JPH1065157A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH1065157A
JPH1065157A JP21876496A JP21876496A JPH1065157A JP H1065157 A JPH1065157 A JP H1065157A JP 21876496 A JP21876496 A JP 21876496A JP 21876496 A JP21876496 A JP 21876496A JP H1065157 A JPH1065157 A JP H1065157A
Authority
JP
Japan
Prior art keywords
semiconductor device
zener diode
layer
type bidirectional
bidirectional zener
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21876496A
Other languages
Japanese (ja)
Other versions
JP3123930B2 (en
Inventor
Kazumi Yamaguchi
和巳 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP08218764A priority Critical patent/JP3123930B2/en
Publication of JPH1065157A publication Critical patent/JPH1065157A/en
Application granted granted Critical
Publication of JP3123930B2 publication Critical patent/JP3123930B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7808Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a breakdown diode, e.g. Zener diode

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To avoid the element breakdown due to a surge voltage, etc., applied to the semiconductor element within a semiconductor device. SOLUTION: N<+> /P/N<+> -type bidirectional Zener diode 17 are built in between the gate and the source of a MOS FET 19, so that even if surge voltage, etc., is applied to a semiconductor device, the N<+> /P/N<+> -type bidirectional Zener diodes 17 may art as a clamp circuit for avoiding the element breakdown, thereby enabling the element to be protected even in a smaller chip.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、トランジスタを有
する半導体装置に関し、特にトランジスタの静電破壊防
止に好適な構造を有する半導体装置に関する。
The present invention relates to a semiconductor device having a transistor, and more particularly, to a semiconductor device having a structure suitable for preventing electrostatic breakdown of a transistor.

【0002】[0002]

【従来の技術】従来の技術を図3及び図4に示す。図3
は、従来の半導体装置を示す等価回路図であり、図4
は、従来の半導体装置を示す要部断面図である。
2. Description of the Related Art The prior art is shown in FIGS. FIG.
FIG. 4 is an equivalent circuit diagram showing a conventional semiconductor device.
FIG. 2 is a sectional view of a main part showing a conventional semiconductor device.

【0003】従来のゲート・ソース間にP+/N/P+
双方向ツェナーダイオードを接続した半導体装置は図4
に示すように、MOS FET19のドレイン電極1が
接触するP+基板2上のP-エピタキシャル層3の表面層
にNウェル層4が形成され、Nウェル層4上にフィール
ド酸化膜5が形成され、フィールド酸化膜5にP+層と
N層16とからなる双方向ツェナーダイオード18(図
3参照)が存在していた。
A conventional semiconductor device in which a P + / N / P + type bidirectional Zener diode is connected between a gate and a source is shown in FIG.
As shown in FIG. 5, an N well layer 4 is formed on a surface layer of a P epitaxial layer 3 on a P + substrate 2 with which a drain electrode 1 of a MOS FET 19 contacts, and a field oxide film 5 is formed on the N well layer 4. A bidirectional Zener diode 18 (see FIG. 3) composed of a P + layer and an N layer 16 was present in the field oxide film 5.

【0004】双方向ツェナーダイオード18のP+層1
5は、層間絶縁膜6に設けられたコンタクトホールに接
触する配線により、ゲートアルミ10とソースアルミ1
1に接続されている。7はP+層,8はN+層,9はN
層,12は多結晶シリコン膜である。
The P + layer 1 of the bidirectional Zener diode 18
Reference numeral 5 denotes a gate aluminum 10 and a source aluminum 1 by a wiring contacting a contact hole provided in the interlayer insulating film 6.
1 connected. 7 is P + layer, 8 is N + layer, 9 is N
The layer 12 is a polycrystalline silicon film.

【0005】図3は、従来の半導体装置を示す等価回路
図である。図3に示す従来の半導体装置では、ゲート・
ソース間に接続されたP+/N/P+型双方向ツェナーダ
イオード18のツェナー耐圧をMOS FET19の耐
圧よりも低く設定することにより、サージ電圧等が印加
された場合、MOS FET19よりも先にツェナーダ
イオード18がプレイクダウンするため、ツェナーダイ
オード18がクランプ回路の役目をし、MOS FET
19の素子破壊を防止していた。
FIG. 3 is an equivalent circuit diagram showing a conventional semiconductor device. In the conventional semiconductor device shown in FIG.
By setting the Zener withstand voltage of the P + / N / P + type bidirectional Zener diode 18 connected between the sources to be lower than the withstand voltage of the MOS FET 19, when a surge voltage or the like is applied, the Zener withstands before the MOS FET 19. Since the Zener diode 18 breaks down, the Zener diode 18 functions as a clamp circuit, and the MOS FET
Nineteen elements were prevented from being destroyed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、図3及
び図4に示す従来例において、P+/N/P+型双方向ツ
ェナーダイオードは、ツェナー耐圧波形がソフト波形で
あるため(図5(b)参照)、チップサイズが小さくな
ると、十分な保護回路とならず、素子破壊が引き起こさ
れるという問題があった。その理由は、ツェナーダイオ
ードをP+/N/P+で形成すると、耐圧決定領域(低濃
度領域)がN層で形成されるため、ブレイクダウンが表
面層で生じる。これにより、ブレイクダウンするまでの
リークが大きくなり、動作抵抗が大きくなるためであ
る。
However, in the conventional example shown in FIGS. 3 and 4, the P + / N / P + type bidirectional Zener diode has a soft Zener withstand voltage waveform (FIG. 5 (b)). )), When the chip size is reduced, there is a problem that a sufficient protection circuit is not provided, and element destruction is caused. The reason is that if the Zener diode is formed of P + / N / P + , a breakdown occurs in the surface layer because the breakdown voltage determining region (low concentration region) is formed of the N layer. This is because the leak before the breakdown increases and the operating resistance increases.

【0007】また従来例においては、ツェナーダイオー
ドのP+層とMOS FETのソース層を同時に形成して
いたため、ツェナー耐圧が高いという問題があった。そ
の理由は、MOS FETのソース形成条件が支配的と
なり、ツェナー耐圧をコントロールすることができない
ためであり、従来例においてツェナー耐圧を下げるに
は、IPRを追加する必要があった。
Further, in the conventional example, since the P + layer of the Zener diode and the source layer of the MOS FET are formed at the same time, there is a problem that the Zener breakdown voltage is high. The reason is that the condition for forming the source of the MOS FET becomes dominant and the Zener withstand voltage cannot be controlled. In order to lower the Zener withstand voltage in the conventional example, it was necessary to add an IPR.

【0008】本発明の目的は、前記問題点を解消した半
導体装置を提供することにある。
An object of the present invention is to provide a semiconductor device which has solved the above-mentioned problems.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するた
め、本発明に係る半導体装置は、半導体基板上に形成さ
れたPch絶縁ゲート型トランジスタを有する半導体装
置であって、半導体基板中にN+/P/N+型双方向ツェ
ナーダイオードを有し、該双方向ツェナーダイオード
は、前記トランジスタのゲート領域とソース領域とを接
続したものである。
To achieve the above object, according to an aspect of a semiconductor device according to the present invention is a semiconductor device having a Pch insulated gate transistor formed on a semiconductor substrate, in a semiconductor substrate N + / P / N + type bidirectional Zener diode, wherein the bidirectional Zener diode connects the gate region and the source region of the transistor.

【0010】前記Pch絶縁ゲート型トランジスタのN
+層と前記N+/P/N+型双方向ツェナーダイオードの
+層は、同時に形成されたものである。
The N of the Pch insulated gate transistor
+ Layer and N + layer of the N + / P / N + -type bidirectional Zener diode, and is formed at the same time.

【0011】前記N+/P/N+型双方向ツェナーダイオ
ードは、複数段に形成されているものである。
The N + / P / N + type bidirectional Zener diode is formed in a plurality of stages.

【0012】[0012]

【作用】本発明においては、半導体装置のゲート・ソー
ス間にN+/P/N+型双方向ツェナーダイオードを内蔵
したことにより、ツェナー耐圧波形をハード化し、ツェ
ナー部の動作抵抗を低減させ、静電耐量を向上させたこ
とにより、サージ電圧等が半導体装置に印加された場
合、サージ電圧等をクランプすることが可能となり、素
子破壊を防止することができる。
According to the present invention, an N.sup. + / P / N.sup. + Type bidirectional Zener diode is built in between the gate and the source of the semiconductor device, so that the Zener breakdown voltage waveform is hardened and the operating resistance of the Zener portion is reduced. By improving the electrostatic withstand voltage, when a surge voltage or the like is applied to the semiconductor device, the surge voltage or the like can be clamped, and element destruction can be prevented.

【0013】[0013]

【発明の実施の形態】次に、本発明の実施の形態を図面
を参照して詳細に説明する。
Next, embodiments of the present invention will be described in detail with reference to the drawings.

【0014】図1において、本発明の実施形態に係る半
導体装置は、Pch絶縁ゲート型トランジスタ(MOS
FET)19のゲート・ソース間に、N+/P/N+型双
方向ツェナーダイオード17を配置したことを特徴とす
るものである。
In FIG. 1, a semiconductor device according to an embodiment of the present invention is a Pch insulated gate transistor (MOS).
FET) 19, an N + / P / N + type bidirectional Zener diode 17 is arranged between the gate and the source.

【0015】次に、本発明の実施形態に係る半導体装置
の製造方法を説明する。図2に示すように、MOS F
ET19のドレイン電極1が接触するP+基板2上のP-
エピタキシャル層3の表面層上に、酸化膜5を8000
〜12000Åの厚さに形成し、リソグラフィー技術を
用いてパターニングする。
Next, a method for manufacturing a semiconductor device according to an embodiment of the present invention will be described. As shown in FIG.
P on P + substrate 2 with which drain electrode 1 of ET19 contacts
On the surface layer of the epitaxial layer 3, an oxide film 5
It is formed to a thickness of about 12000 ° and is patterned using lithography.

【0016】さらに酸化膜5上に多結晶シリコン膜12
を4000〜6000Åの厚さに形成し、リソグラフィ
ー技術を用いてパターニングし、多結晶シリコン膜12
中にN+層13とP層14をリソグラフィー技術を用い
て形成し、その上に層間絶縁膜6を5000〜8000
Åの厚さに形成し、リソグラフィー技術を用いてパター
ニングする。N+層13上にゲートアルミ電極10とソ
ースアルミ電極11が接触しており、N+/P/N+型双
方向ツェナーダイオード17を形成している。
Further, a polycrystalline silicon film 12 is formed on oxide film 5.
Is formed to a thickness of 4000 to 6000 °, and is patterned by using lithography technology.
An N + layer 13 and a P layer 14 are formed therein by using a lithography technique, and an interlayer insulating film 6 is formed on the N + layer 13 and the P
It is formed to a thickness of Å and patterned using lithography technology. The gate aluminum electrode 10 and the source aluminum electrode 11 are in contact with each other on the N + layer 13 to form an N + / P / N + type bidirectional Zener diode 17.

【0017】このように、半導体基板中にN+/P/N+
型双方向ツェナーダイオード17を配置し、このN+
P/N+型双方向ツェナーダイオード17は、Pch絶
縁ゲート型トランジスタとしてのMOS FET19の
ゲート領域とソース領域とを接続している。
As described above, N + / P / N + is formed in the semiconductor substrate.
Type bidirectional Zener diode 17 is arranged, and the N + /
The P / N + type bidirectional Zener diode 17 connects the gate region and the source region of the MOS FET 19 as a Pch insulated gate transistor.

【0018】次に、本発明の実施形態の動作について、
図1を参照して詳細に説明する。
Next, the operation of the embodiment of the present invention will be described.
This will be described in detail with reference to FIG.

【0019】N+/P/N+型双方向ツェナーダイオード
17の耐圧V17がMOSFET19の耐圧より低く設定
することにより、サージ電圧等がMOS FET19に
印加された場合、MOS FET19より先にN+/P/
+型双方向ツェナーダイオード17がブレイクダウン
するため、MOS FET19にサージ電圧等がそのま
ま印加されず、素子破壊を防止することができる。
By setting the withstand voltage V 17 of the N + / P / N + type bidirectional Zener diode 17 lower than the withstand voltage of the MOSFET 19, when a surge voltage or the like is applied to the MOS FET 19, N + is applied before the MOS FET 19. / P /
Since the N + -type bidirectional Zener diode 17 breaks down, a surge voltage or the like is not applied to the MOS FET 19 as it is, so that element destruction can be prevented.

【0020】またN+/P/N+型双方向ツェナーダイオ
ード17は、ツェナー耐圧波形がハード波形(図5
(b)参照)であるため、動作抵抗が小さく、瞬時にブ
レイクダウンするため、MOS FET19へのサージ
電圧等の影響を小さくでき、より確実に素子破壊を防止
することができる。
The N + / P / N + type bidirectional Zener diode 17 has a hard zener breakdown voltage waveform (FIG. 5).
(Refer to (b)), the operating resistance is small, and the breakdown is instantaneous. Therefore, the influence of the surge voltage or the like on the MOS FET 19 can be reduced, and the element destruction can be more reliably prevented.

【0021】さらに実験結果では、 となり、ツェナー構造をN+/P/N+型にしたことによ
り、ESD耐量はMIL+側で、1400V→3900
Vに、MIL−側で、1200V→3500Vに向上し
た。同時に、動作抵抗についても、130Ω→30Ωに
低減した。
Further, the experimental results show that And the Zener structure is of the N + / P / N + type, so that the ESD resistance is 1400 V → 3900 on the MIL + side.
V and the voltage on the MIL- side was increased from 1200 V to 3500 V. At the same time, the operating resistance was also reduced from 130Ω to 30Ω.

【0022】[0022]

【実施例】次に本発明の実施例について図1,図2を参
照して詳細に説明する。
Next, an embodiment of the present invention will be described in detail with reference to FIGS.

【0023】この実施例における半導体装置の製造に当
たっては、図2に示すように、MOS FET19のド
レイン電極1が接触するP+基板2上のP-エピタキシャ
ル層3の表面層上に、酸化膜5を10000Åの厚さに
形成し、リソグラフィー技術を用いてパターニングす
る。
In manufacturing the semiconductor device in this embodiment, as shown in FIG. 2, an oxide film 5 is formed on the surface layer of the P - epitaxial layer 3 on the P + substrate 2 with which the drain electrode 1 of the MOS FET 19 contacts. Is formed to a thickness of 10,000 °, and is patterned using lithography technology.

【0024】さらに、その上に多結晶シリコン膜12を
4700Åの厚さに形成し、リソグラフィー技術を用い
てパターニングし、多結晶シリコン膜12中にN+層1
3とP層14をリソグラフィー技術を用いて形成し、そ
の上に層間絶縁膜(BPSG膜)6を6500Åの厚さ
に形成し、リソグラフィー技術を用いてパターニングす
る。N+層13にゲートアルミ電極10とソースアルミ
電極11が接触しており、N+/P/N+型双方向ツェナ
ーダイオード17を形成している。
Further, a polycrystalline silicon film 12 is formed thereon to a thickness of 4700.degree. And patterned by lithography to form an N.sup. + Layer 1 in the polycrystalline silicon film 12.
3 and a P layer 14 are formed using lithography technology, and an interlayer insulating film (BPSG film) 6 is formed thereon to a thickness of 6500 ° and patterned using lithography technology. The gate aluminum electrode 10 and the source aluminum electrode 11 are in contact with the N + layer 13 to form an N + / P / N + type bidirectional Zener diode 17.

【0025】このように、半導体基板中にN+/P/N+
型双方向ツェナーダイオード17を配置し、このN+
P/N+型双方向ツェナーダイオード17は、Pch絶
縁ゲート型トランジスタとしてのMOS FET19の
ゲート領域とソース領域とを接続している。
As described above, N + / P / N + is contained in the semiconductor substrate.
Type bidirectional Zener diode 17 is arranged, and the N + /
The P / N + type bidirectional Zener diode 17 connects the gate region and the source region of the MOS FET 19 as a Pch insulated gate transistor.

【0026】次に、本発明の実施例の動作について、図
1の半導体装置の等価回路図で説明する。
Next, the operation of the embodiment of the present invention will be described with reference to an equivalent circuit diagram of the semiconductor device of FIG.

【0027】N+/P/N+型双方向ツェナーダイオード
17の耐圧V17がMOS FET19の耐圧より低く設
定することにより、サージ電圧等がMOS FET19
に印加された場合、MOS FET19より先にN+/P
/N+型双方向ツェナーダイオード17がブレイクダウ
ンするため、MOS FET19にサージ電圧等がその
まま印加されず、素子破壊を防止することができる。
By setting the withstand voltage V 17 of the N + / P / N + type bidirectional Zener diode 17 lower than the withstand voltage of the MOS FET 19, the surge voltage and the like can be reduced.
Is applied to N + / P before the MOS FET 19.
Since the / N + type bidirectional Zener diode 17 breaks down, a surge voltage or the like is not applied to the MOS FET 19 as it is, so that element destruction can be prevented.

【0028】また、N+/P/N+型双方向ツェナーダイ
オード17は、ツェナー耐圧波形がハード波形(図5
(b)参照)であるため、動作抵抗が小さく、瞬時にブ
レイクダウンするため、MOS FET19へのサージ
電圧等の影響を小さくでき、より小さいチップに対して
も、確実に素子破壊を防止することができる。
Further, the N + / P / N + type bidirectional Zener diode 17 has a hard zener breakdown voltage waveform (FIG. 5).
(Refer to (b)), the operating resistance is small, and the breakdown is instantaneous. Therefore, the influence of the surge voltage or the like on the MOS FET 19 can be reduced, and the element destruction can be reliably prevented even for a smaller chip. Can be.

【0029】(実施形態2)次に、本発明の実施形態2
について、図2を参照して説明する。実施形態2では、
実施形態1の半導体装置を工程数を増やすことなく、製
造する構造としたものである。
(Embodiment 2) Next, Embodiment 2 of the present invention
Will be described with reference to FIG. In the second embodiment,
The semiconductor device according to the first embodiment is manufactured without increasing the number of steps.

【0030】実施形態2に係る半導体装置は、実施形態
1で説明したN+/P/N+型双方向ツェナーダイオード
17の形成過程において、図2に示すように、MOS
FET19のN+層8をコンタクトリンI/Iにより成
形し、同時にN+/P/N+型双方向ツェナーダイオード
17のN+層13を形成することを特徴とするものであ
る。
In the process of forming the N + / P / N + type bidirectional Zener diode 17 described in the first embodiment, the semiconductor device according to the second embodiment has a MOS transistor as shown in FIG.
The N + layer 8 of the FET 19 is formed by contact phosphorus I / I, and the N + layer 13 of the N + / P / N + type bidirectional Zener diode 17 is formed at the same time.

【0031】これにより、従来例のP+/N/P+型双方
向ツェナーダイオード18と比較して工程数を増やすこ
となく、素子破壊に有利な半導体装置を形成することが
できる。
Thus, it is possible to form a semiconductor device which is advantageous in element destruction without increasing the number of steps as compared with the conventional P + / N / P + type bidirectional Zener diode 18.

【0032】また、従来のP+/N/P+型双方向ツェナ
ーダイオード18を用いて、本発明のN+/P/N+型双
方向ツェナーダイオード17と同一の効果を得るために
は、従来のP+/N/P+型双方向ツェナーダイオード1
8のP+層15をMOS FET18のP+層7と別に形
成するため、ツェナーボロンPR工程が必要となり、工
程数が増加してしまう。
In order to obtain the same effect as the N + / P / N + type bidirectional Zener diode 17 of the present invention by using the conventional P + / N / P + type bidirectional Zener diode 18, Conventional P + / N / P + bidirectional Zener diode 1
Since the P + layer 8 of 8 is formed separately from the P + layer 7 of the MOS FET 18, a Zener boron PR step is required, and the number of steps is increased.

【0033】[0033]

【発明の効果】以上のように本発明によれば、半導体装
置のゲート・ソース間に、N+/P/N+型双方向ツェナ
ーダイオードを内蔵したため、チップサイズが小さいも
のについてもサージ電圧等による素子破壊を防止でき
る。その理由は、ツェナー構造をN+/P/N+型にした
ことにより、ツェナー耐圧波形がハード化でき、動作抵
抗を小さくしたためである。
As described above, according to the present invention, an N + / P / N + type bidirectional Zener diode is built in between a gate and a source of a semiconductor device. Can be prevented from being destroyed. The reason is that the Zener structure is of the N + / P / N + type, so that the Zener withstand voltage waveform can be hardened and the operating resistance is reduced.

【0034】また、従来のP+/N/P+型双方向ツェナ
ーダイオードと同じ工程数で素子破壊に有利な半導体装
置を形成することができる。その理由は、MOSFET
のN+層形成と同一工程で、N+/P/N+型双方向ツェ
ナーダイオードのN+層を形成するためである。
In addition, a semiconductor device advantageous for element destruction can be formed in the same number of steps as a conventional P + / N / P + type bidirectional Zener diode. The reason is that MOSFET
This is for forming the N + layer of the N + / P / N + type bidirectional Zener diode in the same step as the formation of the N + layer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態1に係る半導体装置を示す等
価回路図である。
FIG. 1 is an equivalent circuit diagram showing a semiconductor device according to a first embodiment of the present invention.

【図2】本発明の実施形態1に係る半導体装置の製造方
法を説明する図である。
FIG. 2 is a diagram illustrating a method for manufacturing the semiconductor device according to the first embodiment of the present invention.

【図3】従来例に係る半導体装置を示す等価回路図であ
る。
FIG. 3 is an equivalent circuit diagram showing a semiconductor device according to a conventional example.

【図4】従来例に係る半導体装置の製造方法を説明する
図である。
FIG. 4 is a diagram illustrating a method for manufacturing a semiconductor device according to a conventional example.

【図5】(a)は、本発明に係るツェナー構造のツェナ
ー耐圧波形を示す波形図、(b)は、従来例に係るツェ
ナー構造のツェナー耐圧波形を示す波形図である。
FIG. 5A is a waveform diagram showing a Zener breakdown voltage waveform of a Zener structure according to the present invention, and FIG. 5B is a waveform diagram showing a Zener breakdown voltage waveform of a Zener structure according to a conventional example.

【符号の説明】[Explanation of symbols]

1 ドレイン電極 2 P+基板 3 P-エピタキシャル層 4,9,16 N層 5 酸化膜 6 層間絶縁膜 7,15 P+層 8,13 N+層 10 ゲートアルミ電極 11 ソースアルミ電極 12 多結晶シリコン膜 14 P層 17 N+/P/N+型双方向ツェナーダイオード 19 MOS FET(Pch絶縁ゲート型トランジス
タ)
Reference Signs List 1 drain electrode 2 P + substrate 3 P - epitaxial layer 4, 9, 16 N layer 5 oxide film 6 interlayer insulating film 7, 15 P + layer 8, 13 N + layer 10 gate aluminum electrode 11 source aluminum electrode 12 polycrystalline silicon Film 14 P layer 17 N + / P / N + type bidirectional Zener diode 19 MOS FET (Pch insulated gate transistor)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に形成されたPch絶縁ゲ
ート型トランジスタを有する半導体装置であって、 半導体基板中にN+/P/N+型双方向ツェナーダイオー
ドを有し、 該双方向ツェナーダイオードは、前記トランジスタのゲ
ート領域とソース領域とを接続したものであることを特
徴とする半導体装置。
1. A semiconductor device having a Pch insulated gate transistor formed on a semiconductor substrate, comprising: an N + / P / N + type bidirectional Zener diode in the semiconductor substrate; Is a semiconductor device in which a gate region and a source region of the transistor are connected.
【請求項2】 前記Pch絶縁ゲート型トランジスタの
+層と前記N+/P/N+型双方向ツェナーダイオード
のN+層は、同時に形成されたものであることを特徴と
する請求項1に記載の半導体装置。
Wherein the N + layer of the the N + layer of the Pch insulated gate transistor N + / P / N + -type bidirectional Zener diode, claim 1, characterized in that formed at the same time 3. The semiconductor device according to claim 1.
【請求項3】 前記N+/P/N+型双方向ツェナーダイ
オードは、複数段に形成されているものであることを特
徴とする請求項1に記載の半導体装置。
3. The semiconductor device according to claim 1, wherein the N + / P / N + type bidirectional Zener diode is formed in a plurality of stages.
JP08218764A 1996-08-20 1996-08-20 Semiconductor device Expired - Fee Related JP3123930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08218764A JP3123930B2 (en) 1996-08-20 1996-08-20 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08218764A JP3123930B2 (en) 1996-08-20 1996-08-20 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH1065157A true JPH1065157A (en) 1998-03-06
JP3123930B2 JP3123930B2 (en) 2001-01-15

Family

ID=16725039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08218764A Expired - Fee Related JP3123930B2 (en) 1996-08-20 1996-08-20 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3123930B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6580121B2 (en) 2001-01-10 2003-06-17 Mitsubishi Denki Kabushiki Kaisha Power semiconductor device containing at least one zener diode provided in chip periphery portion
KR100432835B1 (en) * 2000-10-31 2004-05-24 료덴 세미컨덕터 시스템 엔지니어링 (주) Semiconductor device and method of manufacturing the same
WO2014073656A1 (en) * 2012-11-08 2014-05-15 富士電機株式会社 Semiconductor device and semiconductor device fabrication method
US9472543B2 (en) 2013-07-04 2016-10-18 Mitsubishi Electric Corporation Wide band gap semiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100432835B1 (en) * 2000-10-31 2004-05-24 료덴 세미컨덕터 시스템 엔지니어링 (주) Semiconductor device and method of manufacturing the same
US6580121B2 (en) 2001-01-10 2003-06-17 Mitsubishi Denki Kabushiki Kaisha Power semiconductor device containing at least one zener diode provided in chip periphery portion
WO2014073656A1 (en) * 2012-11-08 2014-05-15 富士電機株式会社 Semiconductor device and semiconductor device fabrication method
CN104321871A (en) * 2012-11-08 2015-01-28 富士电机株式会社 Semiconductor device and semiconductor device fabrication method
JP5867623B2 (en) * 2012-11-08 2016-02-24 富士電機株式会社 Semiconductor device and manufacturing method of semiconductor device
US9368613B2 (en) 2012-11-08 2016-06-14 Fuji Electric Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
CN104321871B (en) * 2012-11-08 2017-10-10 富士电机株式会社 The manufacture method of semiconductor device and semiconductor device
US9472543B2 (en) 2013-07-04 2016-10-18 Mitsubishi Electric Corporation Wide band gap semiconductor device

Also Published As

Publication number Publication date
JP3123930B2 (en) 2001-01-15

Similar Documents

Publication Publication Date Title
CA1242532A (en) Input protection arrangement for vlsi intergrated circuit devices
JP2626229B2 (en) Semiconductor input protection device
JP2822915B2 (en) Semiconductor device
JP2001210792A (en) High-voltage integrated circuit chip
JPS6146986B2 (en)
JP3123930B2 (en) Semiconductor device
JP2002208677A (en) Semiconductor device having temperature detection function
JP2000133796A (en) Igbt power device having high resistance to reverse power pulse
JPH07500455A (en) Structure for suppressing field inversion caused by charge accumulation in insulators
JPS63137478A (en) Manufacture of semiconductor device having protective circuit
JP2611639B2 (en) Semiconductor device
JPH11145454A (en) Semiconductor device, electrostatic protective element, and dielectric breakdown preventing method
US6639294B2 (en) Semiconductor device having a device formation region protected from a counterelectromotive force
JPH0831948A (en) Semiconductor integrated circuit device
JPH06140588A (en) Semiconductor integrated circuit
JP2003204069A (en) Semiconductor device
JP3187773B2 (en) Semiconductor device with input protection element
JPH0587137B2 (en)
KR19990004908A (en) Semiconductor device manufacturing method
JPH0716006B2 (en) Semiconductor device
JPH0518467B2 (en)
JPH0518468B2 (en)
TW202044533A (en) Electrostatic discharge (esd) protection device and forming method thereof
JPS59105369A (en) Semiconductor device
JPH07131010A (en) Semiconductor integrated circuit

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19990323

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081027

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees