JP3724665B2 - Resin for metal coating, resin-coated metal member and method for producing the member - Google Patents

Resin for metal coating, resin-coated metal member and method for producing the member Download PDF

Info

Publication number
JP3724665B2
JP3724665B2 JP18114596A JP18114596A JP3724665B2 JP 3724665 B2 JP3724665 B2 JP 3724665B2 JP 18114596 A JP18114596 A JP 18114596A JP 18114596 A JP18114596 A JP 18114596A JP 3724665 B2 JP3724665 B2 JP 3724665B2
Authority
JP
Japan
Prior art keywords
resin
coating
coated
melt viscosity
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18114596A
Other languages
Japanese (ja)
Other versions
JPH09143267A (en
Inventor
清美 大内
直光 西畑
正人 多田
義克 佐竹
Original Assignee
呉羽化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 呉羽化学工業株式会社 filed Critical 呉羽化学工業株式会社
Priority to JP18114596A priority Critical patent/JP3724665B2/en
Priority to CA002185938A priority patent/CA2185938A1/en
Priority to EP96306817A priority patent/EP0765895A3/en
Publication of JPH09143267A publication Critical patent/JPH09143267A/en
Application granted granted Critical
Publication of JP3724665B2 publication Critical patent/JP3724665B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、金属被覆用樹脂並びに樹脂被覆金属部材及び該樹脂被覆金属部材の製造方法に関し、さらに詳しくは、耐熱性、耐フレオン性、難燃性、耐薬品性、耐放射線性、低温物性、電気絶縁性、機械的物性等に優れたポリアリーレンスルフィド樹脂からなる金属被覆用樹脂該樹脂を被覆した樹脂被覆金属部材、及び該部材の製造方法に関する。
本発明の金属被覆用樹脂及び樹脂被覆金属部材は、自動車や船舶のコントロールケーブル用索導管やコントロールケーブル用内索、耐熱性コイルやモーター等の巻線、自動車ソレノイドリード線、コンプレッサー等の耐フレオン電線、変圧器の巻線、原子力発電所用の耐放射線性機器配線、及びケーブル、金属棒、金属管、その他の耐熱電線、シース管、ワイヤーなどの広範な分野で利用される。
【0002】
【従来の技術】
ポリフェニレンスルフィド樹脂(PPS樹脂)に代表されるポリアリーレンスルフィド樹脂(PAS樹脂)は、耐熱性、耐薬品性、難燃性、電気絶縁性等に優れたエンジニアリングプラスチックとして広範な分野で使用されている。このような優れた諸特性を生かして、ポリアリーレンスルフィド樹脂を電線、金属棒等の被覆用樹脂として使用することが期待され、具体的な提案もなされている。
例えば、特開昭60−185306号公報には、310℃、剪断速度200/秒で測定した溶融粘度が300〜100,000ポイズで、孔径0.5mmのノズルから310℃で溶融押出をして紡糸した場合の第一次延伸倍率が10以上のポリフェニレンスルフィド樹脂を、金属導線上に溶融押出してエナメル線型被覆電線を製造する方法が提案されている。特開昭62−143307号公報には、メルトインデックスが0.5〜100g/10minのポリフェニレンスルフィド樹脂組成物を導体上に押し出して成形した絶縁電線が提案されている。
【0003】
しかし、ポリアリーレンスルフィド樹脂を金属導線などの金属基材上に溶融押出して被覆層を連続的に形成しようとすると、該樹脂の延伸性が悪いため、樹脂切れ等を引き起こしやすく、安定して被覆物を得ることが困難であった。また、ポリアリーレンスルフィド樹脂被覆金属部材を、被覆後、高温下にさらして樹脂を結晶化させると、被覆層が割れるという問題があった。
一般に、溶融押出法より、金属基材上に樹脂を連続被覆する場合、該樹脂は、溶融状態で延伸される。このとき、樹脂切れを生ずることなく、均一な被覆層が安定して得られることが必要である。さらに、被覆後に熱処理を行っても、被覆層に割れが生じないことが必要である。しかしながら、従来、被覆電線などの用途に好適な物性を有する金属被覆用ポリアリーレンスルフィド樹脂は、見出されていなかったのが現状である。
【0004】
【発明が解決しようとする課題】
本発明の目的は、溶融押出法により金属基材上に連続被覆を行った場合に、樹脂切れを起こすことなく安定して連続被覆することができ、しかも被覆後に熱処理した場合に、被覆層の割れを生じることがない金属被覆用ポリアリーレンスルフィド樹脂を提供することにある。
本発明の他の目的は、耐熱性、耐フレオン性、難燃性、耐薬品性、耐放射線性、低温物性、電気絶縁性、機械的物性等に優れたポリアリーレンスルフィド樹脂の被覆層が形成された樹脂被覆金属部材とその製造方法を提供することにある。
本発明者らは、前記従来技術の問題点を克服するために鋭意研究した結果、アルカリ金属硫化物とジハロ芳香族化合物をトリハロ芳香族化合物の存在下に重合して得られる分岐型ポリアリーレンスルフィド樹脂であって、特定の溶融粘度の範囲と溶融特性を有する選択された樹脂を用いた場合に、金属基材への溶融被覆時に延伸を受けても樹脂切れを生じることがなく、優れた加工性を示し、しかも被覆後に熱処理して結晶化させた場合に、被覆層に割れを生じないことを見出した。
このような選択されたポリアリーレンスルフィド樹脂を被覆した被覆電線などの被覆金属部材は、被覆層が、耐熱性、難燃性、耐薬品性、耐フレオン性、耐放射線性、電気絶縁性、低温特性などポリアリーレンスルフィド樹脂が本来有する優れた特性を示すだけではなく、耐屈曲性、引張強度、引張伸度、可撓性などの機械的物性に優れている。
本発明は、これらの知見に基づいて完成するに至ったものである。
【0005】
【課題を解決するための手段】
本発明によれば、アルカリ金属硫化物とジハロ芳香族化合物をトリハロ芳香族化合物の存在下に重合して得られる分岐型ポリアリーレンスルフィド樹脂であって、310℃、剪断速度200/秒で測定した溶融粘度η200300〜2000Pa・sで、該溶融粘度η200と310℃、剪断速度1200/秒で測定した溶融粘度η1200との比R(η200/η1200)が下記の関係式(1)
【数4】

Figure 0003724665
満足するポリアリーレンスルフィド樹脂からなることを特徴とする金属被覆用樹脂が提供される。
【0006】
また、本発明によれば、アルカリ金属硫化物とジハロ芳香族化合物をトリハロ芳香族化合物の存在下に重合して得られる分岐型ポリアリーレンスルフィド樹脂であって、310℃、剪断速度200/秒で測定した溶融粘度η200300〜2000Pa・sで、該溶融粘度η200と310℃、剪断速度1200/秒で測定した溶融粘度η1200との比R(η200/η1200)が下記の関係式(1)
【数5】
Figure 0003724665
を満足するポリアリーレンスルフィド樹脂からなる金属被覆用樹脂を金属基材上に被覆してなることを特徴とする樹脂被覆金属部材が提供される。
【0007】
さらに、本発明によれば、アルカリ金属硫化物とジハロ芳香族化合物をトリハロ芳香族化合物の存在下に重合して得られる分岐型ポリアリーレンスルフィド樹脂であって、310℃、剪断速度200/秒で測定した溶融粘度η 200 が300〜2000Pa・sで、該溶融粘度η 200 と310℃、剪断速度1200/秒で測定した溶融粘度η 1200 との比R(η 200 /η 1200 )が下記の関係式(1):
【数6】
Figure 0003724665
を満足するポリアリーレンスルフィド樹脂からなる金属被覆用樹脂を、押出機を用いて、該樹脂の(融点+20℃)〜350℃の範囲の温度で溶融させた後、パリソンを形成させながらダイ外被覆により金属基材上に被覆し、次いで、被覆体を冷却後、熱処理温度200〜270℃及び熱処理時間0.1秒以上10分間以下の条件で熱処理して、被覆層の樹脂の結晶化度を15〜30%の範囲とすることを特徴とする樹脂被覆金属部材の製造方法が提供される。
【0008】
【発明の実施の形態】
本発明では、次のような特定の選択されたポリアリーレンスルフィドを金属被覆用樹脂として使用する点に特徴を有する。
1.アルカリ金属硫化物とジハロ芳香族化合物をトリハロ芳香族化合物の存在下に重合して得られる分岐型ポリアリーレンスルフィド樹脂であること。
2.310℃、剪断速度200/秒で測定した溶融粘度η200が次式(2)の範囲にあること。
【0009】
【数7】
Figure 0003724665
3.該溶融粘度η200と310℃、剪断速度1200/秒で測定した溶融粘度η1200との比R(R=η200/η1200)が関係式(1)を満足すること。
【0010】
【数8】
Figure 0003724665
【0011】
本発明者らは、ポリアリーレンスルフィド樹脂を用いて金属基材への連続被覆の検討を鋭意重ねた結果、前記1〜3の要件を満足する選択されたポリアリーレンスルフィド樹脂を使用することにより、安定して溶融被覆加工をすることができ、かつ、機械的物性に優れた被覆物の得られることを見出した。
本発明で使用するポリアリーレンスルフィド樹脂は、アルカリ金属硫化物とジハロ芳香族化合物のみから得られる完全な直鎖型樹脂ではなく、三官能モノマーであるトリハロ芳香族化合物を少量共存させて得られる分岐型樹脂である。このような分岐型とすることにより、前記関係式(1)を満足するポリアリーレンスルフィド樹脂を得ることができ、しかも該樹脂を金属基材に被覆した場合に、優れた加工性と機械的物性を得ることができる。これに対して、低分子量のポリアリーレンスルフィド樹脂を空気の存在下に酸化架橋(キュアリング)して得られる架橋型樹脂は、溶融延伸の際にゲル状物が発生し、加工性が劣悪であることに加えて、被覆層の強度、金属基材への密着性、耐摩耗性、絶縁破壊抵抗性、耐熱性等の点で実用性に乏しい。
【0012】
本発明で使用するポリアリーレンスルフィド樹脂は、310℃、剪断速度200/秒で測定した溶融粘度η200 が300〜2000Pa・sである。溶融粘度η200300Pa・s未満であると、ポリアリーレンスルフィド樹脂をダイから押し出した際、溶融状態での弾性が乏しく、延伸することが困難となる。溶融粘度η2002000Pa・sを超えると、ゲル状物の発生が顕著になり、加工性が低下すると共に、被覆層の耐屈曲性や可撓性が低下する。本発明で使用するポリアリーレンスルフィド樹脂は、前記関係式(1)を満足することが必要である。R(η200/η1200)が下記式(3)で表される範囲にあると、溶融した樹脂をダイスから押出した場合、溶融状態での弾性が乏しいため、延伸することが困難となる。
【0013】
【数9】
Figure 0003724665
Rが下記式(4)で表される範囲にあると、均一な延伸が困難となり、被覆層に凹凸状の不均一部分が多数発生する。
【0014】
【数10】
Figure 0003724665
【0015】
図1に、ポリアリーレンスルフィド樹脂の溶融粘度η200(横軸)とR値(縦軸)との関係を示す。本発明で使用するポリアリーレンスルフィド樹脂は、図1のABCDの4つの点で囲まれた範囲内で、さらにEFGHの4つの点で囲まれた範囲内のものである。図1の白四角印は、各実施例と参考例1で得られた樹脂の特性値をプロットしたものであり、黒三角印は、各比較例の樹脂の特性値をプロットしたものである。上記の如き溶融粘度及び溶融特性を持ったポリアリーレンスルフィド樹脂は、アルカリ金属硫化物とジハロ芳香族化合物をトリハロ芳香族化合物の存在下に重合する際に、各モノマーの割合や重合条件を適切なものとすることにより得ることができる。
【0016】
アルカリ金属硫化物としては、例えば、硫化ナトリウム、硫化カリウム、硫化リチウム、硫化ルビジウム、硫化セシウム、及びこれらの混合物などが挙げられる。また、アルカリ金属硫化物は、常法により反応容器中でin situで生成させてもよい。これらのアルカリ金属硫化物は、水和物、水性混合物、または無水物の形で用いることができる。アルカリ金属硫化物中に微量存在するアルカリ金属重硫化物やアルカリ金属チオ硫酸塩と反応させるために、少量のアルカリ金属水酸化物を添加して、これらの不純物を除去するか、あるいは硫化物へ転化させてもよい。これらの中でも硫化ナトリウムが最も安価であるため、工業的には好ましい。
【0017】
ジハロ芳香族化合物としては、例えば、p−ジクロロベンゼン、m−ジクロロベンゼン、o−ジクロロベンゼン、p−ジブロモベンゼン等のジハロベンゼン;2,5−ジクロロトルエン、1−メトキシ−2,5−ジクロロベンゼン等の置換ジハロベンゼン;1,4−ジクロロナフタレン等のジハロナフタレン;4,4′−ジクロロビフェニル、3,3′−ジクロロビフェニル等のジハロビフェニル;3,5−ジクロロ安息香酸等のジハロ安息香酸;4,4′−ジクロロベンゾフェノン等のジハロベンゾフェノン;4,4′−ジクロロジフェニルスルホン、3,3′−ジクロロジフェニルスルホン等のジハロジフェニルスルホン;4,4′−ジクロロジフェニルエーテル等のジハロフェニルエーテル;などを挙げることができる。
これらの中でも、経済性や物性等の観点から、ジハロベンゼンが好ましく、p−ジクロロベンゼンなどのp−ジハロベンゼンがより好ましい。特に、ジハロ芳香族化合物として、p−ジハロベンゼンを、好ましくは70重量%以上、より好ましくは80重量%以上、さらに好ましくは90重量%以上の割合で含有するものが好ましい。
【0018】
トリハロ芳香族化合物としては、例えば、1,2,3−トリクロロベンゼン、1,2,3−トリブロモベンゼン、1,2,4−トリクロロベンゼン、1,2,4−トリブロモベンゼン、1,3,5−トリクロロベンゼン、1,3,5−トリブロモベンゼン、1,3−ジクロロ−5−ブロムベンゼン等のトリハロベンゼン;トリハロベンゼンのアルキル置換体;これらの混合物等が挙げられる。これらの中でも、経済性、反応性、物性等の観点から、1,2,4−トリハロベンゼン、1,3,5−トリハロベンゼン、及び1,2,3−トリクロロベンゼンが好ましい。
【0019】
ポリアリーレンスルフィド樹脂の製造方法としては、水を含有する極性有機溶媒中で、アルカリ金属硫化物とジハロ芳香族化合物とをトリハロ芳香族化合物の存在下に重縮合反応させる方法を採用することができる。水としては、例えば、アルカリ金属硫化物の水和水、添加水、反応水、アルカリ金属硫化物水溶液の水などが挙げられる。有機アミド溶媒としては、例えば、N−メチルピロリドン、N−エチルピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルカプロラクタム、ジメチルイミダゾリジノン、テトラメチル尿素、ヘキサメチルホスホン酸アミドなどが挙げられる。これらの中でも、経済性や安定性の観点から、N−メチル−2−ピロリドン(NMP)が特に好ましい。
【0020】
仕込みジハロ芳香族化合物のモル数aと仕込みアルカリ金属硫化物のモル数bとの比a/bは、好ましくは1.00〜1.06の範囲内になるように調製する。トリハロ芳香族化合物は、仕込みアルカリ金属硫化物1モルに対して、好ましくは0.0005〜0.007モルの範囲内となるように調整して、重合反応系に添加する。
仕込みアルカリ金属化合物1モルに対して、トリハロ芳香族化合物が0.0005モル未満では、生成ポリアリーレンスルフィド樹脂の溶融状態における弾性が十分でないため、溶融状態から直接延伸した場合、十分に配向することができない。このため、得られた被覆層の強度が低下する。逆に、トリハロ芳香族化合物が0.007モル超過では、生成ポリアリーレンスルフィド樹脂の溶融粘度が高くなるため、被覆時に樹脂切れを引き起こし、連続して均一な被覆物を得ることが困難となるため好ましくない。重合反応系へのトリハロ芳香族化合物の添加は、重合の初期であっても後期であってもよいが、初期の場合の方が少量の添加でもより効果的である。
【0021】
重合方法については、従来公知の方法を採用することができ、特に限定されないが、具体例として、例えば、仕込みアルカリ金属硫化物1モル当たり0.5〜2.4モルの水が存在する状態で、150〜235℃の温度で反応を行って、ジハロ芳香族化合物の転化率50〜98モル%程度まで反応させ、次いで、仕込みアルカリ金属硫化物1モル当たり2.5〜7.0モルの水を反応系内に存在させて、245〜280℃の温度に昇温して反応を継続する方法を挙げることができる。極性有機溶媒の使用量は、アルカリ金属硫化物1モル当たり、通常、0.2〜2.0kg、好ましくは0.3〜1.0kgである。
【0022】
上記ポリアリーレンスルフィド樹脂を用いて連続して金属基材の被覆を行うには、押出機を用いて該樹脂の融点以上、好ましくは(融点+20℃)〜350℃の範囲の温度で溶融させた後、パリソンを形成させながらダイ外被覆により金属基材上に被覆する。被覆工程中、被覆金属体(即ち、樹脂被覆金属部材)は、ピンチローラによって一定の速度で引き取られ、ダイを通過する時、均一な被覆層が連続して形成される。次いで、被覆金属体は、冷却ゾーンで冷却された後、通常、巻き取り機等によって巻き取られる。
【0023】
本発明では、被覆層の結晶化度及び機械的物性をコントロールし、所望の被覆金属体を得るために、押出機のダイから溶融樹脂を押し出し、パリソンを形成して金属基材を被覆した後、ピンチローラへ至るまでの間で、必要に応じ加熱ゾーンを設けて被覆金属体を熱処理することができる。被覆金属体の熱処理温度は、通常、120〜290℃、好ましくは130〜270℃である。熱処理時間(即ち、加熱ゾーンでの滞在時間)は、生産性、被覆膜厚、引き取り速度、樹脂の結晶化速度及び結晶化温度により変わり、一概には規定できないが、通常0.1秒以上10分間以下の時間である。
【0024】
また、本発明では、被覆層の結晶化度及び機械的物性をコントロールし、所望の被覆体を得るために、一旦引き取った被覆金属体を必要に応じ熱処理することができる。この場合、被覆金属体の熱処理温度は、通常、120〜290℃、好ましくは130〜270℃の範囲である。熱処理時間は、生産性、膜厚、引き取り速度、樹脂の結晶化速度及び結晶化温度により変わり、一概には規定できないが、通常1秒以上100時間以下の時間である。120℃未満の温度で熱処理を行うと、十分に結晶化することができず、高温での寸法安定性あるいは表面性が損なわれることがあるため好ましくない。290℃を越える温度で熱処理を行うと、被覆層の変形により、表面性が損なわれることがある。熱処理時間が1秒未満では、十分に結晶化することができず、高温での寸法安定性あるいは表面性が損なわれることがあり、好ましくない。また、熱処理時間が長過ぎると、被覆層の変形により表面性が損なわれるので、好ましくない。一旦引き取った被覆金属体を熱処理する場合、被覆膜の伸度の面からは、熱処理温度を190℃以上とすることが好ましい。特に、好ましくは200〜270℃、より好ましくは230〜260℃の熱処理温度で、1秒〜10分間、より好ましくは1〜60秒程度の熱処理時間の熱処理条件を採用することにより、高い破断伸度を達成することができる。
【0025】
熱処理による被覆層の樹脂の結晶化度は、通常、30%以下とすることが好ましい。結晶化度が30%を越えると、被覆層が脆くなるおそれが生じる。被覆層の樹脂の結晶化度は、15〜30%の範囲とすることが好ましい。ただし、被覆層の伸度は、樹脂の結晶化度が同じであっても、熱処理温度が異なれば異なる傾向を示す。熱処理温度が高いほど、樹脂の結晶化度が同じかあるいは高い場合であっても、大きな伸度が得られやすい。一方、比較的低い熱処理温度で、熱処理時間を長くして結晶化度を高めた場合には、伸度が低下する傾向を示す。したがって、前記したとおり、熱処理温度を200〜270℃とし、結晶化度が30%を越えない熱処理時間で熱処理することが好ましい。
【0026】
本発明における樹脂、被覆金属体においては、本発明の目的を損なわない範囲において、ポリアリーレンスルフィド樹脂の他に、混合可能な少量の別の成分を含んでいてもよい。他の成分としては、例えば、シリカ、タルク、マイカ、カオリン、炭酸カルシウム、リン酸マグネシウム、ガラス等の、粒状、粉末状あるいは鱗片状の無機充填剤、ガラス繊維、炭素繊維、マイカセラミック繊維等の繊維状の無機充填剤、ポリテトラフルオロエチレン、四フッ化・六フッ化エチレンコポリマー、エチレン・テトラフルオロエチレンコポリマー等のフッ素系樹脂、シリコン系エラストマー、アクリル系エラストマー、オレフィン系エラストマー、ポリアミド系エラストマー、フッ素系エラストマー等の耐衝撃剤、他の熱可塑性樹脂、熱硬化性樹脂、カップリング剤、滑剤、離型剤、安定剤、核剤等が例示される。
【0027】
本発明のポリアリーレンスルフィド樹脂は、金属基材との密着性に優れているが、例えば、被覆電線などのように、作業上、被覆層が金属基材に対して適度なストリップ性を有することが要求される分野では、少量の離型剤を樹脂中に含有させることができる。離型剤としては、例えば、ペンタエリスリトールトリステアレート、ジアステアリルペンタエリスリトールジホスフェートなどの脂肪酸エステル類を挙げることができる。このような離型剤を配合することにより、金属基材と樹脂被覆層との間の密着性を適度に弱めて、ストリップ性を有する樹脂被覆金属部材を得ることができる。離型剤は、樹脂100重量部に対して、通常、0.1〜3重量部の割合で使用する。安定剤としては、ポリアリーレンスルフィド樹脂用の公知のものを用いることができるが、樹脂を押出機のダイから安定的に溶融押出して被覆するには、例えば、水酸化バリウムなどが好ましい。安定剤は、樹脂100重量部に対して、通常、0.1〜3重量部の割合で使用する。
【0028】
金属基材としては、電線等の金属導体(金属導線)、金属棒、金属管、ワイヤー等の長尺の金属基材が挙げられる。ポリアリーレンスルフィド樹脂被覆層の厚みは、各用途及び所望の物性に応じて適宜定めることができる。
本発明によれば、耐熱性、耐フレオン性、難燃性、耐薬品性、耐放射線性、低温物性、電気絶縁性、機械的物性等に優れたポリアリーレンスルフィド樹脂からなる被覆層が形成された被覆電線などの樹脂被覆金属部材が得られる。その具体例としては、自動車や船舶のコントロールケーブル用索導管やコントロールケーブル用内索、耐熱性コイルやモーターの巻線、自動車ソレノイドリード線、コンプレッサーの耐フレオン電線、変圧器の巻線、原子力発電所用の耐放射線性機器配線、及びケーブル、金属棒、金属管、その他の耐熱配線、シース管、ワイヤー等の被覆金属部材が挙げられる。
【0029】
【実施例】
以下に実施例、参考例及び比較例を挙げて、本発明についてより具体的に説明する。
【0030】
[実施例1]
ポリマー合成例(1)
含水硫化ソーダ(純度46.06%)373kg、及びN−メチルピロリドン(以下、NMPと略記)800kgをチタン張り重合缶に仕込み、窒素ガス雰囲気下で徐々に約200℃まで昇温しながら、54.4モルの硫化水素と共に、水141kgを留出させた。次に、p−ジクロロベンゼン(以下、p−DCBと略記)324.7kg、1,2,4−トリクロロベンゼン0.796kg、及びNMP274kgの混合溶液を供給して、220℃で5時間重合反応を行った。次に、反応系に水96.6kgを圧入し、255℃で5時間重合反応を行った後、245℃に降温して5時間重合反応を継続した。重合反応終了後、反応系を冷却し、次いで、反応混合液を目開き150μm(100メッシュ)のスクリーンで篩分し、粒状ポリマーを分離した。粒状ポリマーは、メタノール洗と水洗をそれぞれ3回行った後、脱水し、乾燥した。得られたポリマーの310℃、剪断速度200/秒における溶融粘度は、1315Pa・sで、R値は、2.64であった。
【0031】
金属被覆実験
上記で得られたポリマーを、30mmφ二軸混練押出機(プラスチック工学研究所製BT−30型機)へ供給し、シリンダー温度300℃〜330℃にて混練を行い、ペレット状物を得た。得られたペレット状物を、電線被覆用ダイを備えた二軸押出機(東洋精機製作所製ラボプラストミル)へ供給し、導線を被覆した。導線被覆条件は、シリンダー温度335℃、押出量8g/分、引き取り速度18m/分、延伸倍率9.5、パリソンコーン長さ15mm、導線と被覆膜間のエアー抜き減圧−15cmHgであった。導線として、電気用硬銅線0.4mmφ(JIS C3101)を用いた。被覆ダイは、マンドレル先端外径1.3mmφで、ダイ内径2.2mmφのものを用いた。
導線被覆中、樹脂切れを生ずることなく、6時間連続して安定的に被覆することができ、外径が0.7mmφで、表面に凹凸のない被覆体が得られた。被覆体を冷却後、加熱ゾーンに導き、250℃、滞在時間3秒の条件で熱処理して、被覆樹脂を結晶化させてからロールに巻き取った。このようにして得られた被覆体は、曲げても被覆膜にクラック及び割れが生じなかった。被覆体から導線を抜き取り、被覆膜の引張試験を次の条件で行った。
引張試験
・試験機 :(株)東洋ボールドウィン社製テンシロン
・試料長 :100mm
・引張速度:100mm/分
その結果、被覆膜の引張破断強さは136MPaで、破断伸びは150%であった。
【0032】
[実施例2]
実施例1と同じペレット状物及び導線を用い、延伸倍率が50倍となるように被覆条件を変えて被覆をした。導線被覆条件は、シリンダー温度340℃、押出量34g/分、引き取り速度100m/分、延伸倍率50、パリソンコーン長さ40mm、導線と被覆膜間のエアー抜き減圧−15cmHg、被覆ダイのマンドレス先端外径2.8mmφ、ダイ内径4.9mmφであった。
被覆の実験の結果、外径0.7mmφの被覆体が得られ、実施例1と同様の加熱処理を行った。得られた被覆体は、曲げても被覆膜にクラック及び割れが生じなかった。実施例1と同様にして引張試験を行った結果、被覆膜の引張破断強さは170MPaで、破断伸びは135%であった。
【0033】
[実施例3]
ポリマー合成例(2)
含水硫化ソーダ(純度46.21%)370kg、及びNMP800kgをチタン張り重合缶に仕込み、窒素ガス雰囲気下で徐々に約200℃まで昇温しながら、53.4モルの硫化水素と共に、水140.5kgを留出させた。次に、p−DCB324kg、1,2,4−トリクロロベンゼン0.790kg、及びNMP270kgの混合溶液を供給して、220℃で5時間重合反応を行った。次に、反応系に水96.7kgを圧入し、255℃で5時間重合反応を行った後、245℃に降温して5時間重合反応を継続した。重合反応終了後、反応系を冷却し、次いで、反応混合液を目開き150μm(100メッシュ)のスクリーンで篩分して、粒状ポリマーを分離した。粒状ポリマーは、メタノール洗と水洗をそれぞれ3回行った後、脱水し、乾燥した。得られたポリマーの310℃、剪断速度200/秒における溶融粘度は、749Pa・sで、R値は、2.43であった。
【0034】
金属被覆実験
上記で得られたポリマーを、30mmφ二軸混練押出機(プラスチック工学研究所製BT−30型機)へ供給し、シリンダー温度300℃〜320℃にて混練を行い、ペレット状物を得た。得られたペレット状物を、電線被覆用ダイを備えた二軸押出機(東洋精機製作所製ラボプラストミル)へ供給し、シリンダー温度及び導線と被覆膜間のエアー抜き減圧を除く条件を実施例1と同じにして被覆を行った。シリンダー温度は320℃とし、導線と被覆膜間のエアー抜き減圧を−13mmHgとした。
導線被覆中、樹脂切れを生ずることなく、6時間連続して安定的に被覆することができ、外径が0.7mmφで、表面に凹凸のない被覆体が得られた。被覆体を実施例1と同様に熱処理した。得られた被覆体は、曲げても被覆膜にクラック及び割れが生じなかった。実施例1と同様にして引張試験を行った結果、被覆膜の引張破断強さは125MPaで、破断伸びは110%であった。
【0035】
[実施例4]
ポリマー合成例(3)
含水硫化ソーダ(純度46.10%)371kg、及びNMP800kgをチタン張り重合缶に仕込み、窒素ガス雰囲気下で徐々に約200℃まで昇温しながら、54.0モルの硫化水素と共に、水140.0kgを留出させた。次に、p−DCB325kg、1,2,4−トリクロロベンゼン0.885kgとNMP270kgとの混合溶液を供給して、220℃で5時間重合反応を行った。次いで、水95.8kgを圧入し、255℃で5時間重合反応を行った後、245℃に降温して5時間重合反応を継続した。重合反応終了後、反応系を冷却し、次いで、反応混合液を目開き150μm(100メッシュ)のスクリーンで篩分し、粒状ポリマーを分離した。粒状ポリマーは、メタノール洗と水洗をそれぞれ3回行った後、脱水し、乾燥した。得られたポリマーの310℃、剪断速度200/秒における溶融粘度は、726Pa・sで、R値は、2.72であった。
【0036】
金属被覆実験
上記で得られたポリマーを、30mmφ二軸混練押出機(プラスチック工学研究所製BT−30型機)へ供給し、シリンダー温度300℃〜320℃にて混練を行い、ペレット状物を得た。得られたペレット状物を、電線被覆用ダイを備えた二軸押出機(東洋精機製作所製ラボプラストミル)へ供給し、エアー抜き減圧を−10cmHgとしたこと以外は実施例3と同じ被覆条件で導線被覆を行った。
導線被覆中、樹脂切れを生ずることなく、6時間連続して安定的に被覆することができ、外径が0.7mmφで、表面に凹凸のない被覆体が得られた。被覆体を実施例1と同様に熱処理した。得られた被覆体は、曲げても被覆膜にクラック及び割れが生じなかった。実施例1と同様にして引張試験を行った結果、被覆膜の引張破断強さは110MPaで、破断伸びは105%であった。
【0037】
[実施例5]
ポリマー合成例(4)
含水硫化ソーダ(純度46.10%)373kg、及びNMP810kgをチタン張り重合缶に仕込み、窒素ガス雰囲気下で徐々に約200℃まで昇温しながら、53.8モルの硫化水素と共に、水140.0kgを留出させた。次に、p−DCB321.0kg、1,2,4−トリクロロベンゼン0.795kg、及びNMP266kgの混合溶液を供給して、220℃で5時間重合反応を行った。次に、水95.8kgを圧入し、255℃で5時間重合反応を行った後、245℃に降温して5時間重合反応を継続した。重合反応終了後、反応系を冷却し、次いで、反応混合液を目開き150μm(100メッシュ)のスクリーンで篩分し、粒状ポリマーを分離した。粒状ポリマーは、メタノール洗と水洗をそれぞれ3回行った後、脱水し、乾燥した。得られたポリマーの310℃、剪断速度200/秒における溶融粘度は、1600Pa・sで、R値は、2.88であった。
【0038】
金属被覆実験
上記で得られたポリマーを、30mmφ二軸混練押出機(プラスチック工学研究所製BT−30型機)へ供給し、シリンダー温度300℃〜330℃にて混練を行い、ペレット状物を得た。得られたペレット状物を電線被覆用ダイを備えた二軸押出機(東洋精機製作所製ラボプラストミル)へ供給し、シリンダー温度345℃、押出量8g/分、引き取り速度18m/分、延伸倍率9.5、パリソンコーン長さ23mm、導線と被覆膜間のエアー抜き減圧−15cmHgの条件で、導線に被覆した。導線及び被覆ダイは、実施例1と同じものを用いた。
導線被覆中、樹脂切れを生ずることなく、6時間連続して安定的に被覆することができ、外径が0.7mmφで、表面に凹凸のない被覆体が得られた。被覆体を実施例1と同様に熱処理した。得られた被覆体は、曲げても被覆膜にクラック及び割れが生じなかった。実施例1と同様にして引張試験を行った結果、被覆膜の引張破断強さは145MPaで、破断伸びは170%であった。
【0039】
[実施例6]
ポリマー合成例(5)
含水硫化ソーダ(純度46.21%)372kg、及びNMP820kgをチタン張り重合缶に仕込み、窒素ガス雰囲気下で徐々に約200℃まで昇温しながら、53.9モルの硫化水素と共に、水140.5kgを留出させた。次に、p−DCB326kg、1,2,4−トリクロロベンゼン0.856kg、及びNMP255kgの混合溶液を供給して、220℃で5時間重合反応を行った。次に、水96.2kgを圧入し、255℃で5時間重合反応を行った後、245℃に降温して5時間重合反応を継続した。重合反応終了後、反応系を冷却し、次いで、反応混合液を目開き150μm(100メッシュ)のスクリーンで篩分し、粒状ポリマーを分離した。粒状ポリマーは、メタノール洗と水洗をそれぞれ3回行った後、脱水し、乾燥した。得られたポリマーの310℃、剪断速度200/秒における溶融粘度は、1100Pa・sで、R値は、2.85であった。
【0040】
金属被覆実験
上記で得られたポリマーを、30mmφ二軸混練押出機(プラスチック工学研究所製BT−30型機)へ供給し、シリンダー温度300℃〜320℃にて混練を行い、ペレット状物を得た。
得られたペレット状物を電線被覆用ダイを備えた二軸押出機(東洋精機製作所製ラボプラストミル)へ供給し、シリンダー温度330℃、押出量8g/分、引き取り速度18m/分、延伸倍率9.5、パリソンコーン長さ15mm、導線と被覆膜間のエアー抜き減圧−18cmHgの条件で、導線に被覆した。導線及び被覆ダイは、実施例1と同じものを用いた。
導線被覆中、樹脂切れを生ずることなく、6時間連続して安定的に被覆することができ、外径が0.7mmφで、表面に凹凸のない被覆体が得られた。被覆体を実施例1と同様に熱処理した。得られた被覆体は、曲げても被覆膜にクラック及び割れが生じなかった。実施例1と同様にして引張試験を行った結果、被覆膜の引張破断強さは140MPaで、破断伸びは140%であった。
【0041】
[実施例7]
実施例6と同じペレット状物を用いて被覆を行った。被覆に際し、シリンダー温度330℃、押出量10g/分、引き取り速度20m/分、延伸倍率6.6、パリソンコーン長さ15mm、導線と被覆膜間のエアー抜き減圧−15cmHgとした。導線及び被覆ダイは実施例1と同じものを用いた。
導線被覆中、樹脂切れを生ずることなく、6時間連続して安定的に被覆することができ、外径が0.8mmφで、表面に凹凸のない被覆体が得られた。被覆体を温度250℃、滞在時間5秒で加熱処理を行った。得られた被覆体は、曲げても被覆膜にクラック及び割れが生じなかった。実施例1と同様にして引張試験を行った結果、引張破断強さは130MPaで、破断伸びは145%であった。
【0042】
[実施例8]
ポリマー合成例(6)
含水硫化ソーダ(純度46.40%)370kg、及びNMP810kgをチタン張り重合缶に仕込み、窒素ガス雰囲気下で徐々に約200℃まで昇温しながら、54.0モルの硫化水素と共に、水140.0kgを留出させた。次に、p−DCB320kg、1,2,4−トリクロロベンゼン0.465kg、及びNMP263kgの混合溶液を供給して、220℃で5時間重合反応を行った。次に、水96.5kgを圧入し、255℃で5時間重合反応を行った後、245℃に降温して5時間重合反応を継続した。重合反応終了後、反応系を冷却し、次いで、反応混合液を目開き150μm(100メッシュ)のスクリーンで篩分し、粒状ポリマーを分離した。粒状ポリマーは、メタノール洗と水洗をそれぞれ3回行った後、脱水し、乾燥した。得られたポリマーの310℃、剪断速度200/秒における溶融粘度は、340Pa・sで、R値は、2.18であった。
【0043】
金属被覆実験
上記で得られたポリマーを、30mmφ二軸混練押出機(プラスチック工学研究所製BT−30型機)へ供給し、シリンダー温度290℃〜315℃にて混練を行い、ペレット状物を得た。得られたペレット状物を、電線被覆用ダイを備えた二軸押出機(東洋精機製作所製ラボプラストミル)へ供給し、シリンダー温度315℃、押出量8g/分、引き取り速度18m/分、延伸倍率9.5、パリソンコーン長さ10mm、導線と被覆膜間のエアー抜き減圧−10cmHgの条件で、導線に被覆した。導線及び被覆ダイは、実施例1と同じものを用いた。
導線被覆中、樹脂切れを生ずることなく、6時間連続して安定的に被覆することができ、外径が0.7mmφで、表面に凹凸のない被覆体が得られた。被覆体を実施例1と同様に熱処理した。得られた被覆体は、曲げても被覆膜にクラック及び割れが生じなかった。実施例1と同様にして引張試験を行った結果、被覆膜の引張破断強さは100MPaで、破断伸びは100%であった。
【0044】
参考例1
ポリマー合成例(7)
含水硫化ソーダ(純度46.21%)372kg、及びNMP824kgをチタン張り重合缶に仕込み、窒素ガス雰囲気下で徐々に約200℃まで昇温しながら、56.6モルの硫化水素と共に、水142.0kgを留出させた。次いで、p−DCB322.2kg、1,2,4−トリクロロベンゼン0.796kg、及びNMP249kgの混合溶液を供給して、220℃で5時間重合反応を行った。次に、水96.8kgを圧入して、255℃で5時間重合反応を行った後、245℃に降温して5時間重合反応を継続した。重合反応終了後、反応系を冷却し、次いで、反応混合液を目開き150μm(100メッシュ)のスクリーンで篩分し、粒状ポリマーを分離した。粒状ポリマーは、メタノール洗と水洗をそれぞれ3回行った後、脱水し、乾燥した。得られたポリマーの310℃、剪断速度200/秒における溶融粘度は、2125Pa・sで、R値は、2.80であった。
【0045】
金属被覆実験
上記で得られたポリマーを、30mmφ二軸混練押出機(プラスチック工学研究所製BT−30型機)へ供給し、シリンダー温度310℃〜350℃にて混練を行い、ペレット状物を得た。得られたペレット状物を、電線被覆用ダイを備えた二軸押出機(東洋精機製作所製ラボプラストミル)へ供給し、シリンダー温度350℃、押出量8g/分、引き取り速度15m/分、延伸倍率6.6、パリソンコーン長さ15mm、導線と被覆膜間のエアー抜き減圧−15cmHgの条件で、導線に被覆した。導線及び被覆ダイは、実施例1と同じものを用いた。
導線被覆中、樹脂切れを生ずることなく、6時間連続して安定的に被覆することができ、外径が0.8mmφで、表面に凹凸のない被覆体が得られた。被覆体を実施例1と同様に熱処理した。得られた被覆体は、曲げても被覆膜にクラック及び割れが生じなかった。実施例1と同様にして引張試験を行った結果、被覆膜の引張破断強さは120MPaで、破断伸びは65%であった。
これらの実施例及び参考例のペレット化条件、電線被覆条件、熱処理条件、及び被覆体の評価結果を表1に一括して示す。
【0046】
【表1】
Figure 0003724665
【0047】
[比較例1]
ポリマー合成例(8)
含水硫化ソーダ(純度46.40%)390kg、及びNMP800kgをチタン張り重合缶に仕込み、窒素ガス雰囲気下で徐々に約200℃まで昇温しながら、57.8モルの硫化水素と共に、水148.0kgを留出させた。次いで、p−DCB354.6kg、1,2,4−トリクロロベンゼン8.210kg、及びNMP218kgの混合溶液を供給して、220℃で4時間重合反応を行った。次に、水85.6kgを圧入し、0.6℃/分の速度で255℃まで昇温し、255℃で5時間重合反応を行った。重合反応終了後、反応系を冷却し、次いで、反応混合液を目開き150μm(100メッシュ)のスクリーンで篩分し、粒状ポリマーを分離した。粒状ポリマーは、アセトン洗3回、水洗4回、0.6%の塩化アンモニウム水溶液洗1回、水洗1回、0.06%の塩化アンモニウム水溶液洗1回を施し、脱水、乾燥した。得られたポリマーの310℃、剪断速度200/秒における溶融粘度は、3100Pa・sで、R値は、4.08であった。
金属被覆実験
上記で得られたポリマーを、30mmφ二軸混練押出機(プラスチック工学研究所製BT−30型機)へ供給し、ペレット化しようとしたが、樹脂が溶融せず、ペレット状物を得ることができなかった。
【0048】
[比較例2]
ポリマー合成例(9)
含水硫化ソーダ(純度46.40%)390kg、及びNMP800kgをチタン張り重合缶に仕込み、窒素ガス雰囲気下で徐々に約200℃まで昇温しながら、57.2モルの硫化水素と共に、水147.0kgを留出させた。次いで、p−DCB337.5kgとNMP219kgとの混合溶液を供給して、220℃で4.5時間重合反応を行った。次に、水80.8kgを圧入し、255℃で2時間重合反応を行った後、245℃に降温して11時間重合反応を継続した。重合反応終了後、反応系を冷却し、次いで、反応混合液を目開き150μm(100メッシュ)のスクリーンで篩分し、粒状ポリマーを分離した。粒状ポリマーは、メタノール洗と水洗をそれぞれ3回行った後、脱水し、乾燥した。得られたポリマーの310℃、剪断速度200/秒における溶融粘度は、916Pa・sで、R値は、1.90であった。
【0049】
金属被覆実験
上記で得られたポリマーを、30mmφ二軸混練押出機(プラスチック工学研究所製BT−30型機)へ供給し、シリンダー温度290℃〜320℃にて混練を行い、ペレット状物を得た。得られたペレット状物を、電線被覆用ダイを備えた二軸押出機(東洋精機製作所製ラボプラストミル)へ供給し、シリンダー温度320℃、押出量8g/分、引き取り速度18m/分、延伸倍率9.5、パリソンコーン長さ2mm、導線と被覆膜間のエアー抜き減圧−0.5cmHgの条件で、導線に被覆した。導線及び被覆ダイは、実施例1と同じものを用いた。
導線被覆中、1回/3時間の頻度で樹脂切れが起こった。樹脂の弾力性が乏しいため、導線と被覆膜間のエアー抜き減圧が困難であり、パリソンコーン長さを長くすることができなかった。なお、得られた被覆体の外径は0.7mmφで、表面には凹凸がなく平滑であった。得られた被覆体を実施例1と同様の加熱処理を行った後、実施例1と同様にして引張試験を行った結果、引張破断強さは67MPaで、破断伸びは4%であった。この被覆体は、曲げると被覆膜にクラックが生じた。
【0050】
[比較例3]
比較例2と同じペレット状物及び導線を用い、延伸倍率を変えて被覆をした。被覆条件は、シリンダー温度330℃、押出量18g/分、引き取り速度50m/分、延伸倍率50、パリソンコーン長さ2mm、導線と被覆膜間のエアー抜き減圧−0.55mHg、被覆ダイのマンドレル先端外径2.8mmφ、ダイのダイ内径4.9mmφとした。導線被覆中、頻繁に樹脂切れが生じ、安定した被覆が困難であった。
【0051】
[比較例4]
ポリマー合成例(10)
含水硫化ソーダ(純度46.21%)420kg、及びNMP720kgをチタン張り重合缶に仕込み、窒素ガス雰囲気下で徐々に約200℃まで昇温しながら、61.8モルの硫化水素と共に、水160.0kgを留出させた。次いで、p−DCB363.6kgとNMP250kgとの混合溶液を供給して、220℃で4.5時間重合反応を行った。次に、水56.5kgを圧入し、255℃で5時間重合反応させた。重合反応終了後、反応系を冷却し、次いで、反応混合液を目開き150μm(100メッシュ)のスクリーンで篩分し、粒状ポリマーを分離した。粒状ポリマーは、メタノール洗3回、水洗を3回、3%の塩化アンモニウム溶液洗1回、水洗2回を行い、水でリスラリーした後、塩酸を添加しpH約5に調整し、脱水、乾燥した。得られたポリマーの310℃、剪断速度200/秒における溶融粘度は、192Pa・sで、R値は、1.37であった。
【0052】
金属被覆実験
上記で得られたポリマーを、30mmφ二軸混練押出機(プラスチック工学研究所製BT−30型機)へ供給し、シリンダー温度290℃〜305℃にて混練を行い、ペレット状物を得た。得られたペレット状物を電線被覆用ダイを備えた二軸押出機(東洋精機製作所製ラボプラストミル)へ供給し、シリンダー温度310℃、押出量8g/分、引き取り速度18m/分、延伸倍率9.5、パリソンコーン長さ2mm、導線と被覆膜間のエアー抜き減圧−0.4cmHgの条件で、導線に被覆した。導線及び被覆ダイは、実施例1と同じものを用いた。
導線被覆中、2回/1時間の頻度で樹脂切れが起こった。樹脂の弾力性が乏しいため、導線と被覆膜間のエアー抜き減圧が困難であり、パリソンコーン長さを長くすることができなかった。得られた被覆体の外径は0.7mmφで、表面には凹凸がなく平滑であった。得られた被覆体を、実施例1と同様の加熱処理を行った後、実施例1と同様にして引張試験を行った結果、引張破断強さは58MPaで、破断伸びは3%であった。この被覆体は、曲げると被覆膜にクラックが生じた。
【0053】
[比較例5]
ポリマー合成例(11)
含水硫化ソーダ(純度46.40%)372kg、及びNMP805kgをチタン張り重合缶に仕込み、窒素ガス雰囲気下で徐々に約200℃まで昇温しながら、53.9モルの硫化水素と共に、水140.3kgを留出させた。次いで、p−DCB330kg、1,2,4−トリクロロベンゼン0.989kg、及びNMP274kgの混合溶液を供給して、220℃で5時間重合反応を行った。次に、水97.3kgを圧入し、255℃で1時間重合反応を行った後、240℃に降温して5時間重合反応を継続した。重合反応終了後、反応系を冷却し、次いで、反応混合液を目開き150μm(100メッシュ)のスクリーンで篩分して、粒状ポリマーを分離した。粒状ポリマーは、メタノール洗と水洗をそれぞれ3回行った後、脱水し、乾燥した。得られたポリマーの310℃、剪断速度200/秒における溶融粘度は、600Pa・sで、R値は、2.98であった。
【0054】
金属被覆実験
上記で得られたポリマーを、30mmφ二軸混練押出機(プラスチック工学研究所製BT−30型機)へ供給し、シリンダー温度290℃〜310℃にて混練を行い、ペレット状物を得た。得られたペレット状物を、電線被覆用ダイを備えた二軸押出機(東洋精機製作所製ラボプラストミル)へ供給し、シリンダー温度315℃、押出量8g/分、引き取り速度18m/分、延伸倍率9.5、パリソンコーン長さ5mm、導線と被覆膜間のエアー抜き減圧−0.5cmHgの条件で、導線に被覆した。導線及び被覆ダイは、実施例1と同じものを用いた。
樹脂の延伸性が乏しく、導線被覆中、4回/1時間の頻度で樹脂切れが起こり連続して安定に被覆することが困難であった。得られた被覆体の外径は0.7mmφで、表面には凹凸がなく平滑であった。得られた被覆体を実施例1と同様の加熱処理を行った後、実施例1と同様にして引張試験を行った結果、引張破断強さは52Mpaで、破断伸びは3%であった。この被覆体は、曲げると被覆膜にクラックが生じた。
これらの比較例のペレット化条件、電線被覆条件、熱処理条件、及び被覆体の評価結果を表2に一括して示す。
【0055】
【表2】
Figure 0003724665
【0056】
[実施例10]
実施例1のポリマー合成例(1)と同様にして、ポリマーを合成し、次いで、該ポリマーを用いて、実施例1と同様にして金属被覆実験を行い、被覆体(樹脂被覆導線)を得た。得られた被覆体を加熱ゾーンに導き、表3の各実験番号に示す熱処理温度と熱処理時間(滞留時間)の条件で熱処理して、被覆樹脂を結晶化させてからロールに巻き取った。実施例1と同様にして引張試験を行った。また、下記の方法により、被覆樹脂の結晶化度を測定した。結果を表3に示す。
結晶化度の測定法
密度勾配管法により被覆樹脂の密度を測定し、結晶密度1.43g/cm及び非晶密度1.3195g/cmを基準にして、体積分率により、測定密度から結晶化度を算出した。
【0057】
【表3】
Figure 0003724665
表3の結果は、熱処理温度が異なれば、結晶化度がほぼ同じでも、破断伸度が異なることを示している。また、実験番号1、11〜14などに見られるように、熱処理温度が高いほど、高い破断伸度が得られやすい。
【0058】
[実施例11]
実施例1のポリマー合成例(1)と同様にして、ポリマーを合成し、次いで、該ポリマー100重量部とペンタエリスリトールトリステアレート(日本油脂社製、ユニスターH476)1重量部をタンブラーミキサーで3分間混合して、樹脂組成物を得た。前記ポリマーに代えて、該樹脂組成物を用いたこと以外は、実施例1と同様にして金属被覆実験を行い、被覆体(樹脂被覆導線)を得た。得られた被覆体を冷却後、加熱ゾーンに導き、実施例1と同じ条件で熱処理して、被覆樹脂を結晶化させてからロールに巻き取った。実施例1と同様にして引張試験を行った結果、引張破断強度は134MPaで、破断伸度は180%であった。この被覆体は、ストリップ性が良好であった。
【0059】
[実施例12]
実施例1のポリマー合成例(1)と同様にして、ポリマーを合成し、次いで、該ポリマー100重量部と水酸化バリウム0.5重量部をタンブラーミキサーで3分間混合して、樹脂組成物を得た。前記ポリマーに代えて、該樹脂組成物を用いたこと以外は、実施例1と同様にして金属被覆実験を行い、被覆体(樹脂被覆導線)を得た。得られた被覆体を冷却後、加熱ゾーンに導き、実施例1と同じ条件で熱処理して、被覆樹脂を結晶化させてからロールに巻き取った。実施例1と同様にして引張試験を行った結果、引張破断強度は125MPaで、破断伸度は120%であった。金属被覆実験では、10時間連続して安定的に被覆することができた。
【0060】
[実施例13]
実施例1のポリマー合成例(1)と同様にして、ポリマーを合成し、次いで、該ポリマー100重量部と水酸化バリウム0.5重量部とジステアリルペンタエリスリトールジホスフェート(Specially Chemicals社製)0.5重量部をタンブラーミキサーで3分間混合して、樹脂組成物を得た。前記ポリマーに代えて、該樹脂組成物を用いたこと以外は、実施例1と同様にして金属被覆実験を行い、被覆体(樹脂被覆導線)を得た。得られた被覆体を冷却後、加熱ゾーンに導き、実施例1と同じ条件で熱処理して、被覆樹脂を結晶化させてからロールに巻き取った。実施例1と同様にして引張試験を行った結果、引張破断強度は123MPaで、破断伸度は100%であった。金属被覆実験では、10時間連続して安定的に被覆することができた。また、この被覆体は、ストリップ性が良好であった。
【0061】
【発明の効果】
本発明によれば、金属基材上に被覆を行った場合に樹脂切れを起こすことなく安定して連続的に被覆することができ、被覆後に熱処理をした場合に、被覆層の樹脂割れを生じることがない金属被覆用ポリアリーレンスルフィド樹脂が提供される。また、本発明によれば、耐熱性、耐フレオン性、難燃性、耐薬品性、耐放射線性、低温物性、電気絶縁性、機械的物性等に優れた樹脂被覆層を有する樹脂被覆金属部材とその製造方法が提供される。
本発明は、自動車や船舶のコントロールケーブル用索導管やコントロールケーブル用内索、耐熱性コイルやモーター等の巻き線、自動車ソレノイドリード線、コンプレッサー等の耐フレオン電線、変圧器の巻線、原子力発電所用の耐放射線性機器配線及びケーブル、金属棒、金属管、その他の耐熱電線、シース管、ワイヤー等々の被覆に適用することができる。
【図面の簡単な説明】
【図1】 図1は、ポリアリーレンスルフィド樹脂の溶融粘度η200とR値との関係を示すグラフである。EFGHの枠内が、本発明で使用する金属被覆用ポリアリーレンスルフィド樹脂の範囲である。[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a resin for metal coatingAndResin coated metal partsAnd method for producing the resin-coated metal memberMore specifically, a resin for metal coating comprising a polyarylene sulfide resin excellent in heat resistance, freon resistance, flame retardancy, chemical resistance, radiation resistance, low temperature properties, electrical insulation properties, mechanical properties, etc.,Resin-coated metal member coated with the resin, And method for manufacturing the memberAbout.
  The resin for metal coating and the resin-coated metal member of the present invention are a cable conduit for a control cable for automobiles and ships, an inner cable for a control cable, a winding of a heat resistant coil and a motor, a motor solenoid lead wire, a freon resistant such as a compressor. Used in a wide range of fields such as electric wires, transformer windings, radiation resistant equipment wiring for nuclear power plants, and cables, metal bars, metal tubes, other heat resistant wires, sheath tubes, wires.
[0002]
[Prior art]
  Polyarylene sulfide resins (PAS resins) represented by polyphenylene sulfide resins (PPS resins) are used in a wide range of fields as engineering plastics with excellent heat resistance, chemical resistance, flame retardancy, electrical insulation, etc. . Taking advantage of such excellent properties, polyarylene sulfide resin is expected to be used as a coating resin for electric wires, metal bars, and the like, and specific proposals have been made.
  For example, JP-A-60-185306 discloses melt extrusion at 310 ° C. from a nozzle having a pore diameter of 0.5 mm at a melt viscosity of 300 to 100,000 poise measured at 310 ° C. and a shear rate of 200 / sec. There has been proposed a method for producing an enameled wire-type covered electric wire by melt-extruding a polyphenylene sulfide resin having a primary draw ratio of 10 or more when spinning into a metal conductor. Japanese Patent Application Laid-Open No. 62-143307 proposes an insulated wire formed by extruding a polyphenylene sulfide resin composition having a melt index of 0.5 to 100 g / 10 min onto a conductor.
[0003]
  However, when polyarylene sulfide resin is melt-extruded onto a metal substrate such as a metal wire and a coating layer is continuously formed, the stretchability of the resin is poor. It was difficult to get things. Further, when the polyarylene sulfide resin-coated metal member is coated and then exposed to a high temperature to crystallize the resin, there is a problem that the coating layer breaks.
  Generally, when a resin is continuously coated on a metal substrate by a melt extrusion method, the resin is stretched in a molten state. At this time, it is necessary that a uniform coating layer is stably obtained without causing the resin to run out. Furthermore, it is necessary that the coating layer does not crack even if heat treatment is performed after coating. However, at present, no polyarylene sulfide resin for metal coating having physical properties suitable for applications such as coated electric wires has been found.
[0004]
[Problems to be solved by the invention]
  The object of the present invention is to provide a continuous coating stably without causing resin breakage when continuous coating is carried out on a metal substrate by a melt extrusion method. An object of the present invention is to provide a polyarylene sulfide resin for metal coating that does not cause cracking.
  Another object of the present invention is to form a polyarylene sulfide resin coating layer excellent in heat resistance, freon resistance, flame resistance, chemical resistance, radiation resistance, low temperature properties, electrical insulation properties, mechanical properties, etc. Resin-coated metal memberAnd its manufacturing methodIs to provide.
  As a result of diligent research to overcome the problems of the prior art, the present inventors have found that branched polyarylene sulfides obtained by polymerizing alkali metal sulfides and dihaloaromatic compounds in the presence of trihaloaromatic compounds. When using a selected resin that has a specific melt viscosity range and melting characteristics, it is excellent in processing without causing resin breakage even when stretched during melt coating on a metal substrate. It has been found that the coating layer does not crack when it is crystallized by heat treatment after coating.
  The coated metal member such as a coated electric wire coated with such a selected polyarylene sulfide resin has a coating layer with heat resistance, flame resistance, chemical resistance, freon resistance, radiation resistance, electrical insulation, low temperature In addition to exhibiting excellent properties inherent in polyarylene sulfide resins such as properties, they are excellent in mechanical properties such as flex resistance, tensile strength, tensile elongation, and flexibility.
  The present invention has been completed based on these findings.
[0005]
[Means for Solving the Problems]
  According to the present invention, a branched polyarylene sulfide resin obtained by polymerizing an alkali metal sulfide and a dihaloaromatic compound in the presence of a trihaloaromatic compound, measured at 310 ° C. and a shear rate of 200 / sec. Melt viscosity η200But300-2000Pa · s, the melt viscosity η200And melt viscosity η measured at 310 ° C. and a shear rate of 1200 / sec.1200Ratio R (η200/ Η1200) Is the following relational expression (1):
[Expression 4]
Figure 0003724665
TheProvided is a metal coating resin characterized by comprising a satisfactory polyarylene sulfide resin.The
[0006]
  According to the present invention, there is also provided a branched polyarylene sulfide resin obtained by polymerizing an alkali metal sulfide and a dihaloaromatic compound in the presence of a trihaloaromatic compound, which is 310 ° C. at a shear rate of 200 / sec. Measured melt viscosity η200But300-2000Pa · s, the melt viscosity η200And melt viscosity η measured at 310 ° C. and a shear rate of 1200 / sec.1200Ratio R (η200/ Η1200) Is the following relational expression (1):
[Equation 5]
Figure 0003724665
There is provided a resin-coated metal member obtained by coating a metal substrate with a metal coating resin comprising a polyarylene sulfide resin satisfying the above.
[0007]
  Furthermore, according to the present invention, there is provided a branched polyarylene sulfide resin obtained by polymerizing an alkali metal sulfide and a dihaloaromatic compound in the presence of a trihaloaromatic compound, which is obtained at 310 ° C. and a shear rate of 200 / sec. Measured melt viscosity η 200 Is 300 to 2000 Pa · s, the melt viscosity η 200 And melt viscosity η measured at 310 ° C. and a shear rate of 1200 / sec. 1200 Ratio R (η 200 / Η 1200 ) Is the following relational expression (1):
[Formula 6]
Figure 0003724665
A metal coating resin comprising a polyarylene sulfide resin satisfying the above conditions is melted at a temperature in the range of (melting point + 20 ° C.) to 350 ° C. using an extruder, and then coated with a die outside while forming a parison. Then, after cooling the coated body, the coated body is cooled and then heat treated under the conditions of a heat treatment temperature of 200 to 270 ° C. and a heat treatment time of 0.1 seconds to 10 minutes to increase the crystallinity of the resin of the coating layer. There is provided a method for producing a resin-coated metal member characterized by being in the range of 15 to 30%.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
  The present invention is characterized in that the following specific selected polyarylene sulfide is used as the metal coating resin.
  1. A branched polyarylene sulfide resin obtained by polymerizing an alkali metal sulfide and a dihaloaromatic compound in the presence of a trihaloaromatic compound.
  2. Melt viscosity η measured at 310 ° C. and shear rate 200 / sec200Is within the range of the following formula (2).
[0009]
[Expression 7]
Figure 0003724665
  3. The melt viscosity η200And melt viscosity η measured at 310 ° C. and a shear rate of 1200 / sec.1200And the ratio R (R = η200/ Η1200) Satisfies the relational expression (1).
[0010]
[Equation 8]
Figure 0003724665
[0011]
  As a result of earnestly studying continuous coating on a metal substrate using a polyarylene sulfide resin, the present inventors have used the selected polyarylene sulfide resin that satisfies the above requirements 1 to 3, It has been found that a coating that can be stably melt-coated and has excellent mechanical properties can be obtained.
  The polyarylene sulfide resin used in the present invention is not a complete linear resin obtained only from an alkali metal sulfide and a dihaloaromatic compound, but a branch obtained by coexisting a small amount of a trihaloaromatic compound that is a trifunctional monomer. Mold resin. By adopting such a branched type, a polyarylene sulfide resin satisfying the relational expression (1) can be obtained, and when the resin is coated on a metal substrate, excellent workability and mechanical properties are obtained. Can be obtained. On the other hand, the crosslinkable resin obtained by oxidative crosslinking (curing) of polyarylene sulfide resin having a low molecular weight in the presence of air generates a gel-like substance during melt stretching and has poor processability. In addition, the practicality is poor in terms of the strength of the coating layer, adhesion to the metal substrate, wear resistance, dielectric breakdown resistance, heat resistance, and the like.
[0012]
  The polyarylene sulfide resin used in the present invention has a melt viscosity η measured at 310 ° C. and a shear rate of 200 / sec.200 3It is 00 to 2000 Pa · s. Melt viscosity η200But300When it is less than Pa · s, when the polyarylene sulfide resin is extruded from the die, the elasticity in the molten state is poor and it becomes difficult to stretch. Melt viscosity η200But2000When it exceeds Pa · s, the generation of gel-like substances becomes remarkable, the workability is lowered, and the bending resistance and flexibility of the coating layer are lowered. The polyarylene sulfide resin used in the present invention needs to satisfy the relational expression (1). R (η200/ Η1200) Is in the range represented by the following formula (3), when the molten resin is extruded from a die, it is difficult to stretch because the elasticity in the molten state is poor.
[0013]
[Equation 9]
Figure 0003724665
  When R is in the range represented by the following formula (4), uniform stretching becomes difficult, and a lot of uneven uneven portions are generated in the coating layer.
[0014]
[Expression 10]
Figure 0003724665
[0015]
  FIG. 1 shows the melt viscosity η of polyarylene sulfide resin.200The relationship between (horizontal axis) and R value (vertical axis) is shown. The polyarylene sulfide resin used in the present invention is within the range surrounded by four points of ABCD in FIG.And within the range surrounded by four points of EFGHbelongs to. The white square marks in FIG.And Reference Example 1The characteristic values of the resin obtained in (1) are plotted, and the black triangle marks plot the characteristic values of the resins of the comparative examples. The polyarylene sulfide resin having the above-described melt viscosity and melt characteristics can be obtained by appropriately controlling the ratio of each monomer and polymerization conditions when polymerizing an alkali metal sulfide and a dihaloaromatic compound in the presence of a trihaloaromatic compound. Can be obtained.
[0016]
  Examples of the alkali metal sulfide include sodium sulfide, potassium sulfide, lithium sulfide, rubidium sulfide, cesium sulfide, and a mixture thereof. Moreover, you may produce | generate an alkali metal sulfide in situ in reaction container by a conventional method. These alkali metal sulfides can be used in the form of hydrates, aqueous mixtures or anhydrides. Add a small amount of alkali metal hydroxide to react with alkali metal bisulfide or alkali metal thiosulfate present in trace amounts in the alkali metal sulfide to remove these impurities, or to the sulfide It may be converted. Among these, sodium sulfide is industrially preferable because it is the cheapest.
[0017]
  Examples of dihaloaromatic compounds include dihalobenzenes such as p-dichlorobenzene, m-dichlorobenzene, o-dichlorobenzene, and p-dibromobenzene; 2,5-dichlorotoluene, 1-methoxy-2,5-dichlorobenzene, and the like Dihalobenzenes such as 1,4-dichloronaphthalene; dihalobiphenyls such as 4,4′-dichlorobiphenyl and 3,3′-dichlorobiphenyl; dihalobenzoic acids such as 3,5-dichlorobenzoic acid; Dihalobenzophenones such as 4,4'-dichlorobenzophenone; dihalodiphenyl sulfones such as 4,4'-dichlorodiphenylsulfone and 3,3'-dichlorodiphenylsulfone; dihalophenyl ethers such as 4,4'-dichlorodiphenyl ether And the like.
  Among these, from the viewpoints of economy and physical properties, dihalobenzene is preferable, and p-dihalobenzene such as p-dichlorobenzene is more preferable. In particular, the dihaloaromatic compound preferably contains p-dihalobenzene in a proportion of preferably 70% by weight or more, more preferably 80% by weight or more, and still more preferably 90% by weight or more.
[0018]
  Examples of the trihalo aromatic compound include 1,2,3-trichlorobenzene, 1,2,3-tribromobenzene, 1,2,4-trichlorobenzene, 1,2,4-tribromobenzene, 1,3. , 5-trichlorobenzene, 1,3,5-tribromobenzene, trihalobenzene such as 1,3-dichloro-5-bromobenzene; alkyl substituent of trihalobenzene; a mixture thereof. Among these, 1,2,4-trihalobenzene, 1,3,5-trihalobenzene, and 1,2,3-trichlorobenzene are preferable from the viewpoints of economy, reactivity, physical properties, and the like.
[0019]
  As a method for producing the polyarylene sulfide resin, a method in which an alkali metal sulfide and a dihaloaromatic compound are subjected to a polycondensation reaction in the presence of a trihaloaromatic compound in a polar organic solvent containing water can be employed. . Examples of water include hydration water of alkali metal sulfide, added water, reaction water, water of alkali metal sulfide aqueous solution, and the like. Examples of the organic amide solvent include N-methylpyrrolidone, N-ethylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylcaprolactam, dimethylimidazolidinone, tetramethylurea, hexamethylphosphonic acid amide. Etc. Among these, N-methyl-2-pyrrolidone (NMP) is particularly preferable from the viewpoints of economy and stability.
[0020]
  The ratio a / b between the number of moles of charged dihaloaromatic compound a and the number of moles of charged alkali metal sulfide b is:GoodPreferably, it prepares so that it may become in the range of 1.00-1.06. The trihaloaromatic compound is used for 1 mole of the alkali metal sulfide charged.GoodPreferably, it adjusts so that it may become in the range of 0.0005-0.007 mol, and adds to a polymerization reaction system.
  Trihaloaromatic compound is added to 1 mol of charged alkali metal compound.0.0005If it is less than the mole, the resulting polyarylene sulfide resin is not sufficiently elastic in the molten state, and therefore, when it is stretched directly from the molten state, it cannot be sufficiently oriented. For this reason, the intensity | strength of the obtained coating layer falls. Conversely, trihaloaromatic compounds0.007If the molar excess is exceeded, the melt viscosity of the resulting polyarylene sulfide resin will be high, and this will lead to a loss of resin during coating, making it difficult to obtain a uniform coating continuously. The addition of the trihaloaromatic compound to the polymerization reaction system may be early or late in the polymerization, but the initial case is more effective with a small amount.
[0021]
  The polymerization method may be a conventionally known method, and is not particularly limited. As a specific example, for example, in a state where 0.5 to 2.4 mol of water per 1 mol of charged alkali metal sulfide exists. The reaction is carried out at a temperature of 150 to 235 ° C. until the conversion of the dihaloaromatic compound is about 50 to 98 mol%, and then 2.5 to 7.0 mol of water per mol of the charged alkali metal sulfide. Can be present in the reaction system, and the reaction can be continued by raising the temperature to 245 to 280 ° C. The amount of the polar organic solvent used is usually 0.2 to 2.0 kg, preferably 0.3 to 1.0 kg per mole of alkali metal sulfide.
[0022]
  In order to continuously coat the metal substrate using the polyarylene sulfide resin, it was melted at a temperature equal to or higher than the melting point of the resin, preferably (melting point + 20 ° C.) to 350 ° C., using an extruder. Then, it coat | covers on a metal base material by die | dye coating | covering, forming a parison. During the coating process, the coated metal body (that is, the resin-coated metal member) is taken up at a constant speed by a pinch roller, and a uniform coating layer is continuously formed as it passes through the die. Next, after the coated metal body is cooled in the cooling zone, it is usually wound up by a winder or the like.
[0023]
  In the present invention, after controlling the crystallinity and mechanical properties of the coating layer and obtaining a desired coated metal body, after extruding the molten resin from the die of the extruder, forming a parison, and coating the metal substrate In the period up to the pinch roller, if necessary, a heating zone can be provided to heat-treat the coated metal body. The heat treatment temperature of the coated metal body is usually 120 to 290 ° C, preferably 130 to 270 ° C. The heat treatment time (that is, the residence time in the heating zone) varies depending on productivity, coating film thickness, take-off speed, resin crystallization speed and crystallization temperature, and cannot generally be specified, but usually 0.1 seconds or longer The time is 10 minutes or less.
[0024]
  Moreover, in this invention, in order to control the crystallinity degree and mechanical physical property of a coating layer, and to obtain a desired coating body, the coated metal body once taken can be heat-processed as needed. In this case, the heat treatment temperature of the coated metal body is usually in the range of 120 to 290 ° C, preferably 130 to 270 ° C. The heat treatment time varies depending on productivity, film thickness, take-off speed, resin crystallization speed and crystallization temperature, and cannot be generally specified, but is usually 1 second to 100 hours. When heat treatment is performed at a temperature of less than 120 ° C., it is not preferable because crystallization cannot be sufficiently performed and dimensional stability or surface properties at high temperatures may be impaired. When heat treatment is performed at a temperature exceeding 290 ° C., surface properties may be impaired due to deformation of the coating layer. If the heat treatment time is less than 1 second, it cannot be sufficiently crystallized, and the dimensional stability or surface property at high temperature may be impaired, which is not preferable. Further, if the heat treatment time is too long, the surface property is impaired by deformation of the coating layer, which is not preferable. When the coated metal body once taken is heat-treated, the heat treatment temperature is preferably set to 190 ° C. or higher from the viewpoint of the elongation of the coating film. In particular, by adopting heat treatment conditions of a heat treatment time of preferably 200 to 270 ° C., more preferably 230 to 260 ° C. for 1 second to 10 minutes, more preferably about 1 to 60 seconds, Degree can be achieved.
[0025]
  In general, the crystallinity of the resin of the coating layer by heat treatment is preferably 30% or less. If the crystallinity exceeds 30%, the coating layer may become brittle. The crystallinity of the resin of the coating layer is preferably in the range of 15 to 30%. However, even if the degree of crystallinity of the resin is the same, the elongation of the coating layer tends to be different if the heat treatment temperature is different. The higher the heat treatment temperature, the easier it is to obtain a high degree of elongation even when the crystallinity of the resin is the same or higher. On the other hand, when the crystallinity is increased by increasing the heat treatment time at a relatively low heat treatment temperature, the elongation tends to decrease. Therefore, as described above, it is preferable to perform the heat treatment at a heat treatment temperature of 200 to 270 ° C. and a heat treatment time in which the crystallinity does not exceed 30%.
[0026]
  The resin and the coated metal body in the present invention may contain a small amount of other components that can be mixed in addition to the polyarylene sulfide resin as long as the object of the present invention is not impaired. Other components include, for example, silica, talc, mica, kaolin, calcium carbonate, magnesium phosphate, glass, etc., granular, powdery or scale-like inorganic fillers, glass fiber, carbon fiber, mica ceramic fiber, etc. Fibrous inorganic fillers, polytetrafluoroethylene, tetrafluoride / hexafluoroethylene copolymers, fluorine resins such as ethylene / tetrafluoroethylene copolymers, silicone elastomers, acrylic elastomers, olefin elastomers, polyamide elastomers, Examples include impact resistance agents such as fluorine-based elastomers, other thermoplastic resins, thermosetting resins, coupling agents, lubricants, mold release agents, stabilizers, and nucleating agents.
[0027]
  The polyarylene sulfide resin of the present invention is excellent in adhesion to a metal substrate. For example, the coated layer has an appropriate strip property with respect to the metal substrate, such as a covered electric wire. In a field that requires a small amount, a small amount of a release agent can be contained in the resin. Examples of the releasing agent include fatty acid esters such as pentaerythritol tristearate and distearyl pentaerythritol diphosphate. By blending such a release agent, the adhesiveness between the metal substrate and the resin coating layer is moderately weakened, and a resin-coated metal member having stripping properties can be obtained. The release agent is usually used at a ratio of 0.1 to 3 parts by weight with respect to 100 parts by weight of the resin. As the stabilizer, known ones for polyarylene sulfide resins can be used, but for example, barium hydroxide is preferable in order to stably melt and extrude the resin from a die of an extruder. The stabilizer is usually used at a ratio of 0.1 to 3 parts by weight with respect to 100 parts by weight of the resin.
[0028]
  Examples of the metal substrate include long metal substrates such as metal conductors (metal conductors) such as electric wires, metal rods, metal tubes, and wires. The thickness of the polyarylene sulfide resin coating layer can be appropriately determined according to each application and desired physical properties.
  According to the present invention, a coating layer made of a polyarylene sulfide resin excellent in heat resistance, freon resistance, flame resistance, chemical resistance, radiation resistance, low temperature properties, electrical insulation properties, mechanical properties, etc. is formed. A resin-coated metal member such as a coated electric wire is obtained. Specific examples include control cable ropes and control cable inner cables for automobiles and ships, heat-resistant coils and motor windings, automobile solenoid leads, compressor freon-resistant wires, transformer windings, and nuclear power generation. Examples of the radiation-resistant equipment wiring for use, and coated metal members such as cables, metal rods, metal tubes, other heat-resistant wires, sheath tubes, and wires.
[0029]
【Example】
  Examples belowReference exampleThe present invention will be described more specifically with reference to comparative examples.
[0030]
[Example 1]
Polymer synthesis example (1)
  373 kg of hydrous sodium sulfide (purity 46.06%) and 800 kg of N-methylpyrrolidone (hereinafter abbreviated as NMP) were charged into a titanium-clad polymerization can and gradually heated to about 200 ° C. in a nitrogen gas atmosphere. 141 kg of water was distilled with 4 mol of hydrogen sulfide. Next, a mixed solution of 324.7 kg of p-dichlorobenzene (hereinafter abbreviated as p-DCB), 0.796 kg of 1,2,4-trichlorobenzene and 274 kg of NMP was supplied, and the polymerization reaction was performed at 220 ° C. for 5 hours. went. Next, 96.6 kg of water was injected into the reaction system, a polymerization reaction was performed at 255 ° C. for 5 hours, and then the temperature was lowered to 245 ° C. and the polymerization reaction was continued for 5 hours. After completion of the polymerization reaction, the reaction system was cooled, and then the reaction mixture was sieved with a screen having an opening of 150 μm (100 mesh) to separate the granular polymer. The granular polymer was dehydrated and dried after washing with methanol and washing with water three times. The obtained polymer had a melt viscosity of 1315 Pa · s at 310 ° C. and a shear rate of 200 / sec, and an R value of 2.64.
[0031]
Metal coating experiment
  The polymer obtained above was supplied to a 30 mmφ twin-screw kneading extruder (BT-30 machine manufactured by Plastics Engineering Laboratory) and kneaded at a cylinder temperature of 300 ° C. to 330 ° C. to obtain a pellet. The obtained pellet-like material was supplied to a twin-screw extruder (laboroplast mill manufactured by Toyo Seiki Seisakusho Co., Ltd.) equipped with a wire coating die, and the conductive wire was coated. The conducting wire coating conditions were a cylinder temperature of 335 ° C., an extrusion rate of 8 g / min, a take-up speed of 18 m / min, a draw ratio of 9.5, a parison cone length of 15 mm, and an air venting reduced pressure of 15 cmHg between the conducting wire and the coating film. As the conducting wire, an electric hard copper wire 0.4 mmφ (JIS C3101) was used. A coating die having a mandrel tip outer diameter of 1.3 mmφ and a die inner diameter of 2.2 mmφ was used.
  During the coating of the lead wire, it was possible to stably coat continuously for 6 hours without causing the resin to run out, and a coated body having an outer diameter of 0.7 mmφ and having no irregularities on the surface was obtained. After cooling the coated body, it was led to a heating zone and heat-treated under the conditions of 250 ° C. and a residence time of 3 seconds to crystallize the coated resin and wound up on a roll. The coated body thus obtained did not crack or crack in the coating film even when bent. A conducting wire was extracted from the covering, and a tensile test of the covering film was performed under the following conditions.
Tensile test
・ Testing machine: Tensilon manufactured by Toyo Baldwin Co., Ltd.
・ Sample length: 100 mm
・ Tensile speed: 100 mm / min
  As a result, the tensile breaking strength of the coating film was 136 MPa, and the breaking elongation was 150%.
[0032]
[Example 2]
  Using the same pellets and conducting wire as in Example 1, the coating conditions were changed so that the draw ratio was 50 times. Conductor coating conditions are: cylinder temperature 340 ° C., extrusion rate 34 g / min, take-off speed 100 m / min, draw ratio 50, parison cone length 40 mm, air venting reduced pressure between conductor and coating film −15 cmHg, coated die mandrel The tip outer diameter was 2.8 mmφ and the die inner diameter was 4.9 mmφ.
  As a result of the coating experiment, a coated body having an outer diameter of 0.7 mmφ was obtained, and the same heat treatment as in Example 1 was performed. Even if the obtained covering was bent, cracks and cracks did not occur in the covering film. As a result of conducting a tensile test in the same manner as in Example 1, the tensile breaking strength of the coating film was 170 MPa and the breaking elongation was 135%.
[0033]
[Example 3]
Polymer synthesis example (2)
  370 kg of hydrous sodium sulfide (purity: 46.21%) and 800 kg of NMP were charged into a titanium-clad polymerization can and gradually heated to about 200 ° C. in a nitrogen gas atmosphere, together with 53.4 mol of hydrogen sulfide and 140. 5 kg was distilled off. Next, a mixed solution of 324 kg of p-DCB, 0.790 kg of 1,2,4-trichlorobenzene and 270 kg of NMP was supplied, and a polymerization reaction was performed at 220 ° C. for 5 hours. Next, 96.7 kg of water was injected into the reaction system, a polymerization reaction was carried out at 255 ° C. for 5 hours, and then the temperature was lowered to 245 ° C. and the polymerization reaction was continued for 5 hours. After completion of the polymerization reaction, the reaction system was cooled, and then the reaction mixture was sieved with a screen having an opening of 150 μm (100 mesh) to separate the granular polymer. The granular polymer was dehydrated and dried after washing with methanol and washing with water three times. The melt viscosity of the obtained polymer at 310 ° C. and a shear rate of 200 / sec was 749 Pa · s, and the R value was 2.43.
[0034]
Metal coating experiment
  The polymer obtained above was supplied to a 30 mmφ biaxial kneader-extruder (BT-30 machine manufactured by Plastics Engineering Laboratory) and kneaded at a cylinder temperature of 300 ° C. to 320 ° C. to obtain a pellet. Supply the obtained pellets to a twin-screw extruder equipped with a wire coating die (laboro plast mill, manufactured by Toyo Seiki Seisakusho) under conditions other than the cylinder temperature and the air pressure reduction between the conductor and the coating film. Coating was carried out in the same manner as in Example 1. The cylinder temperature was 320 ° C., and the decompression pressure between the conductor and the coating film was −13 mmHg.
  During the coating of the lead wire, it was possible to stably coat continuously for 6 hours without causing the resin to run out, and a coated body having an outer diameter of 0.7 mmφ and having no irregularities on the surface was obtained. The coated body was heat-treated as in Example 1. Even if the obtained covering was bent, cracks and cracks did not occur in the covering film. As a result of conducting a tensile test in the same manner as in Example 1, the tensile breaking strength of the coating film was 125 MPa, and the breaking elongation was 110%.
[0035]
[Example 4]
Polymer synthesis example (3)
  371 kg of hydrous sodium sulfide (purity: 46.10%) and 800 kg of NMP were charged into a titanium-clad polymerization can and gradually heated to about 200 ° C. in a nitrogen gas atmosphere. 0 kg was distilled off. Next, a mixed solution of 325 kg of p-DCB, 0.885 kg of 1,2,4-trichlorobenzene and 270 kg of NMP was supplied, and a polymerization reaction was performed at 220 ° C. for 5 hours. Next, 95.8 kg of water was injected and the polymerization reaction was carried out at 255 ° C. for 5 hours, and then the temperature was lowered to 245 ° C. and the polymerization reaction was continued for 5 hours. After completion of the polymerization reaction, the reaction system was cooled, and then the reaction mixture was sieved with a screen having an opening of 150 μm (100 mesh) to separate the granular polymer. The granular polymer was dehydrated and dried after washing with methanol and washing with water three times. The obtained polymer had a melt viscosity of 726 Pa · s at 310 ° C. and a shear rate of 200 / sec, and an R value of 2.72.
[0036]
Metal coating experiment
  The polymer obtained above was supplied to a 30 mmφ biaxial kneader-extruder (BT-30 machine manufactured by Plastics Engineering Laboratory) and kneaded at a cylinder temperature of 300 ° C. to 320 ° C. to obtain a pellet. The obtained pellet-like material was supplied to a twin-screw extruder (Laboplast Mill manufactured by Toyo Seiki Seisakusho Co., Ltd.) equipped with a wire coating die, and the same coating conditions as in Example 3 except that the air vent pressure was reduced to -10 cmHg. Conductive wire coating was performed.
  During the coating of the lead wire, it was possible to stably coat continuously for 6 hours without causing the resin to run out, and a coated body having an outer diameter of 0.7 mmφ and having no irregularities on the surface was obtained. The coated body was heat-treated as in Example 1. Even if the obtained covering was bent, cracks and cracks did not occur in the covering film. As a result of conducting a tensile test in the same manner as in Example 1, the tensile breaking strength of the coating film was 110 MPa, and the breaking elongation was 105%.
[0037]
[Example 5]
Polymer synthesis example (4)
  373 kg of hydrous sodium sulfide (purity 46.10%) and 810 kg of NMP were charged into a titanium-clad polymerization can and gradually heated to about 200 ° C. in a nitrogen gas atmosphere, together with 53.8 mol of hydrogen sulfide and water 140. 0 kg was distilled off. Next, a mixed solution of 321.0 kg of p-DCB, 0.795 kg of 1,2,4-trichlorobenzene and 266 kg of NMP was supplied, and a polymerization reaction was performed at 220 ° C. for 5 hours. Next, 95.8 kg of water was injected and the polymerization reaction was carried out at 255 ° C. for 5 hours, and then the temperature was lowered to 245 ° C. and the polymerization reaction was continued for 5 hours. After completion of the polymerization reaction, the reaction system was cooled, and then the reaction mixture was sieved with a screen having an opening of 150 μm (100 mesh) to separate the granular polymer. The granular polymer was dehydrated and dried after washing with methanol and washing with water three times. The melt viscosity of the obtained polymer at 310 ° C. and a shear rate of 200 / sec was 1600 Pa · s, and the R value was 2.88.
[0038]
Metal coating experiment
  The polymer obtained above was supplied to a 30 mmφ twin-screw kneading extruder (BT-30 machine manufactured by Plastics Engineering Laboratory) and kneaded at a cylinder temperature of 300 ° C. to 330 ° C. to obtain a pellet. The obtained pellets were supplied to a twin-screw extruder equipped with a wire coating die (Laboplast Mill manufactured by Toyo Seiki Seisakusho), cylinder temperature 345 ° C., extrusion rate 8 g / min, take-up speed 18 m / min, draw ratio The conductor wire was coated under the conditions of 9.5, parison cone length of 23 mm, and air-bleeding reduced pressure between the conductor wire and the coating film—15 cmHg. The same conductors and coating dies as in Example 1 were used.
  During the coating of the lead wire, it was possible to stably coat continuously for 6 hours without causing the resin to run out, and a coated body having an outer diameter of 0.7 mmφ and having no irregularities on the surface was obtained. The coated body was heat-treated as in Example 1. Even if the obtained covering was bent, cracks and cracks did not occur in the covering film. As a result of conducting a tensile test in the same manner as in Example 1, the tensile breaking strength of the coating film was 145 MPa and the breaking elongation was 170%.
[0039]
[Example 6]
Polymer synthesis example (5)
  372 kg of hydrous sodium sulfide (purity: 46.21%) and 820 kg of NMP were charged into a titanium-clad polymerization can and gradually heated to about 200 ° C. in a nitrogen gas atmosphere, together with 53.9 mol of hydrogen sulfide and 140. 5 kg was distilled off. Next, a mixed solution of 326 kg of p-DCB, 0.856 kg of 1,2,4-trichlorobenzene and 255 kg of NMP was supplied, and a polymerization reaction was performed at 220 ° C. for 5 hours. Next, 96.2 kg of water was injected and the polymerization reaction was performed at 255 ° C. for 5 hours, and then the temperature was lowered to 245 ° C. and the polymerization reaction was continued for 5 hours. After completion of the polymerization reaction, the reaction system was cooled, and then the reaction mixture was sieved with a screen having an opening of 150 μm (100 mesh) to separate the granular polymer. The granular polymer was dehydrated and dried after washing with methanol and washing with water three times. The melt viscosity of the obtained polymer at 310 ° C. and a shear rate of 200 / sec was 1100 Pa · s, and the R value was 2.85.
[0040]
Metal coating experiment
  The polymer obtained above was supplied to a 30 mmφ biaxial kneader-extruder (BT-30 machine manufactured by Plastics Engineering Laboratory) and kneaded at a cylinder temperature of 300 ° C. to 320 ° C. to obtain a pellet.
  The obtained pellet-like material is supplied to a twin screw extruder (laboroplast mill manufactured by Toyo Seiki Seisakusho) equipped with a wire coating die, cylinder temperature 330 ° C., extrusion rate 8 g / min, take-up speed 18 m / min, draw ratio The conductor wire was coated under the conditions of 9.5, parison cone length of 15 mm, and air-bleeding reduced pressure between the conductor wire and the coating film—18 cmHg. The same conductors and coating dies as in Example 1 were used.
  During the coating of the lead wire, it was possible to stably coat continuously for 6 hours without causing the resin to run out, and a coated body having an outer diameter of 0.7 mmφ and having no irregularities on the surface was obtained. The coated body was heat-treated as in Example 1. Even if the obtained covering was bent, cracks and cracks did not occur in the covering film. As a result of conducting a tensile test in the same manner as in Example 1, the tensile breaking strength of the coating film was 140 MPa, and the breaking elongation was 140%.
[0041]
[Example 7]
  The same pellets as in Example 6 were used for coating. In coating, the cylinder temperature was 330 ° C., the extrusion rate was 10 g / min, the take-up speed was 20 m / min, the draw ratio was 6.6, the parison cone length was 15 mm, and the air venting pressure between the conductor and the coating film was reduced to −15 cmHg. The same conductor and covering die as in Example 1 were used.
  In the conductor coating, a coating that could be stably coated continuously for 6 hours without causing resin breakage, had an outer diameter of 0.8 mmφ, and had no irregularities on the surface was obtained. The coated body was heat-treated at a temperature of 250 ° C. and a residence time of 5 seconds. Even if the obtained covering was bent, cracks and cracks did not occur in the covering film. As a result of conducting a tensile test in the same manner as in Example 1, the tensile strength at break was 130 MPa and the elongation at break was 145%.
[0042]
[Example 8]
Polymer synthesis example (6)
  370 kg of hydrous sodium sulfide (purity 46.40%) and 810 kg of NMP were charged into a titanium-clad polymerization can and gradually heated to about 200 ° C. in a nitrogen gas atmosphere, together with 54.0 mol of hydrogen sulfide and 140. 0 kg was distilled off. Next, a mixed solution of 320 kg of p-DCB, 0.465 kg of 1,2,4-trichlorobenzene and 263 kg of NMP was supplied, and a polymerization reaction was performed at 220 ° C. for 5 hours. Next, 96.5 kg of water was injected and the polymerization reaction was carried out at 255 ° C. for 5 hours, and then the temperature was lowered to 245 ° C. and the polymerization reaction was continued for 5 hours. After completion of the polymerization reaction, the reaction system was cooled, and then the reaction mixture was sieved with a screen having an opening of 150 μm (100 mesh) to separate the granular polymer. The granular polymer was dehydrated and dried after washing with methanol and washing with water three times. The melt viscosity of the obtained polymer at 310 ° C. and a shear rate of 200 / sec was 340 Pa · s, and the R value was 2.18.
[0043]
Metal coating experiment
  The polymer obtained above was supplied to a 30 mmφ biaxial kneader-extruder (BT-30 machine manufactured by Plastics Engineering Laboratory) and kneaded at a cylinder temperature of 290 ° C. to 315 ° C. to obtain pellets. The obtained pellet-like material is supplied to a twin-screw extruder (laboroplast mill manufactured by Toyo Seiki Seisakusho Co., Ltd.) equipped with a wire coating die, and the cylinder temperature is 315 ° C., the extrusion rate is 8 g / min, the take-up speed is 18 m / min, and the stretching is performed. The conductor wire was coated under the conditions of a magnification of 9.5, a parison cone length of 10 mm, and a reduced pressure of -10 cmHg between the conductor wire and the coating film. The same conductors and coating dies as in Example 1 were used.
  During the coating of the lead wire, it was possible to stably coat continuously for 6 hours without causing the resin to run out, and a coated body having an outer diameter of 0.7 mmφ and having no irregularities on the surface was obtained. The coated body was heat-treated as in Example 1. Even if the obtained covering was bent, cracks and cracks did not occur in the covering film. As a result of conducting a tensile test in the same manner as in Example 1, the tensile breaking strength of the coating film was 100 MPa, and the breaking elongation was 100%.
[0044]
[Reference example 1]
Polymer synthesis example (7)
  372 kg of hydrous sodium sulfide (purity: 46.21%) and 824 kg of NMP were charged into a titanium-clad polymerization can and gradually heated to about 200 ° C. in a nitrogen gas atmosphere, together with 56.6 mol of hydrogen sulfide and water 142. 0 kg was distilled off. Next, a mixed solution of 322.2 kg of p-DCB, 0.796 kg of 1,2,4-trichlorobenzene and 249 kg of NMP was supplied, and a polymerization reaction was performed at 220 ° C. for 5 hours. Next, 96.8 kg of water was injected and the polymerization reaction was carried out at 255 ° C. for 5 hours, and then the temperature was lowered to 245 ° C. and the polymerization reaction was continued for 5 hours. After completion of the polymerization reaction, the reaction system was cooled, and then the reaction mixture was sieved with a screen having an opening of 150 μm (100 mesh) to separate the granular polymer. The granular polymer was dehydrated and dried after washing with methanol and washing with water three times. The melt viscosity of the obtained polymer at 310 ° C. and a shear rate of 200 / sec was 2125 Pa · s, and the R value was 2.80.
[0045]
Metal coating experiment
  The polymer obtained above was supplied to a 30 mmφ twin-screw kneading extruder (BT-30 machine manufactured by Plastics Engineering Laboratory) and kneaded at a cylinder temperature of 310 ° C. to 350 ° C. to obtain pellets. The obtained pellet-like material is supplied to a twin-screw extruder (laboroplast mill manufactured by Toyo Seiki Seisakusho Co., Ltd.) equipped with a wire coating die. The conductor was coated under the conditions of a magnification of 6.6, a parison cone length of 15 mm, and a reduced pressure of air between the conductor and the coating film—15 cmHg. The same conductors and coating dies as in Example 1 were used.
  In the conductor coating, a coating that could be stably coated continuously for 6 hours without causing resin breakage, had an outer diameter of 0.8 mmφ, and had no irregularities on the surface was obtained. The coated body was heat-treated as in Example 1. Even if the obtained covering was bent, cracks and cracks did not occur in the covering film. As a result of conducting a tensile test in the same manner as in Example 1, the tensile breaking strength of the coating film was 120 MPa, and the elongation at break was 65%.
  These examplesAnd reference examplesTable 1 collectively shows the pelletizing conditions, the wire coating conditions, the heat treatment conditions, and the evaluation results of the coated bodies.
[0046]
[Table 1]
Figure 0003724665
[0047]
[Comparative Example 1]
Polymer synthesis example (8)
  390 kg of hydrous sodium sulfide (purity 46.40%) and 800 kg of NMP were charged into a titanium-clad polymerization can and gradually heated to about 200 ° C. in a nitrogen gas atmosphere, together with 57.8 mol of hydrogen sulfide and water 148. 0 kg was distilled off. Next, a mixed solution of 354.6 kg of p-DCB, 8.210 kg of 1,2,4-trichlorobenzene and 218 kg of NMP was supplied, and a polymerization reaction was performed at 220 ° C. for 4 hours. Next, 85.6 kg of water was injected, the temperature was raised to 255 ° C. at a rate of 0.6 ° C./min, and a polymerization reaction was performed at 255 ° C. for 5 hours. After completion of the polymerization reaction, the reaction system was cooled, and then the reaction mixture was sieved with a screen having an opening of 150 μm (100 mesh) to separate the granular polymer. The granular polymer was dehydrated and dried by washing with acetone three times, washing with water four times, washing with 0.6% ammonium chloride aqueous solution once, washing with water once, and washing with 0.06% ammonium chloride aqueous solution once. The melt viscosity of the obtained polymer at 310 ° C. and a shear rate of 200 / sec was 3100 Pa · s, and the R value was 4.08.
Metal coating experiment
  The polymer obtained above was supplied to a 30 mmφ twin-screw kneading extruder (BT-30 machine manufactured by Plastics Engineering Laboratory) and attempted to be pelletized, but the resin did not melt and a pellet-like product could be obtained. could not.
[0048]
[Comparative Example 2]
Polymer synthesis example (9)
  390 kg of hydrous sodium sulfide (purity 46.40%) and 800 kg of NMP were charged into a titanium-clad polymerization can and gradually heated to about 200 ° C. in a nitrogen gas atmosphere, together with 57.2 mol of hydrogen sulfide and 147. 0 kg was distilled off. Subsequently, a mixed solution of 337.5 kg of p-DCB and 219 kg of NMP was supplied, and a polymerization reaction was performed at 220 ° C. for 4.5 hours. Next, 80.8 kg of water was injected and the polymerization reaction was carried out at 255 ° C. for 2 hours, and then the temperature was lowered to 245 ° C. and the polymerization reaction was continued for 11 hours. After completion of the polymerization reaction, the reaction system was cooled, and then the reaction mixture was sieved with a screen having an opening of 150 μm (100 mesh) to separate the granular polymer. The granular polymer was dehydrated and dried after washing with methanol and washing with water three times. The obtained polymer had a melt viscosity of 916 Pa · s at 310 ° C. and a shear rate of 200 / sec, and an R value of 1.90.
[0049]
Metal coating experiment
  The polymer obtained above was supplied to a 30 mmφ twin-screw kneading extruder (BT-30 machine manufactured by Plastics Engineering Laboratory) and kneaded at a cylinder temperature of 290 ° C. to 320 ° C. to obtain pellets. The obtained pellet-like material is supplied to a twin-screw extruder (laboroplast mill manufactured by Toyo Seiki Seisakusho Co., Ltd.) equipped with a wire coating die, and the cylinder temperature is 320 ° C., the extrusion amount is 8 g / min, the take-up speed is 18 m / min. The conducting wire was coated under the conditions of a magnification of 9.5, a parison cone length of 2 mm, and a reduced pressure of air between the conducting wire and the coating film-0.5 cmHg. The same conductors and coating dies as in Example 1 were used.
  During the conductor coating, the resin runs out once every 3 hours. Since the resiliency of the resin is poor, it is difficult to reduce the pressure between the conductor and the coating film, and the length of the parison cone cannot be increased. In addition, the outer diameter of the obtained covering was 0.7 mmφ, and the surface was smooth without any unevenness. The obtained coated body was subjected to the same heat treatment as in Example 1 and then subjected to a tensile test in the same manner as in Example 1. As a result, the tensile strength at break was 67 MPa and the elongation at break was 4%. When this coating was bent, cracks occurred in the coating film.
[0050]
[Comparative Example 3]
  Using the same pellets and conductive wire as in Comparative Example 2, coating was performed while changing the draw ratio. Coating conditions are: cylinder temperature 330 ° C., extrusion rate 18 g / min, take-off speed 50 m / min, draw ratio 50, parison cone length 2 mm, air venting reduced pressure between conductor and coating film -0.55 mHg, coating die mandrel The outer diameter of the tip was 2.8 mmφ and the die inner diameter of the die was 4.9 mmφ. During the coating of the lead wire, the resin was frequently cut and stable coating was difficult.
[0051]
[Comparative Example 4]
Polymer synthesis example (10)
  420 kg of hydrous sodium sulfide (purity 46.21%) and 720 kg of NMP were charged into a titanium-clad polymerization can and gradually heated to about 200 ° C. in a nitrogen gas atmosphere, together with 61.8 mol of hydrogen sulfide and 160. 0 kg was distilled off. Subsequently, a mixed solution of 363.6 kg of p-DCB and 250 kg of NMP was supplied, and a polymerization reaction was performed at 220 ° C. for 4.5 hours. Next, 56.5 kg of water was injected and polymerized at 255 ° C. for 5 hours. After completion of the polymerization reaction, the reaction system was cooled, and then the reaction mixture was sieved with a screen having an opening of 150 μm (100 mesh) to separate the granular polymer. The granular polymer is washed three times with methanol, three times with water, once with 3% ammonium chloride solution and twice with water, reslurried with water, adjusted to pH about 5 by adding hydrochloric acid, dehydrated and dried. did. The obtained polymer had a melt viscosity of 192 Pa · s at 310 ° C. and a shear rate of 200 / sec, and an R value of 1.37.
[0052]
Metal coating experiment
  The polymer obtained above was supplied to a 30 mmφ twin-screw kneading extruder (BT-30 machine manufactured by Plastics Engineering Laboratory) and kneaded at a cylinder temperature of 290 ° C. to 305 ° C. to obtain a pellet. The obtained pellets were supplied to a twin-screw extruder equipped with a wire coating die (laboroplast mill manufactured by Toyo Seiki Seisakusho), cylinder temperature 310 ° C., extrusion rate 8 g / min, take-up speed 18 m / min, draw ratio The conductor wire was coated under the conditions of 9.5, parison cone length of 2 mm, and reduced pressure of air between the conductor wire and the coating film-0.4 cmHg. The same conductors and coating dies as in Example 1 were used.
  During the conductor coating, the resin runs out at a frequency of 2 times / hour. Since the resiliency of the resin is poor, it is difficult to reduce the pressure between the conductor and the coating film, and the length of the parison cone cannot be increased. The outer diameter of the obtained covering was 0.7 mmφ, and the surface was smooth with no irregularities. The obtained coated body was subjected to the same heat treatment as in Example 1, and then subjected to a tensile test in the same manner as in Example 1. As a result, the tensile strength at break was 58 MPa and the elongation at break was 3%. . When this coating was bent, cracks occurred in the coating film.
[0053]
[Comparative Example 5]
Polymer synthesis example (11)
  372 kg of hydrous sodium sulfide (purity 46.40%) and 805 kg of NMP were charged into a titanium-clad polymerization can and gradually heated to about 200 ° C. in a nitrogen gas atmosphere, together with 53.9 mol of hydrogen sulfide and water 140. 3 kg was distilled off. Next, a mixed solution of 330 kg of p-DCB, 0.989 kg of 1,2,4-trichlorobenzene and 274 kg of NMP was supplied, and a polymerization reaction was performed at 220 ° C. for 5 hours. Next, 97.3 kg of water was injected and the polymerization reaction was carried out at 255 ° C. for 1 hour, and then the temperature was lowered to 240 ° C. and the polymerization reaction was continued for 5 hours. After completion of the polymerization reaction, the reaction system was cooled, and then the reaction mixture was sieved with a screen having an opening of 150 μm (100 mesh) to separate the granular polymer. The granular polymer was dehydrated and dried after washing with methanol and washing with water three times. The melt viscosity of the obtained polymer at 310 ° C. and a shear rate of 200 / sec was 600 Pa · s, and the R value was 2.98.
[0054]
Metal coating experiment
  The polymer obtained above was supplied to a 30 mmφ twin-screw kneading extruder (BT-30 machine manufactured by Plastics Engineering Laboratory) and kneaded at a cylinder temperature of 290 ° C. to 310 ° C. to obtain a pellet. The obtained pellet-like material is supplied to a twin-screw extruder (laboroplast mill manufactured by Toyo Seiki Seisakusho Co., Ltd.) equipped with a wire coating die, and the cylinder temperature is 315 ° C., the extrusion rate is 8 g / min, the take-up speed is 18 m / min, and the stretching is performed. The conducting wire was coated under the conditions of a magnification of 9.5, a parison cone length of 5 mm, and a reduced pressure of air between the conducting wire and the coating film-0.5 cmHg. The same conductors and coating dies as in Example 1 were used.
  The stretchability of the resin was poor, and during the conductor coating, the resin was cut out at a frequency of 4 times / 1 hour, and it was difficult to continuously and stably coat the resin. The outer diameter of the obtained covering was 0.7 mmφ, and the surface was smooth with no irregularities. The obtained coated body was subjected to the same heat treatment as in Example 1 and then subjected to a tensile test in the same manner as in Example 1. As a result, the tensile strength at break was 52 MPa and the elongation at break was 3%. When this coating was bent, cracks occurred in the coating film.
  Table 2 collectively shows the pelletizing conditions, the electric wire covering conditions, the heat treatment conditions, and the evaluation results of the coverings of these comparative examples.
[0055]
[Table 2]
Figure 0003724665
[0056]
[Example 10]
  A polymer was synthesized in the same manner as in the polymer synthesis example (1) of Example 1, and then a metal coating experiment was conducted using the polymer in the same manner as in Example 1 to obtain a coated body (resin-coated conductor). It was. The obtained coated body was introduced into a heating zone and heat treated under the conditions of heat treatment temperature and heat treatment time (residence time) shown in each experiment number in Table 3 to crystallize the coating resin, and then wound up on a roll. A tensile test was conducted in the same manner as in Example 1. Further, the crystallinity of the coating resin was measured by the following method. The results are shown in Table 3.
Method for measuring crystallinity
  The density of the coating resin is measured by the density gradient tube method, and the crystal density is 1.43 g / cm.3And amorphous density 1.3195 g / cm3Based on the above, the crystallinity was calculated from the measured density by the volume fraction.
[0057]
[Table 3]
Figure 0003724665
  The results in Table 3 indicate that the break elongation differs when the heat treatment temperature is different, even though the crystallinity is almost the same. Moreover, as can be seen from Experiment Nos. 11, 11 to 14, etc., the higher the heat treatment temperature, the higher the elongation at break.
[0058]
[Example 11]
  A polymer was synthesized in the same manner as in the polymer synthesis example (1) of Example 1, and then 100 parts by weight of the polymer and 1 part by weight of pentaerythritol tristearate (manufactured by NOF Corporation, Unistar H476) were mixed with a tumbler mixer. The resin composition was obtained by mixing for minutes. A metal coating experiment was performed in the same manner as in Example 1 except that the resin composition was used in place of the polymer to obtain a coated body (resin-coated conductor). The obtained coated body was cooled, guided to the heating zone, and heat-treated under the same conditions as in Example 1 to crystallize the coating resin, and then wound on a roll. As a result of conducting a tensile test in the same manner as in Example 1, the tensile breaking strength was 134 MPa and the breaking elongation was 180%. This covering had good stripping properties.
[0059]
[Example 12]
  In the same manner as in the polymer synthesis example (1) of Example 1, a polymer was synthesized, and then 100 parts by weight of the polymer and 0.5 parts by weight of barium hydroxide were mixed with a tumbler mixer for 3 minutes to obtain a resin composition. Obtained. A metal coating experiment was performed in the same manner as in Example 1 except that the resin composition was used in place of the polymer to obtain a coated body (resin-coated conductor). The obtained coated body was cooled, guided to the heating zone, and heat-treated under the same conditions as in Example 1 to crystallize the coating resin, and then wound on a roll. As a result of conducting a tensile test in the same manner as in Example 1, the tensile breaking strength was 125 MPa and the breaking elongation was 120%. In the metal coating experiment, it was possible to coat stably for 10 hours continuously.
[0060]
[Example 13]
  A polymer was synthesized in the same manner as in the polymer synthesis example (1) of Example 1, and then 100 parts by weight of the polymer, 0.5 parts by weight of barium hydroxide and distearyl pentaerythritol diphosphate (manufactured by Specially Chemicals) 0 .5 parts by weight were mixed with a tumbler mixer for 3 minutes to obtain a resin composition. A metal coating experiment was conducted in the same manner as in Example 1 except that the resin composition was used in place of the polymer to obtain a coated body (resin-coated conductor). The obtained coated body was cooled, guided to the heating zone, and heat-treated under the same conditions as in Example 1 to crystallize the coating resin, and then wound on a roll. As a result of conducting a tensile test in the same manner as in Example 1, the tensile breaking strength was 123 MPa and the breaking elongation was 100%. In the metal coating experiment, it was possible to coat stably for 10 hours continuously. Further, this covering had good stripping properties.
[0061]
【The invention's effect】
  According to the present invention, when coating is performed on a metal substrate, it can be stably and continuously coated without causing the resin to run out, and when the heat treatment is performed after coating, resin cracking of the coating layer occurs. A polyarylene sulfide resin for metal coating is provided. Further, according to the present invention, the resin-coated metal member having a resin coating layer excellent in heat resistance, freon resistance, flame resistance, chemical resistance, radiation resistance, low-temperature physical properties, electrical insulation properties, mechanical physical properties, etc.And its manufacturing methodIs provided.
  The present invention relates to a control cable rope for a motor vehicle or a ship, a control cable inner cable, a winding for a heat-resistant coil or a motor, an automobile solenoid lead wire, a freon-resistant wire such as a compressor, a winding for a transformer, nuclear power generation It can be applied to coatings for required radiation resistant equipment wiring and cables, metal rods, metal tubes, other heat-resistant electric wires, sheath tubes, wires, and the like.
[Brief description of the drawings]
FIG. 1 shows the melt viscosity η of polyarylene sulfide resin.200It is a graph which shows the relationship between R value.EFGHThe inside of the frame is the range of the polyarylene sulfide resin for metal coating used in the present invention.

Claims (3)

アルカリ金属硫化物とジハロ芳香族化合物をトリハロ芳香族化合物の存在下に重合して得られる分岐型ポリアリーレンスルフィド樹脂であって、310℃、剪断速度200/秒で測定した溶融粘度η200300〜2000Pa・sで、該溶融粘度η200と310℃、剪断速度1200/秒で測定した溶融粘度η1200との比R(η200/η1200)が下記の関係式(1)
Figure 0003724665
満足するポリアリーレンスルフィド樹脂からなることを特徴とする金属被覆用樹脂。
A branched polyarylene sulfide resin obtained by polymerizing an alkali metal sulfide and a dihalo-aromatic compound in the presence of a trihalo aromatic compounds, 310 ° C., a melt viscosity eta 200 as measured at a shear rate of 200 / sec 300 in to 2000 Pa · s, and the melt viscosity eta 200 310 ° C., the ratio R (eta 200 / eta 1200) is the following relationship between melt viscosity eta 1200 as measured at a shear rate of 1200 / sec (1):
Figure 0003724665
Metallizing tree characterized by comprising the polyarylene sulfide resin satisfying the fat.
アルカリ金属硫化物とジハロ芳香族化合物をトリハロ芳香族化合物の存在下に重合して得られる分岐型ポリアリーレンスルフィド樹脂であって、310℃、剪断速度200/秒で測定した溶融粘度η200300〜2000Pa・sで、該溶融粘度η200と310℃、剪断速度1200/秒で測定した溶融粘度η1200との比R(η200/η1200)が下記の関係式(1)
Figure 0003724665
満足するポリアリーレンスルフィド樹脂からなる金属被覆用樹脂を金属基材上に被覆してなることを特徴とする樹脂被覆金属部材。
A branched polyarylene sulfide resin obtained by polymerizing an alkali metal sulfide and a dihalo-aromatic compound in the presence of a trihalo aromatic compounds, 310 ° C., a melt viscosity eta 200 as measured at a shear rate of 200 / sec 300 in to 2000 Pa · s, and the melt viscosity eta 200 310 ° C., the ratio R (eta 200 / eta 1200) is the following relationship between melt viscosity eta 1200 as measured at a shear rate of 1200 / sec (1):
Figure 0003724665
Resin-coated metal member to the metal-coated resin comprising a satisfactory polyarylene sulfide resin, characterized in that formed by coating on a metal substrate a.
アルカリ金属硫化物とジハロ芳香族化合物をトリハロ芳香族化合物の存在下に重合して得られる分岐型ポリアリーレンスルフィド樹脂であって、310℃、剪断速度200/秒で測定した溶融粘度ηA branched polyarylene sulfide resin obtained by polymerizing an alkali metal sulfide and a dihaloaromatic compound in the presence of a trihaloaromatic compound, which has a melt viscosity η measured at 310 ° C. and a shear rate of 200 / sec. 200200 が300〜2000Pa・sで、該溶融粘度ηIs 300 to 2000 Pa · s, the melt viscosity η 200200 と310℃、剪断速度1200/秒で測定した溶融粘度ηAnd melt viscosity η measured at 310 ° C. and a shear rate of 1200 / sec. 12001200 との比R(ηRatio R (η 200200 /η/ Η 12001200 )が下記の関係式(1):) Is the following relational expression (1):
Figure 0003724665
Figure 0003724665
を満足するポリアリーレンスルフィド樹脂からなる金属被覆用樹脂を、押出機を用いて、該樹脂の(融点+20℃)〜350℃の範囲の温度で溶融させた後、パリソンを形成させながらダイ外被覆により金属基材上に被覆し、次いで、被覆体を冷却後、熱処理温度200〜270℃及び熱処理時間0.1秒以上10分間以下の条件で熱処理して、被覆層の樹脂の結晶化度を15〜30%の範囲とすることを特徴とする樹脂被覆金属部材の製造方法。A metal coating resin comprising a polyarylene sulfide resin satisfying the above conditions is melted at a temperature in the range of (melting point + 20 ° C.) to 350 ° C. of the resin using an extruder, and then coated with a die outside while forming a parison. Then, after cooling the coated body, heat treatment is performed under the conditions of a heat treatment temperature of 200 to 270 ° C. and a heat treatment time of 0.1 seconds to 10 minutes, and the resin crystallinity of the coating layer is increased. A method for producing a resin-coated metal member, wherein the content is in the range of 15 to 30%.
JP18114596A 1995-09-21 1996-06-21 Resin for metal coating, resin-coated metal member and method for producing the member Expired - Fee Related JP3724665B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP18114596A JP3724665B2 (en) 1995-09-21 1996-06-21 Resin for metal coating, resin-coated metal member and method for producing the member
CA002185938A CA2185938A1 (en) 1995-09-21 1996-09-19 Metal coating resin and coated metal member
EP96306817A EP0765895A3 (en) 1995-09-21 1996-09-19 Metal coating resin and coated metal member

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP26938395 1995-09-21
JP7-269383 1995-09-21
JP18114596A JP3724665B2 (en) 1995-09-21 1996-06-21 Resin for metal coating, resin-coated metal member and method for producing the member

Publications (2)

Publication Number Publication Date
JPH09143267A JPH09143267A (en) 1997-06-03
JP3724665B2 true JP3724665B2 (en) 2005-12-07

Family

ID=26500435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18114596A Expired - Fee Related JP3724665B2 (en) 1995-09-21 1996-06-21 Resin for metal coating, resin-coated metal member and method for producing the member

Country Status (1)

Country Link
JP (1) JP3724665B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8720042B2 (en) 2010-06-23 2014-05-13 Toyota Jidosha Kabushiki Kaisha Stator manufacturing method and stator

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5422156B2 (en) * 2008-08-26 2014-02-19 三菱電線工業株式会社 Insulating coated assembly wire manufacturing method
WO2013130140A1 (en) * 2011-12-01 2013-09-06 University Of Utah Research Foundation Photonic devices on planar and curved substrates and methods for fabrication thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8720042B2 (en) 2010-06-23 2014-05-13 Toyota Jidosha Kabushiki Kaisha Stator manufacturing method and stator

Also Published As

Publication number Publication date
JPH09143267A (en) 1997-06-03

Similar Documents

Publication Publication Date Title
US4659789A (en) Phenylene sulfide resin compositions
CN104919004A (en) Polyphenylene sulfide resin composition, method for producing same, and molded article of same
KR20180103902A (en) Polyphenylene sulfide resin composition and manufacturing method thereof
JPH0480053B2 (en)
US4962143A (en) Poly(arylene thioether) block copolymer fibers and production process thereof
JP2006336140A (en) Polyphenylene sulfide fiber and method for producing the same
JP2551458B2 (en) Polyarylene thioether ketone fiber and method for producing the same
JP3724665B2 (en) Resin for metal coating, resin-coated metal member and method for producing the member
KR910003720B1 (en) Highly crystallized molded product of polyarylene thioether
JP3598510B2 (en) Fiber reinforced composite material
JP3618485B2 (en) Covered metal parts
US4921758A (en) Molded product of polyarylene thioether and the use thereof
KR930005402B1 (en) Polyarlylene sulfide resin composition
JPH08118503A (en) High molecular weight polyarylene sulfide for chemical pipeline
EP0765895A2 (en) Metal coating resin and coated metal member
JP3538878B2 (en) High molecular weight polyarylene sulfide for tubular extrudates.
JPH08118502A (en) High molecular weight polyarylene sulfide for hot-water supplying tube
KR102277011B1 (en) Polyarylene sulfide resin composition and molded product thereof
JP3969465B2 (en) Difficult snow ring
JPH07224165A (en) High molecular-weight polyarylene sulfide for turbular extrusion molding
JPH1199546A (en) Manufacture of polyallylene sulfide molding
JPH0747295B2 (en) Slippery polyary lentithioether film and process for producing the same
JP3473780B2 (en) High strength polyarylene sulfide and method for producing the same
JPS62172033A (en) Production of molded polyarylene thioether article having enhanced crystallinity
JPH09151321A (en) Polyarylene sulfide resin composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050915

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130930

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees