated as p-DCB) 320.6
kg, 0.796 kg of 1,2,4-trichlorobenzene
And a mixed solution of 274 kg of NMP and 220 ° C.
After performing the polymerization reaction for 1 hour at
The polymerization reaction was performed for an hour. Next, 76.5 kg of water was injected, and the reaction was carried out at 255 ° C. for 1 hour. Then, the temperature was lowered to 240 ° C., and the polymerization was continued for 3 hours. After cooling, the reaction mixture was sieved with a screen having a mesh size of 150 μm (100 mesh) to separate the granular polymer, washed with acetone and washed with water four times, and then dehydrated to obtain a dried polymer.

【0033】ペレット化 ポリマー(P1)を44mmφ二軸混練押出機(日本製
鋼所製TEX−44)へ供給し、シリンダー温度300
℃〜330℃にて混練を行い、ペレットを作製した。得
られたポリマーの310℃、剪断速度400/秒におけ
る伸長粘度(λ400)は、33,000Pa・sであっ
た。310℃、剪断速度1200/秒で測定した溶融粘
度η*は、360Pa・sであった。
The pelletized polymer (P1) was supplied to a 44 mmφ twin-screw kneading extruder (TEX-44 manufactured by Nippon Steel Works) and the cylinder temperature was set to 300.
Kneading was carried out at a temperature of from 330C to 330C to produce pellets. The elongational viscosity (λ 400 ) of the obtained polymer at 310 ° C. and a shear rate of 400 / sec was 33,000 Pa · s. The melt viscosity η * measured at 310 ° C. and a shear rate of 1200 / sec was 360 Pa · s.

【0034】電線被覆実験 上記で得られたペレットを電線被覆用ダイを備えた卓上
二軸押出機(ツバコー・APV社製MP−2015)へ
供給し、導線を被覆した。被覆条件は、シリンダー温度
330℃、押出量7.6g/分、引き取り速度33m/
分、面積引き落とし率(R1)72、パリソン長40m
m、導線と被覆膜間のエアー抜き減圧−1cmHgであ
った。導線は、電線用軟銅線0.4mmφ(JIS C
3101)を用いた。また、被覆ダイのサイズはマンド
レル先端外径2.8mmφ、ダイ内径4.9mmφを用
いた。得られた被覆体の外径は0.62mmφで表面は
凹凸のない被覆体が得られた。被覆体から導線を抜き取
り、被覆膜の引張試験を行った。その結果、降伏強度
(A)は55MPaで、ひずみ10%の強度(B)は5
6MPaであり(B/A=1.02)、最大強度は67
MPa、破断伸度は250%であった。被覆体から導線
を抜き取り、被覆膜と無配向プレスシート(無配向非晶
シート)の各昇温結晶化温度の差を測定した。その結
果、被覆膜の昇温結晶化温度は、無配向プレスシートの
昇温結晶化温度を11℃下回った(ΔTc1=−11
℃)。
Electric wire coating experiment The pellets obtained above were supplied to a tabletop twin-screw extruder (MP-2015 manufactured by Tuba Co., APV) equipped with an electric wire coating die, and coated with a conductive wire. The coating conditions were a cylinder temperature of 330 ° C., an output of 7.6 g / min, and a take-off speed of 33 m / min.
Min, area deduction rate (R1) 72, parison length 40m
m, and the pressure of air bleeding between the conducting wire and the coating film was −1 cmHg. The conductor is a soft copper wire 0.4mmφ (JIS C
3101) was used. The size of the coating die used was a mandrel tip outer diameter of 2.8 mmφ and a die inner diameter of 4.9 mmφ. The outer diameter of the obtained coated body was 0.62 mmφ, and a coated body having no uneven surface was obtained. A lead wire was pulled out from the coated body, and a tensile test of the coated film was performed. As a result, the yield strength (A) was 55 MPa and the strength at a strain of 10% (B) was 5 MPa.
6 MPa (B / A = 1.02) and the maximum strength is 67
MPa and elongation at break were 250%. A lead wire was pulled out of the coated body, and the difference between the temperature-increased crystallization temperatures of the coated film and the non-oriented press sheet (non-oriented amorphous sheet) was measured. As a result, the heating crystallization temperature of the coating film was lower by 11 ° C. than the heating crystallization temperature of the non-oriented press sheet (ΔTc 1 = −11).
° C).

【0035】被覆体を表1に示す条件で熱処理した後、
被覆体から導線を抜き取り、被覆膜の引張試験を行っ
た。結果を表1に示す。
After the coating was heat-treated under the conditions shown in Table 1,
A lead wire was pulled out from the coated body, and a tensile test of the coated film was performed. Table 1 shows the results.

【0036】[0036]

【表1】 [Table 1]

【0037】被覆体を空気循環式オーブン中、180℃
で96時間の条件で熱老化試験を行った後、被覆体から
導線を抜き取り、被覆膜の引張試験を行った。その結
果、降伏強度(A)は91MPaで、ひずみ10%の強
度(B)は94MPaであり(B/A=1.03)、最
大強度は98MPa、破断伸度は80%であった。熱老
化試験後の被覆樹脂の結晶化度は、34%であった。
The coating was placed in an air-circulating oven at 180 ° C.
, A heat aging test was performed under the conditions of 96 hours, and then a lead wire was extracted from the coated body, and a tensile test of the coated film was performed. As a result, the yield strength (A) was 91 MPa, the strength at a strain of 10% (B) was 94 MPa (B / A = 1.03), the maximum strength was 98 MPa, and the elongation at break was 80%. The crystallinity of the coated resin after the heat aging test was 34%.

【0038】[比較例1]実施例1と同じポリマー(P
1)のペレット、押出機、及び導線を用い、導線を被覆
した。被覆条件は、シリンダー温度330℃、押出量
7.6g/分、引き取り速度10m/分、面積引き落と
し率(R1)22、パリソン長25mm、導線と被覆膜
間のエアー抜き減圧−1cmHgであった。導線は、電
線用軟銅線0.4mmφ(JIS C3101)を用い
た。被覆ダイのサイズは、マンドレル先端外径2.8m
mφ、ダイ内径4.9mmφを用いた。得られた被覆体
の外径は0.95mmφで、表面は凹凸のない被覆体が
得られた。被覆体から導線を抜き取り、被覆膜の引張試
験を行った。その結果、降伏強度(A)は55MPa
で、ひずみ10%の強度(B)は51MPaであり(B
/A=0.93)、最大強度は72kPa、被覆膜の破
断伸び310%であった。被覆体から導線を抜き取り、
被覆膜と無配向ブレスシートの各昇温結晶化温度の差を
求めたところ、被覆膜の昇温結晶化温度は無配向プレス
シートの昇温結晶化温度を5℃下回った(ΔTc1=−
5℃)。被覆体を空気循環式オーブン中、180℃で9
6時間の条件で熱老化試験を行った後、引張試験を行っ
た。その結果、最大強度は91MPa、破断伸度は9%
であった。また、実施例1と同様にして熱老化試験後の
被覆樹脂の結晶化度を測定したところ、33%であっ
た。この被覆体は、面積引き落とし率(R1)が小さ
く、被覆膜の分子鎖配向が不十分であり、その結果、熱
老化試験後の伸び(破断伸度)が極めて小さく、耐屈曲
性や可撓性に劣るものであった。
Comparative Example 1 The same polymer (P
Using the pellets, extruder, and conductor of 1), the conductor was covered. The coating conditions were a cylinder temperature of 330 ° C., an output of 7.6 g / min, a take-up speed of 10 m / min, an area withdrawal rate (R1) of 22, a parison length of 25 mm, and a pressure reduction of air between the conductive wire and the coating film of −1 cmHg. . As the conductive wire, a soft copper wire for electric wire 0.4 mmφ (JIS C3101) was used. Coating die size is 2.8m outside diameter of mandrel tip
mφ and a die inner diameter of 4.9 mmφ were used. The outer diameter of the obtained coated body was 0.95 mmφ, and a coated body having no uneven surface was obtained. A lead wire was pulled out from the coated body, and a tensile test of the coated film was performed. As a result, the yield strength (A) was 55 MPa.
And the strength (B) at a strain of 10% is 51 MPa (B
/A=0.93), the maximum strength was 72 kPa, and the breaking elongation of the coating film was 310%. Remove the conductor from the sheath,
When the difference between the temperature-increased crystallization temperatures of the coating film and the non-oriented breath sheet was determined, the temperature-increased crystallization temperature of the coating film was lower by 5 ° C. than the temperature-induced crystallization temperature of the non-oriented press sheet (ΔTc 1). = −
5 ° C). The coating was placed in an air-circulating oven at 180 ° C for 9 hours.
After performing a heat aging test under the condition of 6 hours, a tensile test was performed. As a result, the maximum strength was 91 MPa and the elongation at break was 9%.
Met. The crystallinity of the coating resin after the heat aging test was measured in the same manner as in Example 1. As a result, it was 33%. This coated product has a small area pull-out rate (R1) and the molecular chain orientation of the coated film is insufficient. It was inferior in flexibility.

【0039】[実施例2]実施例1と同じポリマー(P
1)のペレット、押出機、及び導線を用い、導線を被覆
した。被覆条件は、シリンダー温度330℃、押出量
7.0g/分、引き取り速度30m/分、面積引き落と
し率(R1)37、パリソン長35mm、導線と被覆膜
間のエアー抜き減圧−1cmHgであった。被覆ダイの
サイズは、マンドレル先端外径2.0mmφ、ダイ内径
3.5mmφを用いた。導線は、電線用軟銅線0.4m
mφ(JIS C3101)を用いた。得られた被覆体
の外径は0.62mmφで、表面は凹凸のない被覆体が
得られた。被覆体から導線を抜き取り、被覆膜の引張試
験を行った。その結果、降伏強度(A)は54MPa
で、ひずみ10%の強度(B)は54MPaであり(B
/A=1.00)、最大強度は64MPaで、破断伸度
は300%であった。被覆体から導線を抜き取り、被覆
膜と無配向プレスシートの各昇温結晶化温度の差を求め
たところ、被覆膜の昇温結晶化温度は、無配向プレスシ
ートの昇温結晶化温度を8℃下回った(ΔTc1=−8
℃)。被覆体を空気循環式オーブン中、180℃で96
時間の条件で熱老化試験を行った後、引張試験を行っ
た。その結果、降伏強度(A)は91MPaで、ひずみ
10%の強度(B)は93MPaであり(B/A=1.
03)、最大強度は99MPaで、破断伸度は50%で
あった。熱老化試験後の被覆樹脂の結晶化度を測定した
ところ、35%であった。
Example 2 The same polymer (P
Using the pellets, extruder, and conductor of 1), the conductor was covered. The coating conditions were a cylinder temperature of 330 ° C., an extrusion rate of 7.0 g / min, a take-up speed of 30 m / min, an area withdrawing ratio (R1) of 37, a parison length of 35 mm, and a pressure reduction of air between the conductor and the coating film of −1 cmHg. . As the size of the coating die, a mandrel tip outer diameter of 2.0 mmφ and a die inner diameter of 3.5 mmφ were used. Conductor is 0.4m of soft copper wire for electric wire
mφ (JIS C3101) was used. The outer diameter of the obtained coated body was 0.62 mmφ, and a coated body having no irregularities on the surface was obtained. A lead wire was pulled out from the coated body, and a tensile test of the coated film was performed. As a result, the yield strength (A) was 54 MPa.
And the strength (B) at a strain of 10% is 54 MPa (B
/A=1.00), the maximum strength was 64 MPa, and the elongation at break was 300%. The conductor was removed from the coated body, and the difference between the temperature-induced crystallization temperatures of the coated film and the non-oriented press sheet was determined. 8 ° C. below (ΔTc 1 = −8
° C). The coating is placed in an air circulating oven at 180 ° C. for 96 hours.
After performing a heat aging test under the condition of time, a tensile test was performed. As a result, the yield strength (A) was 91 MPa, and the strength (B) at a strain of 10% was 93 MPa (B / A = 1.
03), the maximum strength was 99 MPa, and the breaking elongation was 50%. The crystallinity of the coating resin after the heat aging test was measured and was 35%.

【0040】[実施例3]実施例1と同じポリマー(P
1)のペレット、押出機、及び導線を用い、導線を被覆
した。被覆条件は、シリンダー温度330℃、押出量
7.6g/分、引き取り速度60m/分、面積引き落と
し率(R1)273、パリソン長45mm、導線と被覆
膜間のエアー抜き減圧−1cmHgであった。被覆ダイ
のサイズは、マンドレル先端外径4.0mmφ、ダイ内
径7.0mmφを用いた。導線は、電線用軟銅線0.4
mmφ(JIS C3101)を用いた。得られた被覆
体の外径は0.53mmφで、表面は凹凸のない被覆体
が得られた。被覆体から導線を抜き取り、被覆膜の引張
試験を行った。その結果、降伏強度(A)は55MPa
で、ひずみ10%の強度(B)は58MPaであり(B
/A=1.05)、最大強度は92MPa、破断伸度は
210%であった。被覆体から導線を抜き取り、被覆膜
と無配向プレスシートの各昇温結晶化温度の差を求めた
ところ、被覆膜の昇温結晶化温度は、無配向プレスシー
トの昇温結晶化温度を12℃下回った(ΔTc1=−1
2℃)。被覆体を空気循環式オーブン中、180℃で9
6時間の条件で熱老化試験を行った後、引張試験を行っ
た。その結果、降伏強度(A)は90MPaで、ひずみ
10%の強度(B)は98MPaであり(B/A=1.
09)、最大強度は130MPa、破断伸度は90%で
あった。熱老化試験後の被覆樹脂の結晶化度を測定した
ところ、35%であった。
Example 3 The same polymer (P
Using the pellets, extruder, and conductor of 1), the conductor was covered. The coating conditions were a cylinder temperature of 330 ° C., an output of 7.6 g / min, a take-up speed of 60 m / min, an area withdrawal rate (R1) of 273, a parison length of 45 mm, and a pressure reduction of air between the conductor and the coating film of −1 cmHg. . As the size of the coating die, a mandrel tip outer diameter of 4.0 mmφ and a die inner diameter of 7.0 mmφ were used. Conductor is soft copper wire 0.4 for electric wire
mmφ (JIS C3101) was used. The outer diameter of the obtained coated body was 0.53 mmφ, and a coated body having no irregularities on the surface was obtained. A lead wire was pulled out from the coated body, and a tensile test of the coated film was performed. As a result, the yield strength (A) was 55 MPa.
And the strength (B) at a strain of 10% is 58 MPa (B
/A=1.05), the maximum strength was 92 MPa, and the elongation at break was 210%. The conductor was removed from the coated body, and the difference between the temperature-induced crystallization temperatures of the coated film and the non-oriented press sheet was determined. (ΔTc 1 = −1)
2 ° C). The coating was placed in an air-circulating oven at 180 ° C for 9 hours.
After performing a heat aging test under the condition of 6 hours, a tensile test was performed. As a result, the yield strength (A) was 90 MPa, and the strength (B) at a strain of 10% was 98 MPa (B / A = 1.
09), the maximum strength was 130 MPa, and the elongation at break was 90%. The crystallinity of the coating resin after the heat aging test was measured and was 35%.

【0041】[実施例4]実施例1と同じポリマー(P
1)のペレット、押出機、及び導線を用い、導線を被覆
した。被覆条件は、シリンダー温度330℃、押出量
7.6/分、引き取り速度33m/分、面積引き落とし
率(R1)72、パリソン長40mm、導線と被覆膜間
のエアー抜き減圧−1cmHgであった。被覆ダイのサ
イズは、マンドレル先端外径2.8mmφ、ダイ内径
4.9mmφを用いた。導線は、電線用軟銅線0.4m
mφ(JIS C3101)を用いた。被覆体は、被覆
直後、280℃に加熱された約3m長の加熱槽を通し、
連続的に熱処理した後、引き取った(熱処理条件=28
0℃/5.5秒間)。得られた被覆体の外径は0.62
mmφで、表面は凹凸のない被覆体が得られた。被覆体
から導線を抜き取り、被覆膜の引張試験を行った。その
結果、降伏強度(A)は85MPaで、ひずみ10%の
強度(B)は86MPaであり(B/A=1.01)、
最大強度は100MPa、破断伸度は180%であっ
た。被覆樹脂の結晶化度を測定したところ、12%であ
った。被覆体から導線を抜き取り、被覆膜と無配向プレ
スシートの各昇温結晶化温度の差を求めたところ、被覆
膜の昇温結晶化温度は、無配向プレスシートの昇温結晶
化温度を10℃下回った(ΔTc1=−10℃)。被覆
体を空気循環式オーブン中、180℃で96時間の条件
で熱老化試験を行った後、引張試験を行った。その結
果、降伏強度(A)は91MPaで、ひずみ10%の強
度(B)は94MPaであり(B/A=1.03)、最
大強度は97MPa、破断伸度は70%であった。熱老
化試験後の被覆樹脂の結晶化度を測定したところ、33
%であった。
Example 4 The same polymer (P
Using the pellets, extruder, and conductor of 1), the conductor was covered. The coating conditions were a cylinder temperature of 330 ° C., an extrusion rate of 7.6 / min, a take-up speed of 33 m / min, an area withdrawal rate (R1) of 72, a parison length of 40 mm, and a pressure reduction of air between the conductor and the coating film of −1 cmHg. . As the size of the coating die, a mandrel tip outer diameter of 2.8 mmφ and a die inner diameter of 4.9 mmφ were used. Conductor is 0.4m of soft copper wire for electric wire
mφ (JIS C3101) was used. Immediately after coating, the coated body passes through a heating tank of about 3 m length heated to 280 ° C.,
After continuous heat treatment, it was taken out (heat treatment condition = 28
0 ° C / 5.5 seconds). The outer diameter of the obtained coating is 0.62.
With a diameter of mm, a coating having no irregularities on the surface was obtained. A lead wire was pulled out from the coated body, and a tensile test of the coated film was performed. As a result, the yield strength (A) was 85 MPa, the strength at a strain of 10% (B) was 86 MPa (B / A = 1.01),
The maximum strength was 100 MPa and the elongation at break was 180%. The crystallinity of the coating resin was measured and found to be 12%. The conductor was removed from the coated body, and the difference between the temperature-induced crystallization temperatures of the coated film and the non-oriented press sheet was determined. 10 ° C. below (ΔTc 1 = −10 ° C.). The coated body was subjected to a heat aging test in an air circulation oven at 180 ° C. for 96 hours, and then a tensile test. As a result, the yield strength (A) was 91 MPa, the strength at a strain of 10% (B) was 94 MPa (B / A = 1.03), the maximum strength was 97 MPa, and the elongation at break was 70%. When the crystallinity of the coating resin after the heat aging test was measured, 33
%Met.

【0042】[比較例2]実施例1と同じポリマー(P
1)のペレット、押出機、及び導線を用い、導線を被覆
した。被覆条件は、シリンダー温度330℃、押出量
7.6g/分、引き取り速度20m/分、面積引き落と
し率(R1)6、パリソン長15mm、導線と被覆膜間
のエアー抜き減圧−2cmHgであった。導線は、電線
用軟銅線0.4mmφ(JIS C3101)を用い
た。被覆ダイのサイズは、マンドレル先端外径0.9m
mφ、ダイ内径1.7mmφを用いた。得られた被覆体
の外径は0.73mmφで、表面は凹凸のない被覆体が
得られた。被覆体から導線を抜き取り、被覆膜の引張試
験を行った。その結果、降伏強度(A)は55MPa
で、ひずみ10%の強度(B)は48MPaであり(B
/A=0.87)、最大強度は60MPa、破断伸度は
300%であった。被覆体から導線を抜き取り、被覆膜
と無配向プレスシートの各昇温結晶化温度の差を求めた
ところ、被覆膜の昇温結晶化温度は、無配向プレスシー
トの昇温結晶化温度を2℃下回った(ΔTc1=−2
℃)。被覆体を空気循環式オーブン中、180℃で96
時間の条件で熱老化試験を行った後、引張り試験を行っ
た。その結果、最大強度は88MPa、破断伸度は5%
であった。熱老化試験後の被覆樹脂の結晶化度を測定し
たところ、36%であった。この被覆体は、面積引き落
とし率(R1)が6で、ΔTc1が−2℃と、いずれも
小さく、被覆膜の分子鎖配向が不十分であり、その結
果、熱老化試験後の伸び(破断伸度)が極めて小さく、
耐屈曲性や可撓性に劣るものであった。
Comparative Example 2 The same polymer (P
Using the pellets, extruder, and conductor of 1), the conductor was covered. The coating conditions were a cylinder temperature of 330 ° C., an extrusion rate of 7.6 g / min, a take-up speed of 20 m / min, an area withdrawal rate (R1) of 6, a parison length of 15 mm, and a pressure reduction of air between the conductor and the coating film of -2 cmHg. . As the conductive wire, a soft copper wire for electric wire 0.4 mmφ (JIS C3101) was used. Coating die size is 0.9m outside diameter of mandrel tip
mφ and a die inner diameter of 1.7 mmφ were used. The outer diameter of the obtained coated body was 0.73 mmφ, and a coated body with no uneven surface was obtained. A lead wire was pulled out from the coated body, and a tensile test of the coated film was performed. As a result, the yield strength (A) was 55 MPa.
And the strength (B) at a strain of 10% is 48 MPa (B
/A=0.87), the maximum strength was 60 MPa, and the elongation at break was 300%. The conductor was removed from the coated body, and the difference between the temperature-induced crystallization temperatures of the coated film and the non-oriented press sheet was determined. (ΔTc 1 = −2).
° C). The coating is placed in an air circulating oven at 180 ° C for 96 hours.
After performing a heat aging test under the condition of time, a tensile test was performed. As a result, the maximum strength was 88 MPa, and the elongation at break was 5%.
Met. The degree of crystallinity of the coating resin after the heat aging test was measured and found to be 36%. This coating had an area withdrawing rate (R1) of 6 and ΔTc 1 of −2 ° C., both of which were small, and the molecular chain orientation of the coating film was insufficient. As a result, the elongation after heat aging test ( Elongation at break)
It was inferior in bending resistance and flexibility.

【0043】[実施例5]ペレット化 前記合成例1で得られたポリマー(P1)100重量部
とペンタエリスリトールトリステアレート(日本油脂社
製、ユニスターH476)1重量部をタンブラーミキサ
ーで3分間混合した後、44mmφ二軸混練押出機(日
本製鋼所製TEX−44)へ供給し、シリンダー温度3
00℃〜330℃にて混練を行い、ペレットを作製し
た。得られたポリマーの剪断速度400/秒における伸
長粘度は、32,500Pa・sであった。
[0043] [Example 5] polymer obtained in pelletized Synthesis Example 1 (P1) 100 parts by weight of pentaerythritol stearate (manufactured by NOF Corporation, UNISTAR H476) 3 minutes 1 part by weight in a tumbler mixer mixing After that, the mixture was supplied to a 44 mmφ twin-screw kneading extruder (TEX-44, manufactured by Nippon Steel Works) and the cylinder temperature was set
Kneading was performed at 00 ° C. to 330 ° C. to produce pellets. The elongational viscosity at a shear rate of 400 / sec of the obtained polymer was 32,500 Pa · s.

【0044】電線被覆実験 上記ペレット、実施例1と同じ押出機、及び導線を用
い、導線を被覆した。被覆条件は、シリンダー温度33
0℃、押出量7.6g/分、引き抜き速度33m/分、
面積引き落とし率(R1)72、パリソン長40mm、
導線と被覆膜間のエアー抜き減圧−1cmHgであっ
た。被覆ダイのサイズは、マンドレル先端外径2.8m
mφ、ダイ内径4.9mmφを用いた。導線は、電線用
軟銅線0.4mmφ(JIS C3101)を用いた。
得られた被覆体の外径は0.62mmφで、表面は凹凸
のない被覆体が得られた。被覆体から導線を抜き取り、
被覆膜の引張試験を行った。その結果、降伏強度(A)
は56MPaで、ひずみ10%の強度(B)は58MP
aであり(B/A=1.04)、最大強度は66MP
a、破断伸度は260%であった。被覆体から導線を抜
き取り、被覆膜と無配向プレスシートの各昇温結晶化温
度の差を求めたところ、被覆膜の昇温結晶化温度は、無
配向プレスシートの昇温結晶化温度を9℃下回った(Δ
Tc1=−9℃)。被覆体を空気循環式オーブン中、1
80℃で96時間の条件で熱老化試験を行った後、引張
試験を行った。その結果、降伏強度(A)は90MPa
で、ひずみ10%の強度(B)は92MPaであり(B
/A=1.02)、最大強度は103MPa、破断伸度
は100%であった。熱老化試験後の被覆樹脂の結晶化
度を測定したところ、35%であった。
Wire Covering Experiment Using the above pellets, the same extruder as in Example 1, and a wire, a wire was coated. The coating condition was a cylinder temperature of 33.
0 ° C., extrusion rate 7.6 g / min, drawing speed 33 m / min,
Area withdrawal rate (R1) 72, parison length 40 mm,
The air was evacuated from the conducting wire to the coating film at a reduced pressure of -1 cmHg. Coating die size is 2.8m outside diameter of mandrel tip
mφ and a die inner diameter of 4.9 mmφ were used. As the conductive wire, a soft copper wire for electric wire 0.4 mmφ (JIS C3101) was used.
The outer diameter of the obtained coated body was 0.62 mmφ, and a coated body having no irregularities on the surface was obtained. Remove the conductor from the sheath,
The coating film was subjected to a tensile test. As a result, yield strength (A)
Is 56 MPa, and the strength (B) at a strain of 10% is 58 MPa.
a (B / A = 1.04), maximum strength is 66MP
a, The elongation at break was 260%. The conductor was removed from the coated body, and the difference between the temperature-induced crystallization temperatures of the coated film and the non-oriented press sheet was determined. 9 ° C. below (Δ
Tc 1 = -9 ℃). Place the coating in an air-circulating oven for 1
After performing a heat aging test at 80 ° C. for 96 hours, a tensile test was performed. As a result, the yield strength (A) is 90 MPa.
And the strength (B) at a strain of 10% is 92 MPa (B
/A=1.02), the maximum strength was 103 MPa, and the elongation at break was 100%. The crystallinity of the coating resin after the heat aging test was measured and was 35%.

【0045】[実施例6]ペレット化 前記合成例1で得られたポリマー(P1)100重量部
とエポキシ変性ポリシロキサン(東レ社製、SF841
1)1重量部をタンブラーミキサーで3分間混合した
後、44mmφ二軸混練押出機(日本製鋼所製TEX−
44)へ供給し、シリンダー温度300℃〜330℃に
て混練を行い、ペレットを作製した。得られたポリマー
の剪断速度400/秒における伸長粘度は、34,00
0Pa・sであった。
[0045] [Example 6] pelletizing the polymer obtained in Synthesis Example 1 (P1) 100 parts by weight of an epoxy-modified polysiloxane (manufactured by Toray Industries, Inc., SF841
1) After mixing 1 part by weight with a tumbler mixer for 3 minutes, a 44 mmφ biaxial kneading extruder (TEX- manufactured by Nippon Steel Works, Ltd.)
44), and kneaded at a cylinder temperature of 300 ° C. to 330 ° C. to produce pellets. The elongational viscosity of the obtained polymer at a shear rate of 400 / sec is 34,000
It was 0 Pa · s.

【0046】電線被覆実験 上記ペレット、実施例1と同じ押出機、及び導線を用
い、導線を被覆した。被覆条件は、シリンダー温度33
0℃、押出量7.6g/分、引き取り速度33m/分、
面積引き落とし率(R1)72、パリソン長32mm、
導線と被覆膜間のエアー抜き減圧−1cmHgであっ
た。被覆ダイのサイズは、マンドレル先端外径2.8m
mφ、ダイ内径4.9mmφを用いた。導線は、電線用
軟銅線0.4mmφ(JIS C3101)を用いた。
得られた被覆体の外径は0.62mmφで、表面は凹凸
のない被覆体が得られた。被覆体から導線を抜き取り、
被覆膜の引張試験を行った。その結果、降伏強度(A)
は56MPaで、ひずみ10%の強度(B)は55MP
aであり(B/A=0.98)、最大強度は70MP
a、破断伸度は260%であった。被覆体から導線を抜
き取り、被覆膜と無配向プレスシートの各昇温結晶化温
度の差を求めたところ、被覆膜の昇温結晶化温度は、無
配向プレスシートの昇温結晶化温度を9℃下回った(Δ
Tc1=−9℃)。被覆体を空気循環式オーブン中、1
80℃で96時間の条件で熱老化試験を行った後、引張
試験を行った。その結果、降伏強度(A)は90MPa
で、ひずみ10%の強度(B)は92MPaであり(B
/A=1.02)、最大強度は110MPa、破断伸度
は90%であった。熱老化試験後の被覆樹脂の結晶化度
を測定したところ、33%であった。
Wire Covering Experiment Using the pellets, the same extruder and the wire as in Example 1, the wire was covered. The coating condition was a cylinder temperature of 33.
0 ° C., extrusion rate 7.6 g / min, take-off speed 33 m / min,
Area withdrawal rate (R1) 72, parison length 32 mm,
The air was evacuated from the conducting wire to the coating film at a reduced pressure of -1 cmHg. Coating die size is 2.8m outside diameter of mandrel tip
mφ and a die inner diameter of 4.9 mmφ were used. As the conductive wire, a soft copper wire for electric wire 0.4 mmφ (JIS C3101) was used.
The outer diameter of the obtained coated body was 0.62 mmφ, and a coated body having no irregularities on the surface was obtained. Remove the conductor from the sheath,
The coating film was subjected to a tensile test. As a result, yield strength (A)
Is 56MPa and the strength (B) at a strain of 10% is 55MPa.
a (B / A = 0.98), maximum strength is 70MP
a, The elongation at break was 260%. The conductor was removed from the coated body, and the difference between the temperature-induced crystallization temperatures of the coated film and the non-oriented press sheet was determined. 9 ° C. below (Δ
Tc 1 = -9 ℃). Place the coating in an air-circulating oven for 1
After performing a heat aging test at 80 ° C. for 96 hours, a tensile test was performed. As a result, the yield strength (A) is 90 MPa.
And the strength (B) at a strain of 10% is 92 MPa (B
/A=1.02), the maximum strength was 110 MPa, and the elongation at break was 90%. The crystallinity of the coating resin after the heat aging test was measured, and was 33%.

【0047】[実施例7]ペレット化 合成例1で得られたポリマー(P1)90重量%とエチ
レン−テトラフルオロエチン共重合体(旭ガラス社製ア
フロンCOP、C−88A)10重量%との混合物10
0重量部に対し、γ−アミノプロピルトリエトキシシラ
ン(日本ユニカラー社製A−1100)1重量部を加え
た混合物をタンブラーミキサーで3分間混合した後、4
4mmφ二軸混練押出機(日本製鋼所製TEX−44)
へ供給し、シリンダー温度300℃〜330℃にて混練
を行い、ペレットを作製した。得られたポリマーの剪断
速度400/秒における伸長粘度は、38,000Pa
・sであった。
Example 7 Pelletization 90% by weight of the polymer (P1) obtained in Synthesis Example 1 and 10% by weight of an ethylene-tetrafluoroethyne copolymer (Aflon COP, C-88A manufactured by Asahi Glass Co., Ltd.) Mixture 10
A mixture obtained by adding 1 part by weight of γ-aminopropyltriethoxysilane (A-1100 manufactured by Nihon Unicolor Co., Ltd.) to 0 part by weight was mixed with a tumbler mixer for 3 minutes, and then mixed.
4mmφ twin screw kneading extruder (TEX-44 manufactured by Nippon Steel Works)
And kneaded at a cylinder temperature of 300 ° C. to 330 ° C. to produce pellets. The elongational viscosity of the obtained polymer at a shear rate of 400 / sec is 38,000 Pa.
-It was s.

【0048】電線被覆実験 上記ペレット、実施例1と同じ押出機、及び導線を用
い、導線を被覆した。被覆条件は、シリンダー温度33
0℃、押出量7.6g/分、引き取り速度33m/分、
面積引き落とし率(R1)72、パリソン長35mm、
導線と被覆膜間のエアー抜き減圧−1cmHgであっ
た。被覆ダイのサイズは、マンドレル先端外径2.8m
mφ、ダイ内径4.9mmφを用いた。導線は、電線用
軟銅線0.4mmφ(JIS C3101)を用いた。
得られた被覆体の外径は0.62mmφで、表面は凹凸
のない被覆体が得られた。被覆体から導線を抜き取り、
被覆膜の引張試験を行った。その結果、降伏強度(A)
は48MPaで、ひずみ10%の強度(B)は52MP
aであり(B/A=1.08)、最大強度は62MP
a、破断伸度は240%であった。被覆体から導線を抜
き取り、被覆膜と無配向プレスシートの各昇温結晶化温
度の差を求めたところ、被覆膜の昇温結晶化温度は、無
配向プレスシートの昇温結晶化温度を12℃下回った
(ΔTc1=−12℃)。被覆体を空気循環式オーブン
中、180℃で96時間の条件で熱老化試験を行った
後、引張試験を行った。その結果、降伏強度(A)は8
1MPaで、ひずみ10%の強度(B)は85MPaで
あり(B/A=1.05)、最大強度は110MPa、
破断伸度は86%であった。熱老化試験後の被覆樹脂の
結晶化度を測定したところ、34%であった。
Wire Covering Experiment Using the above pellets, the same extruder as in Example 1, and a wire, a wire was coated. The coating condition was a cylinder temperature of 33.
0 ° C., extrusion rate 7.6 g / min, take-off speed 33 m / min,
Area withdrawal rate (R1) 72, parison length 35 mm,
The air was evacuated from the conducting wire to the coating film at a reduced pressure of -1 cmHg. Coating die size is 2.8m outside diameter of mandrel tip
mφ and a die inner diameter of 4.9 mmφ were used. As the conductive wire, a soft copper wire for electric wire 0.4 mmφ (JIS C3101) was used.
The outer diameter of the obtained coated body was 0.62 mmφ, and a coated body having no irregularities on the surface was obtained. Remove the conductor from the sheath,
The coating film was subjected to a tensile test. As a result, yield strength (A)
Is 48 MPa, and the strength (B) at a strain of 10% is 52 MPa.
a (B / A = 1.08), maximum strength is 62MP
a, The breaking elongation was 240%. The conductor was removed from the coated body, and the difference between the temperature-induced crystallization temperatures of the coated film and the non-oriented press sheet was determined. 12 ° C. below (ΔTc 1 = −12 ° C.). The coated body was subjected to a heat aging test in an air circulation oven at 180 ° C. for 96 hours, and then a tensile test. As a result, the yield strength (A) was 8
At 1 MPa, the strength (B) at a strain of 10% is 85 MPa (B / A = 1.05), the maximum strength is 110 MPa,
The breaking elongation was 86%. The crystallinity of the coating resin after the heat aging test was measured and was found to be 34%.

【0049】[実施例8]ポリマー合成例2(ポリマーP2) 含水硫化ソーダ(純度46.21%)370kgとNM
P800kgをチタン張り重合缶に仕込み、窒素ガス雰
囲気下で徐々に約200℃まで昇温しながら、53.4
モルの硫化水素と共に、水141kgを留出させた。次
に、p−DCB317.4kg、1,2,4−トリクロ
ルベンゼン0.79kgとNMP270kgとの混合溶
液を供給して、220℃にて1時間重合反応を行った
後、230℃に昇温し、3時間重合反応を行った。次
に、水77kgを圧入し、255℃で1時間反応を行っ
た後、240℃に降温して3時間重合を継続した。冷却
後、反応混合液を目開き150μm(100メッシュ)
のスクリーンで篩分し、粒状ポリマーを分離し、アセト
ン洗、水洗をそれぞれ4回行った後、脱水し、乾燥した
ポリマーを得た。
Example 8 Polymer Synthesis Example 2 (Polymer P2 ) 370 kg of hydrous sodium sulfide (purity 46.21%) and NM
800 kg of P was charged into a titanium-clad polymerization vessel, and the temperature was gradually increased to about 200 ° C. in a nitrogen gas atmosphere.
141 kg of water were distilled off together with the molar hydrogen sulphide. Next, a mixed solution of 317.4 kg of p-DCB, 0.79 kg of 1,2,4-trichlorobenzene and 270 kg of NMP was supplied, a polymerization reaction was performed at 220 ° C. for 1 hour, and the temperature was raised to 230 ° C. The polymerization reaction was performed for 3 hours. Next, 77 kg of water was injected, and the reaction was carried out at 255 ° C. for 1 hour. Then, the temperature was lowered to 240 ° C., and the polymerization was continued for 3 hours. After cooling, the reaction mixture is opened to 150 μm (100 mesh)
To separate the granular polymer, washed with acetone and washed with water four times each, and then dehydrated to obtain a dried polymer.

【0050】ペレット化 上記で得られたポリマー(P2)を44mmφ二軸混練
押出機(日本製鋼所製TEX−44)へ供給し、シリン
ダー温度300℃〜330℃にて混練を行い、ペレット
を作製した。得られたポリマーの310℃、剪断速度4
00/秒における伸長粘度は、90,000Pa・sで
あった。310℃、剪断速度1200/秒で測定した溶
融粘度η*は、430Pa・sであった。
The supply pelletized above-obtained polymer (P2) 44mmφ twin-screw kneading extruder to (Japan Steel Works TEX-44), and the mixture was kneaded at a cylinder temperature of 300 ° C. to 330 ° C., to obtain a pellet did. 310 ° C., shear rate 4 of the obtained polymer
The extensional viscosity at 00 / sec was 90,000 Pa · s. The melt viscosity η * measured at 310 ° C. and a shear rate of 1200 / sec was 430 Pa · s.

【0051】電線被覆実験 上記で得られたペレットを電線被覆用ダイを備えた卓上
二軸押出機(ツバコー・APV社製MP−2015)へ
供給し、導線を被覆した。被覆条件は、シリンダー温度
330℃、押出量20g/分、引き取り速度25mm/
分、面積引き落とし率(R1)21、パリソン長35m
m、導線と被覆膜間のエアー抜き減圧−1cmHgであ
った。導線は、電線用軟銅線0.4mmφ(JIS C
3101)を用いた。被覆ダイのサイズは、マンドレル
先端外径2.8mmφ、ダイ内径4.9mmφを用い
た。得られた被覆体の外径は0.97mmφで、表面は
凹凸のない被覆体が得られた。被覆体から導線を抜き取
り、被覆膜の引張試験を行った。その結果、降伏強度
(A)は55MPaで、ひずみ10%の強度(B)は5
8MPaであり(B/A=1.05)、最大強度は70
MPa、破断伸度は260%であった。被覆体から導線
を抜き取り、被覆膜と無配向プレスシートの各昇温結晶
化温度の差を求めたところ、被覆膜の昇温結晶化温度
は、無配向プレスシートの昇温結晶化温度を10℃下回
った(ΔTc1=−10℃)。被覆体を空気循環式オー
ブン中、180℃で96時間の条件で熱老化試験を行っ
た後、引張試験を行った。その結果、降伏強度(A)は
92MPaで、ひずみ10%の強度(B)は97MPa
であり(B/A=1.05)、最大強度は115MP
a、破断伸度は80%であった。熱老化試験後の被覆樹
脂の結晶化度を測定したところ、34%であった。
Wire Plating Experiment The pellets obtained above were supplied to a tabletop twin-screw extruder (MP-2015, manufactured by Tuba Co., APV) equipped with a wire coating die to cover the conductor. Coating conditions were as follows: cylinder temperature 330 ° C., extrusion rate 20 g / min, take-off speed 25 mm /
Min, area withdrawal rate (R1) 21, parison length 35m
m, and the pressure of air bleeding between the conducting wire and the coating film was −1 cmHg. The conductor is a soft copper wire 0.4mmφ (JIS C
3101) was used. As the size of the coating die, a mandrel tip outer diameter of 2.8 mmφ and a die inner diameter of 4.9 mmφ were used. The outer diameter of the obtained coated body was 0.97 mmφ, and a coated body having no irregularities on the surface was obtained. A lead wire was pulled out from the coated body, and a tensile test of the coated film was performed. As a result, the yield strength (A) was 55 MPa and the strength at a strain of 10% (B) was 5 MPa.
8 MPa (B / A = 1.05) and the maximum strength is 70
MPa and elongation at break were 260%. The conductor was removed from the coated body, and the difference between the temperature-induced crystallization temperatures of the coated film and the non-oriented press sheet was determined. 10 ° C. below (ΔTc 1 = −10 ° C.). The coated body was subjected to a heat aging test in an air circulation oven at 180 ° C. for 96 hours, and then a tensile test. As a result, the yield strength (A) was 92 MPa, and the strength at a strain of 10% (B) was 97 MPa.
(B / A = 1.05) and the maximum strength is 115MP.
a, The elongation at break was 80%. The crystallinity of the coating resin after the heat aging test was measured and was found to be 34%.

【0052】[実施例9]実施例8と同じポリマー(P
2)のペレット、押出機、及び導線を用い、導線を被覆
した。被覆条件は、シリンダー温度330℃、押出量7
g/分、引き取り速度25m/分、面積引き落とし率
(R1)59、パリソン長30mm、導線と被覆膜間の
エアー抜き減圧−2cmHgであった。被覆ダイのサイ
ズは、マンドレル先端外径2.8mmφ、ダイ内径4.
9mmφを用いた。導線は、電線用軟銅線0.4mmφ
(JIS C3101)を用いた。得られた被覆体の外
径は0.66mmφで、表面は凹凸のない被覆体が得ら
れた。被覆体から導線を抜き取り、被覆膜の引張試験を
行った。その結果、降伏強度(A)は55MPaで、ひ
ずみ10%の強度(B)は60MPaであり(B/A=
1.09)、最大強度は68MPa、破断伸度は230
%であった。被覆体から導線を抜き取り、被覆膜と無配
向プレスシートの各昇温結晶化温度の差を求めたとこ
ろ、被覆膜の昇温結晶化温度は、無配向プレスシートの
昇温結晶化温度を13℃下回った(ΔTc1=−13
℃)。被覆体を空気循環式オーブン中、180℃で96
時間の条件で熱老化試験を行った後、引張試験を行っ
た。その結果、降伏強度(A)は93MPaで、ひずみ
10%の強度(B)は101MPaであり(B/A=
1.09)、最大強度は130MPa、破断伸度は10
0%であった。熱老化試験後の被覆樹脂の結晶化度を測
定したところ、34%であった。
Example 9 The same polymer (P
Using the pellets, the extruder, and the conductor of 2), the conductor was covered. The coating conditions were as follows: a cylinder temperature of 330 ° C. and an output of 7
g / min, take-off speed 25 m / min, area drop-off rate (R1) 59, parison length 30 mm, air depressurization between the conductor and the coating film -2 cmHg. The size of the coating die is: mandrel tip outer diameter 2.8mmφ, die inner diameter 4.
9 mmφ was used. Conductor is soft copper wire 0.4mmφ for electric wire
(JIS C3101) was used. The outer diameter of the obtained coated body was 0.66 mmφ, and a coated body having no irregularities on the surface was obtained. A lead wire was pulled out from the coated body, and a tensile test of the coated film was performed. As a result, the yield strength (A) was 55 MPa, and the strength (B) at a strain of 10% was 60 MPa (B / A =
1.09), maximum strength is 68 MPa, elongation at break is 230
%Met. The conductor was removed from the coated body, and the difference between the temperature-induced crystallization temperatures of the coated film and the non-oriented press sheet was determined. 13 ° C. (ΔTc 1 = −13
° C). The coating is placed in an air circulating oven at 180 ° C. for 96 hours.
After performing a heat aging test under the condition of time, a tensile test was performed. As a result, the yield strength (A) was 93 MPa, and the strength (B) at a strain of 10% was 101 MPa (B / A =
1.09), maximum strength 130MPa, elongation at break 10
It was 0%. The crystallinity of the coating resin after the heat aging test was measured and was found to be 34%.

【0053】[比較例3]実施例8と同じポリマー(P
2)のペレット、押出機、及び導線を用い、導線を被覆
した。被覆条件は、シリンダー温度330℃、押出量3
0g/分、引き取り速度25m/分、面積引き落とし率
(R1)7、パリソン長35mm、導線と被覆膜間のエ
アー抜き減圧−1cmHgであった。導線は、電線用軟
銅線0.4mmφ(JIS C3101)を用いた。被
覆ダイのサイズは、マンドレル先端外径2mmφ、ダイ
内径3.5mmφを用いた。得られた被覆体の外径は
1.15mmφで、表面は凹凸のない被覆体が得られ
た。被覆体から導線を抜き取り、被覆膜の引張試験を行
った。その結果、降伏強度(A)は55MPaで、ひず
み10%の強度(B)は51MPaであり(B/A=
0.93)、最大強度は72MPa、破断伸度は290
%であった。被覆体から導線を抜き取り、被覆膜と無配
向プレスシートの各昇温結晶化温度の差を求めたとこ
ろ、被覆膜の昇温結晶化温度は、無配向プレスシートの
昇温結晶化温度を4℃下回った(ΔTc1=−4℃)。
被覆体を空気循環式オーブン中、180℃で96時間の
条件で熱老化試験を行った後、引張試験を行った。その
結果、降伏強度(A)は91MPaで、ひずみ10%の
強度(B)は85MPaであり(B/A=0.93)、
最大強度は92MPa、破断伸度は11%であった。熱
老化試験後の被覆樹脂の結晶化度を測定したところ、3
4%であった。この被覆体は、面積引き落とし率(R
1)が7で、ΔTc1が−4℃と、いずれも小さく、被
覆膜の分子鎖配向が不十分であり、その結果、熱老化試
験後の伸び(破断伸度)が極めて小さく、耐屈曲性や可
撓性に劣るものであった。
Comparative Example 3 The same polymer (P
Using the pellets, the extruder, and the conductor of 2), the conductor was covered. The coating conditions were as follows: a cylinder temperature of 330 ° C. and an output of
0 g / min, take-off speed 25 m / min, area drop-off rate (R1) 7, parison length 35 mm, air depressurization between the lead wire and the coating film--1 cmHg. As the conductive wire, a soft copper wire for electric wire 0.4 mmφ (JIS C3101) was used. As the size of the coating die, a mandrel tip outer diameter of 2 mmφ and a die inner diameter of 3.5 mmφ were used. The outer diameter of the obtained coated body was 1.15 mmφ, and a coated body having no uneven surface was obtained. A lead wire was pulled out from the coated body, and a tensile test of the coated film was performed. As a result, the yield strength (A) was 55 MPa, and the strength (B) at a strain of 10% was 51 MPa (B / A =
0.93), maximum strength 72 MPa, elongation at break 290
%Met. The conductor was removed from the coated body, and the difference between the temperature-induced crystallization temperatures of the coated film and the non-oriented press sheet was determined. 4 ° C. below (ΔTc 1 = −4 ° C.).
The coated body was subjected to a heat aging test in an air circulation oven at 180 ° C. for 96 hours, and then a tensile test. As a result, the yield strength (A) was 91 MPa, and the strength at a strain of 10% (B) was 85 MPa (B / A = 0.93).
The maximum strength was 92 MPa, and the elongation at break was 11%. When the crystallinity of the coating resin after the heat aging test was measured, it was 3
4%. This coating has an area withdrawal rate (R
1) was 7 and ΔTc 1 was −4 ° C., which were all small, and the molecular chain orientation of the coating film was insufficient. As a result, the elongation (elongation at break) after the heat aging test was extremely small, and It was inferior in flexibility and flexibility.

【0054】[実施例10]ポリマー合成例3(ポリマーP3) 含水硫化ソーダ(純度46.10%)371kgとNM
P800kgをチタン張り重合缶に仕込み、窒素ガス雰
囲気下で徐々に約200℃まで昇温しながら、54モル
の硫化水素と共に、水142kgを留出させた。次に、
p−DCB318.9kg、1,2,4−トリクロルベ
ンゼン1.16kgとNMP270kgとの混合溶液を
供給して、220℃にて1時間重合反応を行った後、2
30℃に昇温し、3時間重合反応を行った。次に、水7
7kgを圧入し、255℃で1時間反応を行った後、2
40℃に降温して3時間重合を継続した。冷却後、反応
混合液を目開き150μm(100メッシュ)のスクリ
ーンで篩分し、粒状ポリマーを分離し、アセトン洗、水
洗をそれぞれ4回行った後、脱水し、乾燥したポリマー
を得た。
Example 10 Polymer Synthesis Example 3 (Polymer P3) 371 kg of hydrous sodium sulfide (purity 46.10%) and NM
800 kg of P was charged into a titanium clad polymerization vessel, and 142 kg of water was distilled off together with 54 mol of hydrogen sulfide while gradually raising the temperature to about 200 ° C. under a nitrogen gas atmosphere. next,
A mixed solution of 318.9 kg of p-DCB, 1.16 kg of 1,2,4-trichlorobenzene and 270 kg of NMP was supplied, and a polymerization reaction was carried out at 220 ° C. for 1 hour.
The temperature was raised to 30 ° C., and the polymerization reaction was performed for 3 hours. Next, water 7
After injecting 7 kg and reacting at 255 ° C for 1 hour,
The temperature was lowered to 40 ° C., and the polymerization was continued for 3 hours. After cooling, the reaction mixture was sieved with a screen having a mesh size of 150 μm (100 mesh) to separate the granular polymer, washed with acetone and washed with water four times, and then dehydrated to obtain a dried polymer.

【0055】ペレット化 上記で得られたポリマー(P3)100重量部とペンタ
エリスリトールトリステアレート(日本油脂社製、ユニ
スターH476)1重量部をタンブラーミキサーで3分
間混合した後、44mmφ二軸混練押出機(日本製鋼所
製TEX−44)へ供給し、シリンダー温度300℃〜
330℃にて混練を行い、ペレットを作製した。得られ
たポリマーの310℃、剪断速度400/秒における伸
長粘度は、150,000Pa・sであった。310
℃、剪断速度1200/秒で測定した溶融粘度η*は、
550Pa・sであった。
[0055] pelletized above-obtained polymer (P3) 100 parts by weight of pentaerythritol stearate (manufactured by NOF Corporation, UNISTAR H476) after a 1 part by weight were mixed for 3 minutes in a tumbler mixer, 44Mmfai biaxial kneading and extruding (TEX-44 manufactured by Nippon Steel Works), cylinder temperature 300 ° C ~
Kneading was performed at 330 ° C. to produce pellets. The elongational viscosity of the obtained polymer at 310 ° C. and a shear rate of 400 / sec was 150,000 Pa · s. 310
° C, the melt viscosity η * measured at a shear rate of 1200 / sec is:
It was 550 Pa · s.

【0056】電線被覆実験 上記で得られたペレットを電線被覆用ダイを備えた卓上
二軸押出機(ツバコー・APV社製MP−2015)へ
供給し、導線を被覆した。被覆条件は、シリンダー温度
340℃、押出量7.6g/分、引き取り速度33m/
分、面積引き落とし率(R1)37、パリソン長35m
m、導線と被覆膜間のエアー抜き減圧−1cmHgであ
った。導線は、電線用軟銅線0.4mmφ(JIS C
3101)を用いた。被覆ダイのサイズは、マンドレル
先端外径2mmφ、ダイ内径3.5mmφを用いた。得
られた被覆体の外径は0.62mmφで、表面は凹凸の
ない被覆体が得られた。被覆体から導線を抜き取り、被
覆膜の引張試験を行った。その結果、降伏強度(A)は
54MPaで、ひずみ10%の強度(B)は65MPa
であり(B/A=1.20)、最大強度は110MP
a、破断伸度は220%であった。被覆体から導線を抜
き取り、被覆膜と無配向プレスシートの各昇温結晶化温
度の差を求めたところ、被覆膜の昇温結晶化温度は、無
配向プレスシートの昇温結晶化温度を18℃下回った
(ΔTc1=−18℃)。被覆体を空気循環式オーブン
中、180℃で96時間の条件で熱老化試験を行った
後、引張試験を行った。その結果、降伏強度(A)は9
0MPaで、ひずみ10%の強度(B)は110MPa
であり(B/A=1.22)、最大強度は150MP
a、破断伸度は90%であった。熱老化試験後の被覆樹
脂の結晶化度を測定したところ、33%であった。
Wire Plating Experiment The pellets obtained above were supplied to a tabletop twin-screw extruder (MP-2015, manufactured by Tuba Co., APV) equipped with a wire coating die to cover the conductor. The coating conditions were a cylinder temperature of 340 ° C., an output of 7.6 g / min, and a take-up speed of 33 m / min.
Min, area deduction rate (R1) 37, parison length 35m
m, and the pressure of air bleeding between the conducting wire and the coating film was −1 cmHg. The conductor is a soft copper wire 0.4mmφ (JIS C
3101) was used. As the size of the coating die, a mandrel tip outer diameter of 2 mmφ and a die inner diameter of 3.5 mmφ were used. The outer diameter of the obtained coated body was 0.62 mmφ, and a coated body having no irregularities on the surface was obtained. A lead wire was pulled out from the coated body, and a tensile test of the coated film was performed. As a result, the yield strength (A) was 54 MPa, and the strength at a strain of 10% (B) was 65 MPa.
(B / A = 1.20) and the maximum strength is 110MP.
a, The elongation at break was 220%. The conductor was removed from the coated body, and the difference between the temperature-induced crystallization temperatures of the coated film and the non-oriented press sheet was determined. 18 ° C. below (ΔTc 1 = −18 ° C.). The coated body was subjected to a heat aging test in an air circulation oven at 180 ° C. for 96 hours, and then a tensile test. As a result, the yield strength (A) was 9
At 0 MPa, the strength (B) at a strain of 10% is 110 MPa
(B / A = 1.22) and the maximum strength is 150MP
a, The elongation at break was 90%. The crystallinity of the coating resin after the heat aging test was measured, and was 33%.

【0057】[実施例11]実施例10と同じポリマー
(P3)のペレット、押出機、及び導線を用い、導線を
被覆した。被覆条件は、シリンダー温度340℃、押出
量9g/分、引き取り速度20m/分、面積引き落とし
率(R1)19、パリソン長20mm、導線と被覆膜間
のエアー抜き減圧−2cmHgであった。被覆ダイのサ
イズは、マンドレル先端外径2mmφ、ダイ内径3.5
mmφを用いた。導線は、電線用軟銅線0.4mmφ
(JIS C3101)を用いた。得られた被覆体の外
径は0.77mmφで、表面は凹凸のない被覆体が得ら
れた。被覆体から導線を抜き取り、被覆膜の引張試験を
行った。その結果、降伏強度(A)は54MPaで、ひ
ずみ10%の強度(B)は62MPaであり(B/A=
1.15)、最大強度は103MPa、破断伸度は24
0%であった。被覆体から導線を抜き取り、被覆膜と無
配向プレスシートの各昇温結晶化温度の差を求めたとこ
ろ、被覆膜の昇温結晶化温度は、無配向プレスシートの
昇温結晶化温度を14℃下回った(ΔTc1=−14
℃)。被覆体を空気循環式オーブン中、180℃で96
時間の条件で熱老化試験を行った後、引張試験を行っ
た。その結果、降伏強度(A)は91MPaで、ひずみ
10%の強度(B)は106MPaであり(B/A=
1.16)、最大強度は130MPa、破断伸度は11
0%であった。熱老化試験後の被覆樹脂の結晶化度を測
定したところ、33%であった。
Example 11 Using the same polymer (P3) pellets, extruder and conductive wire as in Example 10, the conductive wire was covered. The coating conditions were a cylinder temperature of 340 ° C., an extrusion rate of 9 g / min, a take-up speed of 20 m / min, an area withdrawing ratio (R1) of 19, a parison length of 20 mm, and a pressure reduction of air between the conductive wire and the coating film of -2 cmHg. The size of the coating die is as follows: the outer diameter of the mandrel tip is 2 mmφ, and the inner diameter of the die is 3.5.
mmφ was used. Conductor is soft copper wire 0.4mmφ for electric wire
(JIS C3101) was used. The outer diameter of the obtained coated body was 0.77 mmφ, and a coated body with no uneven surface was obtained. A lead wire was pulled out from the coated body, and a tensile test of the coated film was performed. As a result, the yield strength (A) was 54 MPa, and the strength (B) at a strain of 10% was 62 MPa (B / A =
1.15), maximum strength is 103 MPa, elongation at break is 24
It was 0%. The conductor was removed from the coated body, and the difference between the temperature-induced crystallization temperatures of the coated film and the non-oriented press sheet was determined. 14 ° C. below (ΔTc 1 = −14
° C). The coating is placed in an air circulating oven at 180 ° C. for 96 hours.
After performing a heat aging test under the condition of time, a tensile test was performed. As a result, the yield strength (A) was 91 MPa, and the strength at a strain of 10% (B) was 106 MPa (B / A =
1.16), maximum strength 130 MPa, elongation at break 11
It was 0%. The crystallinity of the coating resin after the heat aging test was measured, and was 33%.

【0058】[実施例12]ポリマー合成例4(ポリマーP4) 含水硫化ソーダ(純度46.10%)373kgとNM
P800kgをチタン張り重合缶に仕込み、窒素ガス雰
囲気下で徐々に約200℃まで昇温しながら、53.8
モルの硫化水素と共に、水143kgを留出させた。次
に、p−DCB320.7kg、1,2,4−トリクロ
ルベンゼン0.39kgとNMP266kgとの混合溶
液を供給して、220℃にて1時間重合反応を行った
後、230℃に昇温し、3時間重合反応を行った。次
に、水77.5kgを圧入し、255℃で1時間反応を
行った後、240℃に降温して3時間重合を継続した。
冷却後、反応混合液を目開き150μm(100メッシ
ュ)のスクリーンでし分し、粒状ポリマーを分離し、ア
セトン洗、水洗をそれぞれ4回行った後、脱水し、乾燥
したポリマーを得た。
Example 12 Polymer Synthesis Example 4 (Polymer P4) 373 kg of hydrous sodium sulfide (purity 46.10%) and NM
800 kg of P was charged into a titanium-clad polymerization vessel, and the temperature was gradually increased to about 200 ° C. in a nitrogen gas atmosphere.
143 kg of water were distilled off along with the molar hydrogen sulfide. Next, a mixed solution of 320.7 kg of p-DCB, 0.39 kg of 1,2,4-trichlorobenzene and 266 kg of NMP was supplied, a polymerization reaction was carried out at 220 ° C. for 1 hour, and the temperature was raised to 230 ° C. The polymerization reaction was performed for 3 hours. Next, 77.5 kg of water was injected, and the reaction was carried out at 255 ° C. for 1 hour. Then, the temperature was lowered to 240 ° C., and the polymerization was continued for 3 hours.
After cooling, the reaction mixture was separated by a screen having a mesh size of 150 μm (100 mesh) to separate a granular polymer, washed with acetone and washed with water four times, and then dehydrated to obtain a dried polymer.

【0059】ペレット化 上記で得られたポリマー(P4)を4mmφ二軸混練押
出機(日本製鋼所製TEX−44)へ供給し、シリンダ
ー温度300℃〜330℃にて混練を行い、ペレットを
作製した。得られたポリマーの310℃、剪断速度40
0/秒における伸長粘度は、11,100Pa・sであ
った。310℃、剪断速度1200/秒で測定した溶融
粘度η*は、340Pa・sであった。
[0059] supplying pelletized above-obtained polymer (P4) 4 mm diameter twin-screw kneading extruder to (Japan Steel Works TEX-44), and the mixture was kneaded at a cylinder temperature of 300 ° C. to 330 ° C., to obtain a pellet did. 310 ° C., shear rate 40 of the obtained polymer
The elongational viscosity at 0 / sec was 11,100 Pa · s. The melt viscosity η * measured at 310 ° C. and a shear rate of 1200 / sec was 340 Pa · s.

【0060】電線被覆実験 上記で得られたペレットを電線被覆用ダイを備えた卓上
二軸押出機(ツバコー・APV社製MP−2015)へ
供給し、導線を被覆した。被覆条件は、シリンダー温度
325℃、押出量8.8g/分、引き取り速度40m/
分、面積引き落とし率(R1)156、パリソン長50
mm、導線と被覆膜間のエアー抜き減圧−1cmHgで
あった。導線は、電線用軟銅線0.4mmφ(JIS
C3101)を用いた。被覆ダイのサイズは、マンドレ
ル先端外径4mmφ、ダイ内径7mmφを用いた。得ら
れた被覆体の外径は0.6mmφで、表面は凹凸のない
被覆体が得られた。被覆体から導線を抜き取り、被覆膜
の引張試験を行った。その結果、降伏強度(A)は55
MPaで、ひずみ10%の強度(B)は51MPaであ
り(B/A=0.93)、最大強度は95MPa、破断
伸度は300%であった。被覆体から導線を抜き取り、
被覆膜と無配向プレスシートの各昇温結晶化温度の差を
求めたところ、被覆膜の昇温結晶化温度は、無配向プレ
スシートの昇温結晶化温度を7℃下回った(ΔTc1
−7℃)。この被覆体を150℃で96時間熱処理した
ところ、被覆膜の降伏強度(A)は88MPaで、ひず
み10%の強度(B)は84MPaとなり(B/A=
0.95)、破断伸度は100%で、結晶化度は28%
となった。被覆体を空気循環式オーブン中、180℃で
96時間の条件で熱老化試験を行った後、引張試験を行
った。その結果、降伏強度(A)は92MPaで、ひず
み10%の強度(B)は91MPaであり(B/A=
0.99)、最大強度は98MPa、破断伸度は43%
であった。熱老化試験後の被覆樹脂の結晶化度を測定し
たところ、34%であった。
Wire Plating Experiment The pellets obtained above were supplied to a tabletop twin-screw extruder (MP-2015, manufactured by Tubaco APV) equipped with a wire coating die, and covered with a conductive wire. The coating conditions were a cylinder temperature of 325 ° C., an extrusion rate of 8.8 g / min, and a take-up speed of 40 m / min.
Min, area deduction rate (R1) 156, parison length 50
mm, and the pressure was reduced by 1 cmHg to remove air from the conductive wire and the coating film. The conductor is a soft copper wire for wire 0.4mmφ (JIS
C3101) was used. As the size of the coating die, a mandrel tip outer diameter of 4 mmφ and a die inner diameter of 7 mmφ were used. The outer diameter of the obtained coated body was 0.6 mmφ, and a coated body having no unevenness on the surface was obtained. A lead wire was pulled out from the coated body, and a tensile test of the coated film was performed. As a result, the yield strength (A) is 55
In MPa, the strength (B) at a strain of 10% was 51 MPa (B / A = 0.93), the maximum strength was 95 MPa, and the elongation at break was 300%. Remove the conductor from the sheath,
When the difference between the temperature-increased crystallization temperatures of the coating film and the non-oriented press sheet was determined, the temperature-increased crystallization temperature of the coating film was 7 ° C lower than the temperature-increased crystallization temperature of the non-oriented press sheet (ΔTc). 1 =
-7 ° C). When this coated body was heat-treated at 150 ° C. for 96 hours, the yield strength (A) of the coated film was 88 MPa, and the strength (B) at a strain of 10% was 84 MPa (B / A =
0.95), elongation at break is 100%, crystallinity is 28%
It became. The coated body was subjected to a heat aging test in an air circulation oven at 180 ° C. for 96 hours, and then a tensile test. As a result, the yield strength (A) was 92 MPa, and the strength at a strain of 10% (B) was 91 MPa (B / A =
0.99), maximum strength 98MPa, elongation at break 43%
Met. The crystallinity of the coating resin after the heat aging test was measured and was found to be 34%.

【0061】[実施例13]実施例12と同じポリマー
(P4)のペレット、押出機、及び導線を用いて、導線
を被覆した。被覆条件は、シリンダー温度325℃、押
出量8.8g/分、引き取り速度80m/分、面積引き
落とし率(R1)299、パリソン長53mm、導線と
被覆膜間のエアー抜き減圧−1cmHgであった。被覆
ダイのサイズは、マンドレル先端外径4mmφ、ダイ内
径7mmφを用いた。導線は、電線用軟銅線0.4mm
φ(JIS C3101)を用いた。得られた被覆体の
外径は0.52mmφで、表面は凹凸のない被覆体が得
られた。被覆体から導線を抜き取り、被覆膜の引張試験
を行った。その結果、降伏強度(A)は55MPaで、
ひずみ10%の強度(B)は53MPaであり(B/A
=0.96)、最大強度は97MPa、破断伸度は26
0%であった。被覆体から導線を抜き取り、被覆膜と無
配向プレスシートの各昇温結晶化温度の差を求めたとこ
ろ、被覆膜の昇温結晶化温度は、無配向プレスシートの
昇温結晶化温度を10℃下回った(ΔTc1=−10
℃)。被覆体を空気循環式オーブン中、180℃で96
時間の条件で熱老化試験を行った後、引張試験を行っ
た。その結果、降伏強度(A)は91MPaで、ひずみ
10%の強度(B)は92MPaであり(B/A=1.
01)、最大強度は105MPa、破断伸度は56%で
あった。熱老化試験後の被覆樹脂の結晶化度を測定した
ところ、35%であった。
Example 13 Using the same polymer (P4) pellets, extruder and conductor as in Example 12, the conductor was coated. The coating conditions were a cylinder temperature of 325 ° C., an extrusion rate of 8.8 g / min, a take-up speed of 80 m / min, an area withdrawing rate (R1) of 299, a parison length of 53 mm, and a pressure reduction of air between the conductor and the coating film of −1 cmHg. . As the size of the coating die, a mandrel tip outer diameter of 4 mmφ and a die inner diameter of 7 mmφ were used. Conductor is soft copper wire 0.4mm for electric wire
φ (JIS C3101) was used. The outer diameter of the obtained coated body was 0.52 mmφ, and a coated body having no irregularities on the surface was obtained. A lead wire was pulled out from the coated body, and a tensile test of the coated film was performed. As a result, the yield strength (A) was 55 MPa,
The strength (B) at a strain of 10% is 53 MPa (B / A
= 0.96), maximum strength is 97 MPa, elongation at break is 26
It was 0%. The conductor was removed from the coated body, and the difference between the temperature-induced crystallization temperatures of the coated film and the non-oriented press sheet was determined. 10 ° C. below (ΔTc 1 = −10
° C). The coating is placed in an air circulating oven at 180 ° C. for 96 hours.
After performing a heat aging test under the condition of time, a tensile test was performed. As a result, the yield strength (A) was 91 MPa, and the strength (B) at a strain of 10% was 92 MPa (B / A = 1.
01), the maximum strength was 105 MPa, and the elongation at break was 56%. The crystallinity of the coating resin after the heat aging test was measured and was 35%.

【0062】[比較例4]実施例12と同じポリマー
(P4)のペレット、押出機、及び導線を用い、導線を
被覆した。被覆条件は、シリンダー温度325℃、押出
量8.8g/分、引き取り速度15m/分、面積引き落
とし率(R1)59、パリソン長40mm、導線と被覆
膜間のエアー抜き減圧−1cmHgであった。被覆ダイ
のサイズは、マンドレル先端外径4mmφ、ダイ内径7
mmφを用いた。導線は、電線用軟銅線0.4mmφ
(JIS C3101)を用いた。得られた被覆体の外
径は0.86mmφで、表面は凹凸のない被覆体が得ら
れた。被覆体から導線を抜き取り、被覆膜の引張試験を
行った。その結果、降伏強度(A)は58MPaで、ひ
ずみ10%の強度(B)は48MPaであり(B/A=
0.83)、最大強度は86MPa、破断伸度は320
%であった。被覆体から導線を抜き取り、被覆膜と無配
向プレスシートの各昇温結晶化温度の差を求めたとこ
ろ、被覆膜の昇温結晶化温度は、無配向プレスシートの
昇温結晶化温度を4℃下回った(ΔTc1=−4℃)。
被覆体を空気循環式オーブン中、180℃で96時間の
条件で熱老化試験を行った後、引張試験を行った。その
結果、最大強度は76MPaで、破断伸度は6%であっ
た。熱老化試験後の被覆樹脂の結晶化度を測定したとこ
ろ、34%であった。この被覆体は、面積引き落とし率
(R1)が59で、ΔTc1が−4℃と、いずれも小さ
く、被覆膜の分子鎖配向が不十分であり、その結果、熱
老化試験後の伸び(破断伸度)が極めて小さく、耐屈曲
性や可撓性に劣るものであった。
Comparative Example 4 Using the same polymer (P4) pellets, extruder, and conductive wire as in Example 12, the conductive wire was coated. The coating conditions were a cylinder temperature of 325 ° C., an extrusion rate of 8.8 g / min, a take-off speed of 15 m / min, an area withdrawal rate (R1) of 59, a parison length of 40 mm, and a pressure reduction of air between the conductor and the coating film of −1 cmHg. . The size of the coating die is 4mmφ for the outer diameter of the tip of the mandrel and 7 for the inner diameter of the die.
mmφ was used. Conductor is soft copper wire 0.4mmφ for electric wire
(JIS C3101) was used. The outer diameter of the obtained coated body was 0.86 mmφ, and a coated body having no irregularities on the surface was obtained. A lead wire was pulled out from the coated body, and a tensile test of the coated film was performed. As a result, the yield strength (A) was 58 MPa, and the strength (B) at a strain of 10% was 48 MPa (B / A =
0.83), maximum strength is 86 MPa, elongation at break is 320
%Met. The conductor was removed from the coated body, and the difference between the temperature-induced crystallization temperatures of the coated film and the non-oriented press sheet was determined. 4 ° C. below (ΔTc 1 = −4 ° C.).
The coated body was subjected to a heat aging test in an air circulation oven at 180 ° C. for 96 hours, and then a tensile test. As a result, the maximum strength was 76 MPa, and the elongation at break was 6%. The crystallinity of the coating resin after the heat aging test was measured and was found to be 34%. This coating had an area withdrawing rate (R1) of 59 and a ΔTc 1 of −4 ° C., all of which were small, and the molecular chain orientation of the coating film was insufficient. As a result, the elongation after the heat aging test ( (Elongation at break) was extremely small, and was inferior in bending resistance and flexibility.

【0063】[比較例5]ポリマー合成例5(ポリマーP5) 含水硫化ソーダ(純度46.40%)390kgとNM
P800kgをチタン張り重合缶に仕込み、窒素ガス雰
囲気下で徐々に約200℃まで昇温しながら、57.2
モルの硫化水素と共に、水147kgを留出させた。次
に、p−DCB337.5kgとNMP219kgとの
混合溶液を供給し、220℃にて4.5時間重合反応を
行った。次に、水80.8kgを圧入し、255℃で2
時間反応を行った後、245℃に降温して11時間重合
を継続した。冷却後、反応混合液を目開き150μm
(100メッシュ)のスクリーンで篩分し、粒状ポリマ
ーを分離し、アセトン洗、水洗をそれぞれ4回行った
後、脱水し、乾燥したポリマーを得た。
Comparative Example 5 Polymer Synthesis Example 5 (Polymer P5 ) 390 kg of hydrous sodium sulfide (purity 46.40%) and NM
800 kg of P was charged into a titanium-clad polymerization vessel, and the temperature was gradually increased to about 200 ° C. in a nitrogen gas atmosphere.
147 kg of water were distilled off along with the molar hydrogen sulfide. Next, a mixed solution of 337.5 kg of p-DCB and 219 kg of NMP was supplied, and a polymerization reaction was performed at 220 ° C. for 4.5 hours. Next, 80.8 kg of water was injected and 255 ° C.
After reacting for an hour, the temperature was lowered to 245 ° C., and the polymerization was continued for 11 hours. After cooling, the reaction mixture was
(100 mesh), the granular polymer was separated, washed with acetone and washed with water four times, and dehydrated to obtain a dried polymer.

【0064】ペレット化 上記で得られたポリマー(P5)を44mmφ二軸混練
押出機(日本製鋼所製TEX−44)へ供給し、シリン
ダー温度300℃〜330℃にて混練を行い、ペレット
を作製した。得られたポリマーの310℃、剪断速度4
00/秒における伸長粘度は、8,990Pa・sであ
った。310℃、剪断速度1200/秒で測定した溶融
粘度η*は、390Pa・sであった。
[0064] supplying pelletized above-obtained polymer (P5) 44mmφ twin-screw kneading extruder to (Japan Steel Works TEX-44), and the mixture was kneaded at a cylinder temperature of 300 ° C. to 330 ° C., to obtain a pellet did. 310 ° C., shear rate 4 of the obtained polymer
The extensional viscosity at 00 / sec was 8,990 Pa · s. The melt viscosity η * measured at 310 ° C. and a shear rate of 1200 / sec was 390 Pa · s.

【0065】電線被覆実験 上記で得られたペレットを電線被覆用ダイを備えた卓上
二軸押出機(ツバコー・APV社製MP−2015)へ
供給し、導線を被覆した。被覆条件は、シリンダー温度
325℃、押出量8.8g/分、引き取り速度40m/
分、面積引き落とし率(R1)156、パリソン長45
mm、導線と被覆膜間のエアー抜き減圧−1cmHgで
あった。導線は、電線用軟銅線0.4mmφ(JIS
C3101)を用いた。被覆ダイのサイズは、マンドレ
ル先端外径4mmφ、ダイ内径7mmφを用いた。得ら
れた被覆体の外径は0.61mmφで、表面は凹凸のな
い被覆体が得られた。被覆体から導線を抜き取り、被覆
膜の引張試験を行った。その結果、降伏強度(A)は5
3MPaで、ひずみ10%の強度(B)は42MPaで
あり(B/A=0.79)、最大強度は90MPa、破
断伸度は300%であった。被覆体から導線を抜き取
り、被覆膜と無配向プレスシートの各昇温結晶化温度の
差を求めたところ、被覆膜の昇温結晶化温度は、無配向
プレスシートの昇温結晶化温度を3℃下回った(ΔTc
1=−3℃)。被覆体を空気循環式オーブン中、180
℃で96時間の条件で熱老化試験を行った後、引張試験
を行った。その結果、最大強度は86MPaで、破断伸
度は6%であった。熱老化試験後の被覆樹脂の結晶化度
を測定したところ、34%であった。この被覆体は、樹
脂の伸長粘度とΔTc1が小さく、その結果、熱老化試
験後の伸び(破断伸度)が極めて小さく、耐屈曲性や可
撓性に劣るものであった。
Wire Plating Experiment The pellets obtained above were supplied to a tabletop twin-screw extruder (MP-2015 manufactured by Tuba Co., APV) equipped with a wire coating die to cover the conductor. The coating conditions were a cylinder temperature of 325 ° C., an extrusion rate of 8.8 g / min, and a take-up speed of 40 m / min.
Min, area deduction rate (R1) 156, parison length 45
mm, and the pressure was reduced by 1 cmHg to remove air from the conductive wire and the coating film. The conductor is a soft copper wire for wire 0.4mmφ (JIS
C3101) was used. As the size of the coating die, a mandrel tip outer diameter of 4 mmφ and a die inner diameter of 7 mmφ were used. The outer diameter of the obtained coated body was 0.61 mmφ, and a coated body having no uneven surface was obtained. A lead wire was pulled out from the coated body, and a tensile test of the coated film was performed. As a result, the yield strength (A) was 5
At 3 MPa, the strength (B) at a strain of 10% was 42 MPa (B / A = 0.79), the maximum strength was 90 MPa, and the elongation at break was 300%. The conductor was removed from the coated body, and the difference between the temperature-induced crystallization temperatures of the coated film and the non-oriented press sheet was determined. 3 ° C. below (ΔTc
1 = -3 ° C). The coating is placed in an air circulating oven for 180
After performing a heat aging test at 96 ° C. for 96 hours, a tensile test was performed. As a result, the maximum strength was 86 MPa, and the elongation at break was 6%. The crystallinity of the coating resin after the heat aging test was measured and was found to be 34%. This coating had a small elongational viscosity and ΔTc 1 of the resin. As a result, the elongation (elongation at break) after the heat aging test was extremely small, and the coating was inferior in bending resistance and flexibility.

【0066】[比較例6]ポリマー合成例6(ポリマーP6) 含水硫化ソーダ(純度46.21%)420kgとNM
P720kgをチタン張り重合缶に仕込み、窒素ガス雰
囲気下で徐々に約200℃まで昇温しながら、61.8
モルの硫化水素と共に、水160kgを留出させた。次
に、p−DCB363.6kgとNMP250kgとの
混合溶液を供給し、220℃にて4.5時間重合反応を
行った。次に、水56.5kgを圧入し、255℃で2
時間反応を行った。冷却後、反応混合液を目開き150
μm(100メッシュ)のスクリーンで篩分し、粒状ポ
リマーを分離し、アセトン3回洗、水洗2回、0.6%
の塩化アンモニウム洗1回、水洗2回、0.06%の塩
化アンモニウム洗を行った後、脱水し、乾燥したポリマ
ーを得た。
Comparative Example 6 Polymer Synthesis Example 6 (Polymer P6 ) 420 kg of hydrous sodium sulfide (purity 46.21%) and NM
720 kg of P was charged into a titanium-clad polymerization vessel, and the temperature was gradually increased to about 200 ° C. in a nitrogen gas atmosphere, while the temperature was 61.8.
160 kg of water were distilled off together with the molar hydrogen sulphide. Next, a mixed solution of 363.6 kg of p-DCB and 250 kg of NMP was supplied, and a polymerization reaction was performed at 220 ° C. for 4.5 hours. Next, 56.5 kg of water was injected and 255 ° C.
A time reaction was performed. After cooling, the reaction mixture is
The mixture was sieved with a screen of 100 μm (μm) to separate the granular polymer, washed with acetone three times, washed twice with water, 0.6%
After washing once with ammonium chloride, washing twice with water and washing with 0.06% ammonium chloride, the polymer was dehydrated and dried to obtain a polymer.

【0067】ペレット化 上記で得られたポリマー(P6)を44mmφ二軸混練
押出機(日本製鋼所製TEX−44)へ供給し、シリン
ダー温度300℃〜320℃にて混練を行い、ペッレッ
トを作製した。得られたポリマーの310℃、剪断速度
400/秒における伸長粘度は、4,000Pa・sで
あった。310℃、剪断速度1200/秒で測定した溶
融粘度η*は、150Pa・sであった。
[0067] supplying pelletized above-obtained polymer (P6) 44mmφ twin-screw kneading extruder to (Japan Steel Works TEX-44), and the mixture was kneaded at a cylinder temperature of 300 ° C. to 320 ° C., prepared Perretto did. The elongational viscosity of the obtained polymer at 310 ° C. and a shear rate of 400 / sec was 4,000 Pa · s. The melt viscosity η * measured at 310 ° C. and a shear rate of 1200 / sec was 150 Pa · s.

【0068】電線被覆実験 上記で得られたペレットを電線被覆用ダイを備えた卓上
二軸押出機(ツバコー・APV社製MP−2015)へ
供給し、導線を被覆した。被覆条件は、シリンダー温度
310℃、押出量8.8g/分、引き取り速度40m/
分、面積引き落とし率(R1)156、パリソン長15
mm、導線と被覆膜間のエアー抜き減圧−5cmHgで
あった。導線は、電線用軟銅線0.4mmφ(JISC
3101)を用いた。被覆ダイのサイズは、マンドレ
ル先端外径4mmφ、ダイ内径7mmφを用いた。導線
被覆中、2回/1時間の頻度で樹脂切れが起こった。得
られた被覆体の外径は0.61mmφで、表面は凹凸の
ない被覆体が得られた。被覆体から導線を抜き取り、被
覆膜の引張試験を行った。その結果、降伏強度(A)は
54MPaで、ひずみ10%の強度(B)は43MPa
であり(B/A=0.80)、最大強度は72MPa、
破断伸度は300%であった。被覆体から導線を抜き取
り、被覆膜と無配向プレスシートの各昇温結晶化温度の
差を求めたところ、被覆膜の昇温結晶化温度は、無配向
プレスシートの昇温結晶化温度を2℃下回った(ΔTc
1=−2℃)。被覆体を空気循環式オーブン中、180
℃で96時間の条件で熱老化試験を行った後、引張試験
を行った。その結果、最大強度は78MPaで、破断伸
度は4%であった。熱老化試験後の被覆樹脂の結晶化度
を測定したところ、34%であった。この被覆体は、樹
脂の伸長粘度とΔTc1が小さく、その結果、熱老化試
験後の伸び(破断伸度)が極めて小さく、耐屈曲性や可
撓性に劣るものであった。これらの実験結果を表2〜4
に一括して示す。
Wire Plating Experiment The pellets obtained above were supplied to a desktop twin-screw extruder (MP-2015, manufactured by Tubaco APV) equipped with a wire coating die, and covered with a conductive wire. The coating conditions were as follows: cylinder temperature 310 ° C., extrusion rate 8.8 g / min, take-off speed 40 m /
Min, area deduction rate (R1) 156, parison length 15
mm, and the pressure of air bleeding between the conducting wire and the coating film was -5 cmHg. The conductor is soft copper wire for wire 0.4mmφ (JISC
3101) was used. As the size of the coating die, a mandrel tip outer diameter of 4 mmφ and a die inner diameter of 7 mmφ were used. During the coating of the conductive wire, resin breakage occurred at a frequency of twice per hour. The outer diameter of the obtained coated body was 0.61 mmφ, and a coated body having no uneven surface was obtained. A lead wire was pulled out from the coated body, and a tensile test of the coated film was performed. As a result, the yield strength (A) was 54 MPa, and the strength at a strain of 10% (B) was 43 MPa.
(B / A = 0.80), the maximum strength is 72 MPa,
The elongation at break was 300%. The conductor was removed from the coated body, and the difference between the temperature-induced crystallization temperatures of the coated film and the non-oriented press sheet was determined. 2 ° C. below (ΔTc
1 = -2 ° C). The coating is placed in an air circulating oven for 180
After performing a heat aging test at 96 ° C. for 96 hours, a tensile test was performed. As a result, the maximum strength was 78 MPa, and the elongation at break was 4%. The crystallinity of the coating resin after the heat aging test was measured and was found to be 34%. This coating had a small elongational viscosity and ΔTc 1 of the resin. As a result, the elongation (elongation at break) after the heat aging test was extremely small, and the coating was inferior in bending resistance and flexibility. Tables 2 to 4 show the results of these experiments.
Are shown together.

【0069】[0069]

【表2】 [Table 2]

【0070】[0070]

【表3】 (*1)ETFE=エチレン−テトラフルオロエチン共
重合体 (*2)PETS=ペンタエリスリトールトリステアレ
ート EMPS=エポキシ変性ポリシロキサン γAPES=γ−アミノプロピルトリエトキシシラン
[Table 3] (* 1) ETFE = ethylene-tetrafluoroethyne copolymer (* 2) PETS = pentaerythritol tristearate EMPS = epoxy-modified polysiloxane γAPES = γ-aminopropyltriethoxysilane

【0071】[0071]

【表4】 (*2)PETS=ペンタエリスリトールトリステアレ
ート
[Table 4] (* 2) PETS = pentaerythritol tristearate

【0072】[0072]

【発明の効果】本発明によれば、耐熱性、耐フレオン
性、難燃性、耐薬品性、耐放射線性、低温物性、電気絶
縁性、機械的物性等に優れたPAS樹脂被覆金属部材が
提供される。本発明の被覆金属部材は、樹脂切れを起こ
すことなく、安定して連続被覆することができ、被覆後
に熱処理しても、引張強度、可撓性、耐屈曲性などに優
れている。
According to the present invention, a PAS resin-coated metal member excellent in heat resistance, freon resistance, flame resistance, chemical resistance, radiation resistance, low-temperature physical properties, electrical insulation, mechanical properties, and the like is provided. Provided. The coated metal member of the present invention can be stably and continuously coated without causing resin breakage, and is excellent in tensile strength, flexibility, bending resistance and the like even when heat-treated after coating.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐竹 義克 福島県いわき市錦町落合16 呉羽化学工業 株式会社錦総合研究所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yoshikatsu Satake 16 Nishimachi Ochiai, Iwaki City, Fukushima Prefecture Kureha Chemical Industry Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 金属基材上に、ポリアリーレンスルフィ
ド樹脂を被覆してなる被覆金属部材において、ポリアリ
ーレンスルフィド樹脂の310℃、剪断速度400/秒
における伸長粘度が10,000Pa・s以上であっ
て、かつ、示差走査熱量計により測定されるポリアリー
レンスルフィド樹脂被覆層の昇温結晶化温度がポリアリ
ーレンスルフィド樹脂の無配向非晶シートの昇温結晶化
温度よりも6℃以上低いことを特徴とする被覆金属部
材。
1. A coated metal member comprising a metal substrate coated with a polyarylene sulfide resin, wherein the polyarylene sulfide resin has an extensional viscosity of 10,000 Pa · s or more at 310 ° C. and a shear rate of 400 / sec. And the temperature-rise crystallization temperature of the polyarylene sulfide resin coating layer measured by a differential scanning calorimeter is 6 ° C. or more lower than the temperature-rise crystallization temperature of the non-oriented amorphous sheet of the polyarylene sulfide resin. Coated metal member.
【請求項2】 ポリアリーレンスルフィド樹脂被覆層の
ひずみ10%の時の強度が降伏強度の0.93倍以上で
ある請求項1記載の被覆金属部材。
2. The coated metal member according to claim 1, wherein the strength of the polyarylene sulfide resin coating layer at a strain of 10% is 0.93 times or more of the yield strength.
【請求項3】 120〜290℃の熱処理温度で熱処理
した後のポリアリーレンスルフィド樹脂被覆層の結晶化
度が10〜40%の範囲内である請求項1または2記載
の被覆金属部材。
3. The coated metal member according to claim 1, wherein the crystallinity of the polyarylene sulfide resin coating layer after the heat treatment at a heat treatment temperature of 120 to 290 ° C. is in the range of 10 to 40%.
【請求項4】 熱処理した後のポリアリーレンスルフィ
ド樹脂被覆層のひずみ10%の時の強度が降伏強度の
0.95倍以上である請求項3記載の被覆金属部材。
4. The coated metal member according to claim 3, wherein the strength of the polyarylene sulfide resin coating layer after heat treatment at a strain of 10% is 0.95 times or more of the yield strength.
【請求項5】 熱処理した後のポリアリーレンスルフィ
ド樹脂層の破断伸度が30%以上である請求項3または
4記載の被覆金属部材。
5. The coated metal member according to claim 3, wherein the polyarylene sulfide resin layer after heat treatment has a breaking elongation of 30% or more.
【請求項6】 ポリアリーレンスルフィド樹脂が、アル
カリ金属硫化物とジハロ芳香族化合物をトリハロ芳香族
化合物の存在下に重合して得られる分岐型ポリアリーレ
ンスルフィド樹脂である請求項1ないし5のいずれか1
項に記載の被覆金属部材。
6. The polyarylene sulfide resin according to claim 1, wherein the polyarylene sulfide resin is a branched polyarylene sulfide resin obtained by polymerizing an alkali metal sulfide and a dihalo aromatic compound in the presence of a trihalo aromatic compound. 1
Item 7. The coated metal member according to item 1.
JP24723496A 1995-09-21 1996-08-29 Covered metal parts Expired - Fee Related JP3618485B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP24723496A JP3618485B2 (en) 1996-08-29 1996-08-29 Covered metal parts
CA002185938A CA2185938A1 (en) 1995-09-21 1996-09-19 Metal coating resin and coated metal member
EP96306817A EP0765895A3 (en) 1995-09-21 1996-09-19 Metal coating resin and coated metal member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24723496A JP3618485B2 (en) 1996-08-29 1996-08-29 Covered metal parts

Publications (2)

Publication Number Publication Date
JPH1067966A true JPH1067966A (en) 1998-03-10
JP3618485B2 JP3618485B2 (en) 2005-02-09

Family

ID=17160457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24723496A Expired - Fee Related JP3618485B2 (en) 1995-09-21 1996-08-29 Covered metal parts

Country Status (1)

Country Link
JP (1) JP3618485B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005106898A1 (en) * 2004-04-28 2005-11-10 The Furukawa Electric Co., Ltd. Multilayer insulated wire and transformer using the same
JP2012084256A (en) * 2010-10-07 2012-04-26 Hitachi Cable Ltd Insulation wire and manufacturing method of the same
JPWO2016024576A1 (en) * 2014-08-12 2017-07-13 旭硝子株式会社 Thermal cycle system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101397366B1 (en) 2010-06-23 2014-05-20 도요타지도샤가부시키가이샤 Stator manufacturing method and stator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005106898A1 (en) * 2004-04-28 2005-11-10 The Furukawa Electric Co., Ltd. Multilayer insulated wire and transformer using the same
JPWO2005106898A1 (en) * 2004-04-28 2008-03-21 古河電気工業株式会社 Multilayer insulated wire and transformer using the same
US7771819B2 (en) 2004-04-28 2010-08-10 The Furukawa Electric Co., Ltd. Multilayer insulated wire and transformer made using the same
JP2012084256A (en) * 2010-10-07 2012-04-26 Hitachi Cable Ltd Insulation wire and manufacturing method of the same
JPWO2016024576A1 (en) * 2014-08-12 2017-07-13 旭硝子株式会社 Thermal cycle system

Also Published As

Publication number Publication date
JP3618485B2 (en) 2005-02-09

Similar Documents

Publication Publication Date Title
EP0189895B1 (en) Phenylene sulfide resin compositions
EP3409726B1 (en) Molded product formed from a polyphenylene sulfide resin composition and method for producing same
JPH0480053B2 (en)
JP2551458B2 (en) Polyarylene thioether ketone fiber and method for producing the same
KR910003720B1 (en) Highly crystallized molded product of polyarylene thioether
JPH1067966A (en) Coated metal member
JP3598510B2 (en) Fiber reinforced composite material
JP3724665B2 (en) Resin for metal coating, resin-coated metal member and method for producing the member
KR930005402B1 (en) Polyarlylene sulfide resin composition
KR102502509B1 (en) Polyarylene sulfide resin composition having improved flowability
EP0280385B1 (en) Process for producing shaped products of a polyarylene thioter
JPS62232442A (en) Biaxially oriented poly-p-phenylene sulfide film
JP2964570B2 (en) Method for producing polyphenylene sulfide resin-lined metal tube
JP2017190426A (en) Resin composition and method for producing the same
EP0765895A2 (en) Metal coating resin and coated metal member
JPH08118503A (en) High molecular weight polyarylene sulfide for chemical pipeline
JP3538878B2 (en) High molecular weight polyarylene sulfide for tubular extrudates.
JP3969465B2 (en) Difficult snow ring
US10711118B2 (en) Polyarylene sulfide resin composition and molded article thereof
JPH07224165A (en) High molecular-weight polyarylene sulfide for turbular extrusion molding
JPH1199546A (en) Manufacture of polyallylene sulfide molding
CN107955373A (en) A kind of electric insulation PPS films
JPH0747295B2 (en) Slippery polyary lentithioether film and process for producing the same
JPH0270728A (en) Heat-resistant stretched film and production thereof
JPS62172033A (en) Production of molded polyarylene thioether article having enhanced crystallinity

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees