JPH1064859A - Method and device for polishing - Google Patents

Method and device for polishing

Info

Publication number
JPH1064859A
JPH1064859A JP21367296A JP21367296A JPH1064859A JP H1064859 A JPH1064859 A JP H1064859A JP 21367296 A JP21367296 A JP 21367296A JP 21367296 A JP21367296 A JP 21367296A JP H1064859 A JPH1064859 A JP H1064859A
Authority
JP
Japan
Prior art keywords
polishing
film
end point
polished
abrasive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21367296A
Other languages
Japanese (ja)
Inventor
Kazuhiko Tokunaga
和彦 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP21367296A priority Critical patent/JPH1064859A/en
Publication of JPH1064859A publication Critical patent/JPH1064859A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PROBLEM TO BE SOLVED: To allow end point decision of high reliability and good reproducibility relating to polishing for all kind of flattening. SOLUTION: At such depth, and its neighborhood, as the end point of polishing of a to-be-polished plate (semiconductor wafer) 8, a to-be-polished part 13 and an end point detecting layer 14 containing an element which does not exist in a polishing agent are formed in advance, the polishing is performed while detecting the element in the polishing agent used for polishing and then discharged, and completion time of polishing is judged based on changes in composition ratio of elements, decrease in composition ratio of element (for example, reaching to almost zero) may be taken as an end point, and increase in composition ratio (for example, increase from almost zero) may be taken as an end point.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、研磨方法、特に段
差を有する被研磨板の表面を研磨剤を用いて化学的機械
的に研磨する研磨方法と、その実施に用いる研磨装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polishing method, and more particularly to a polishing method for chemically and mechanically polishing a surface of a plate having a step using an abrasive, and a polishing apparatus used for carrying out the method.

【0002】[0002]

【従来の技術】LSIに要求される微細化のためには、
素子分離領域の縮小等と共に、層間絶縁膜の平坦化を図
ることが必要であり、その目的達成のために重要な技術
として化学的・機械的研磨(CMP)法が注目されてい
る。図7はその化学的・機械的研磨を行う化学的・機械
的研磨装置の概略図である。同図において、1は研磨定
盤で、図示しないモーターにより高速回転せしめられ
る。2は該研磨定盤1の表面に張設された研磨パッドで
あり、多孔質材料からなる。
2. Description of the Related Art For miniaturization required for LSI,
It is necessary to flatten the interlayer insulating film together with the reduction of the element isolation region and the like, and a chemical and mechanical polishing (CMP) method attracts attention as an important technique for achieving the purpose. FIG. 7 is a schematic view of a chemical / mechanical polishing apparatus for performing the chemical / mechanical polishing. In FIG. 1, reference numeral 1 denotes a polishing table, which is rotated at a high speed by a motor (not shown). Reference numeral 2 denotes a polishing pad stretched on the surface of the polishing platen 1 and is made of a porous material.

【0003】3は研磨ヘッドで、その下面には図示せぬ
チャックプレートが取り付けられており、該チャックプ
レートにウレタンゴム等からなる基板吸着フィルム4が
貼着されている。該研磨ヘッド3は図示しないヘッド回
転軸に支持されており、研磨時にはそのヘッド回転軸を
介して図中矢印方向に回転駆動される。
A polishing head 3 has a chuck plate (not shown) attached to a lower surface thereof, and a substrate suction film 4 made of urethane rubber or the like is attached to the chuck plate. The polishing head 3 is supported by a head rotating shaft (not shown), and is driven to rotate in the direction of an arrow in the figure via the head rotating shaft during polishing.

【0004】更に、研磨ヘッド3の近傍には研磨剤(ス
ラリー)供給用のノズル5が配設されており、研磨時に
は研磨剤供給タンク6から送出された研磨剤7が上記ノ
ズル5を通して研磨パッド2上に供給される。
Further, a nozzle 5 for supplying an abrasive (slurry) is disposed near the polishing head 3, and an abrasive 7 sent from an abrasive supply tank 6 passes through the nozzle 5 during polishing. 2 is supplied.

【0005】次に、図7に示す研磨装置の動作を説明す
る。先ず、半導体ウェハ8を上記基板吸着フィルム4を
介して研磨ヘッド3下面側の図示しないチャックプレー
トに吸着保持した状態にする。次に、研磨定盤1及び研
磨ヘッド3をそれぞれの回転軸を介して図示しない駆動
手段により回転駆動する。このとき、研磨剤供給用のノ
ズル5から研磨剤7を研磨パッド2上に供給し、その状
態で、図示しない加圧部により所定の研磨加工圧をもっ
て研磨パッド2表面に半導体ウェハ8を押しつける。こ
れにより半導体ウェハ8表面の被研磨膜の表面は研磨剤
の化学的研磨作用と機械的研磨作用とにより研磨され
る。
Next, the operation of the polishing apparatus shown in FIG. 7 will be described. First, the semiconductor wafer 8 is brought into a state of being sucked and held on a chuck plate (not shown) on the lower surface side of the polishing head 3 via the substrate suction film 4. Next, the polishing table 1 and the polishing head 3 are rotationally driven by driving means (not shown) via respective rotating shafts. At this time, the abrasive 7 is supplied onto the polishing pad 2 from the nozzle 5 for supplying the abrasive, and in this state, the semiconductor wafer 8 is pressed against the surface of the polishing pad 2 with a predetermined polishing pressure by a pressing unit (not shown). Thereby, the surface of the film to be polished on the surface of the semiconductor wafer 8 is polished by the chemical polishing action of the abrasive and the mechanical polishing action.

【0006】ところで、研磨にあたり重要なことの一つ
は、研磨の終了時点をどのように検出するかであり、終
点検出方法についてはいくつかの技術が知られている。
その第1のものは、研磨機のモーターの回転トルクをモ
ニターする終点検出法である。即ち、研磨中の回転数を
一定にした場合において、膜質が変わったとき、それに
伴う摩擦の違いによりモーターにかかる負荷が変わり、
それによりモーターに流れる電流も変わる。そこでモー
ターに流れる電流をモニターすることにより研磨される
膜の膜質の変化を検出して終点検出をするものである。
Incidentally, one of the important things in polishing is how to detect the end point of polishing, and there are several known end point detection methods.
The first is an end point detection method that monitors the rotational torque of the motor of the polishing machine. In other words, when the rotation speed during polishing is constant, when the film quality changes, the load applied to the motor changes due to the difference in the resulting friction,
This changes the current flowing through the motor. Therefore, the end point is detected by monitoring the current flowing through the motor to detect a change in the quality of the film to be polished.

【0007】従来の終点検出法の第2のものは、研磨と
並行して被研磨膜の膜厚の測定を行い、その測定膜厚が
所定の薄さに達したら研磨の終了時点と判断するもので
ある。
In the second conventional end point detection method, the thickness of a film to be polished is measured in parallel with polishing, and when the measured film thickness reaches a predetermined thinness, it is determined that polishing is completed. Things.

【0008】従来の終点検出法の第3のものは、被研磨
膜よりも研磨レートの低い膜をストッパーとして形成し
ておき、ストッパーが現れたときをもって終点とするも
のである。
A third conventional end point detection method is to form a film having a lower polishing rate than the film to be polished as a stopper, and to determine the end point when the stopper appears.

【0009】[0009]

【発明が解決しようとする課題】ところで、従来の終点
検出法にはそれぞれ問題があった。先ず、第1の研磨機
のモーターの回転トルクをモニターする方法には、被研
磨膜とその下地の膜との研磨レートが近い場合には確実
且つ正確に終点検出することが難しいという問題があ
る。例えば、二酸化シリコンSiO2 と、シリコンナイ
トライドSiNとは研磨レートに大きな差異がない(選
択比3〜5程度)ので、終点の判別が難しい。
However, each of the conventional end point detection methods has a problem. First, the method of monitoring the rotational torque of the motor of the first polishing machine has a problem that it is difficult to reliably and accurately detect the end point when the polishing rate of the film to be polished and the underlying film is close. . For example, since the polishing rates of silicon dioxide SiO 2 and silicon nitride SiN do not differ greatly (selectivity ratio is about 3 to 5), it is difficult to determine the end point.

【0010】また、研磨レートの変化は、研磨されるも
のの膜質の変化のみならず研磨パッドの摩耗によっても
生じる。従って、研磨レート変化が生じても、それが膜
質の変化によるものなのか研磨パッドの摩耗によるもの
かが定かでなく、誤検出が生じるおそれがある。
[0010] The change in the polishing rate is caused not only by the change in the film quality but also by the wear of the polishing pad. Therefore, even if a change in the polishing rate occurs, it is not clear whether the change is due to a change in film quality or abrasion of the polishing pad, and erroneous detection may occur.

【0011】第2の研磨と並行して被研磨膜の膜厚を研
磨定盤側から直接モニターを行い、終点を検出する方法
には、配線膜など所定のパターンを有するものだと、被
研磨膜の厚みが、配線膜のある部分と無い部分で異な
り、膜厚測定ができなくなるので、用いることができな
い場合がある。
In parallel with the second polishing, the thickness of the film to be polished is directly monitored from the polishing platen side to detect the end point. Since the thickness of the film differs between a portion having a wiring film and a portion not having the wiring film, and the film thickness cannot be measured, the film cannot be used in some cases.

【0012】第3の被研磨膜に対して研磨レートの遅い
膜をストッパーとして用いる方法には、被研磨膜とスト
ッパーとの研磨レートの選択比が充分に高いこと、研磨
レートの安定性が高いことが重要であるが、しかし、一
般的に利用し易いケースとして挙げられる被研磨膜とし
て二酸化シリコンSiO2 を用い、ストッパーとしてシ
リコンナイトライドSiNを用いたケースにおいても、
選択比は3〜5程度に過ぎず、充分に高いとは言えな
い。しかも、研磨レートは研磨パッドの摩耗による表面
状態の変化により変動し、安定性が充分に高いとは言え
ない。従って、信頼度の高い終点検出を再現性良く行う
ことは難しいという問題がある。
The third method in which a film having a lower polishing rate than the film to be polished is used as a stopper requires that the selectivity of the polishing rate between the film to be polished and the stopper be sufficiently high and the stability of the polishing rate is high. It is important, however, that in the case where silicon dioxide SiO 2 is used as the film to be polished and the case where silicon nitride SiN is used as the stopper, which is generally cited as an easy-to-use case,
The selectivity is only about 3-5 and cannot be said to be sufficiently high. Moreover, the polishing rate fluctuates due to a change in the surface state due to the wear of the polishing pad, and the stability cannot be said to be sufficiently high. Therefore, there is a problem that it is difficult to perform highly reliable end point detection with good reproducibility.

【0013】本発明はこのような問題点を解決すべく為
されたものであり、全ての種類の平坦化のための研磨に
おいて、終点判定を高信頼度で再現性良くできるように
することを目的とする。
The present invention has been made in order to solve such a problem, and an object of the present invention is to make it possible to perform end point determination with high reliability and high reproducibility in polishing for all kinds of flattening. Aim.

【0014】[0014]

【課題を解決するための手段】本発明は、被研磨板の研
磨の終点とすべき深さのところ乃至その近傍に被研磨部
及び研磨剤には存在しない元素を含有する終点検出用層
を形成しておき、研磨に用いられ排出された研磨剤中の
上記元素を検出しながら研磨を行うこととし、該元素の
成分比の変化に基づいて研磨の終了時点を決めるように
することを特徴とする。
According to the present invention, there is provided an end point detecting layer containing an element which is not present in a portion to be polished and a polishing agent at or near a depth at which the polishing of the plate to be polished ends. It is characterized in that the polishing is performed while detecting the above-mentioned element in the discharged abrasive used for polishing, and the polishing end point is determined based on the change in the component ratio of the element. And

【0015】従って、本発明によれば、あるケースで
は、研磨面が終点検出用層に達するまでは研磨に寄与し
て排出された研磨剤中には終点検出用層に含まれた元素
の成分は存在しないが、しかし、研磨面が終点検出層に
達すると研磨に寄与して排出された研磨剤中には該終点
検出層中に含有された元素が存在し、終点検出層を研磨
し終えると、研磨剤中の元素もなくなる。
Therefore, according to the present invention, in some cases, the components of the elements contained in the end point detecting layer are contained in the abrasive discharged to contribute to polishing until the polished surface reaches the end point detecting layer. Does not exist, however, when the polished surface reaches the end point detection layer, the element contained in the end point detection layer is present in the abrasive that has contributed to the polishing and is discharged, and the polishing of the end point detection layer is finished. As a result, the elements in the abrasive are also eliminated.

【0016】また、別のケースでは終点検出用層を研磨
し終えるまではその層中の元素を検出できるが、その後
は層中の元素を排出研磨剤中から検出できなくなる。
In another case, the element in the layer for detecting the end point can be detected until the polishing of the layer for detecting the end point is completed, but thereafter, the element in the layer cannot be detected from the discharged abrasive.

【0017】依って、研磨剤中のその元素の成分比の変
化を検出することにより終点検出ができ、全ての種類の
平坦化のための研磨において、終点判定を高信頼度で再
現性良く行うことが可能になる。
Therefore, the end point can be detected by detecting the change in the component ratio of the element in the abrasive, and the end point can be determined with high reliability and high reproducibility in polishing for all types of flattening. It becomes possible.

【0018】[0018]

【発明の実施の形態】以下、本発明を図示実施の形態に
従って詳細に説明する。図1(A)乃至(D)は本発明
研磨方法の第1の実施の形態を説明するためのもので、
(A)は研磨開始前の状態を示す半導体基板の断面図、
(B)は研磨終了後の状態を示す半導体基板の断面図、
(C)は発光分析におけるB(ホウ素)、P(リン)の
波長・光強度関係図、(D)は研磨時間の経過に伴う研
磨剤の発光分析における光強度の変化を示す研磨時間・
光強度関係図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments. FIGS. 1A to 1D are views for explaining a polishing method according to a first embodiment of the present invention.
(A) is a sectional view of a semiconductor substrate showing a state before the start of polishing,
(B) is a cross-sectional view of the semiconductor substrate showing a state after polishing is completed;
(C) is a graph showing the relationship between the wavelength and the light intensity of B (boron) and P (phosphorus) in the emission analysis.
It is a light intensity relationship diagram.

【0019】図面において、11は半導体基板8の層間
絶縁膜、12、12は該層間絶縁膜11上に形成された
例えばアルミニウムからなる配線膜、13は配線膜1
2、12上を覆う絶縁膜で、例えば、バイアスECR−
CVDによるSiO2 からなる。その表面は配線膜1
2、12により凹凸ができる。この絶縁膜13が本実施
の形態における被研磨膜となる。14は該絶縁膜13上
に形成された終点検出用層で、例えばBPSGからな
り、従って、リンP、ホウ素Bを含有している。この両
元素は、研磨剤にも被研磨膜13中にも存在しない元素
である。このように、本研磨方法においては、先ず図1
(A)に示すように、被研磨膜である絶縁膜13の表面
に終点検出用層として例えばBPSG膜14を形成して
おき、その後、研磨を行うこととするのである。
In the drawings, reference numeral 11 denotes an interlayer insulating film of a semiconductor substrate 8, 12 and 12 a wiring film made of, for example, aluminum formed on the interlayer insulating film 11, and 13 a wiring film 1
An insulating film that covers the top and the bottom of each of the transistors 2 and 12, for example, a bias ECR-
It is made of SiO 2 by CVD. The surface is the wiring film 1
The irregularities are formed by 2 and 12. This insulating film 13 becomes the film to be polished in the present embodiment. Reference numeral 14 denotes an end-point detection layer formed on the insulating film 13 and is made of, for example, BPSG, and therefore contains phosphorus P and boron B. These two elements are elements that are not present in the abrasive or in the film 13 to be polished. As described above, in this polishing method, first, FIG.
As shown in (A), a BPSG film 14, for example, is formed as an end point detection layer on the surface of an insulating film 13 which is a film to be polished, and then polishing is performed.

【0020】そして、研磨は例えば図2に示す化学的・
機械的研磨装置(本発明研磨装置の第1の実施の形態の
化学的・機械的研磨装置)を用いて、研磨に使用され終
え排出される研磨剤7中の上記元素例えばPの成分比を
測定しながら行う。
The polishing is performed, for example, by the chemical and chemical processes shown in FIG.
Using a mechanical polishing apparatus (a chemical / mechanical polishing apparatus according to the first embodiment of the present invention), the component ratio of the above element, for example, P in the polishing agent 7 used after the polishing and discharged is determined. Perform while measuring.

【0021】図2において、1は研磨定盤、2は該研磨
定盤1の表面に張設された研磨パッド、3は研磨ヘッド
で、その下面には図示せぬチャックプレートが取り付け
られており、該チャックプレートにウレタンゴム等から
なる基板吸着フィルム4が貼着されている。該研磨ヘッ
ド3は図示しないヘッド回転軸に支持されており、研磨
時にはそのヘッド回転軸を介して図中矢印方向に回転駆
動される。
In FIG. 2, 1 is a polishing platen, 2 is a polishing pad stretched on the surface of the polishing platen 1, 3 is a polishing head, and a chuck plate (not shown) is attached to the lower surface thereof. A substrate suction film 4 made of urethane rubber or the like is adhered to the chuck plate. The polishing head 3 is supported by a head rotating shaft (not shown), and is driven to rotate in the direction of an arrow in the figure via the head rotating shaft during polishing.

【0022】更に、研磨ヘッド3の近傍には研磨剤(ス
ラリー)供給用のノズル5が配設されており、研磨時に
は研磨剤供給タンク6から送出された研磨剤7が上記ノ
ズル5を通して研磨パッド2上に供給される。9は研磨
を終えたばかりの研磨剤7中の終点検出用元素、例えば
リンPの成分比を検出する元素成分検出器で、発光分析
により検出する。図1(B)はホウ素B及びリンPにつ
いての発光分析における波長と光強度との関係図であ
る。ホウ素Bは波長2497.7オングストロームにス
ペクトラムが、リンPは波長2535.6オングストロ
ームにスペクトラムが観測される。図2に示す研磨装置
(本発明研磨装置の第1の実施の形態)の特徴は研磨剤
中の終点検出用元素の成分比を検出する元素成分検出器
を有していることである。
Further, a nozzle 5 for supplying an abrasive (slurry) is disposed near the polishing head 3, and an abrasive 7 sent from an abrasive supply tank 6 passes through the nozzle 5 during polishing. 2 is supplied. Reference numeral 9 denotes an element component detector for detecting an element for detecting an end point, for example, phosphorus P, in the polishing agent 7 just finished polishing, which is detected by emission analysis. FIG. 1B is a diagram showing the relationship between wavelength and light intensity in the emission analysis of boron B and phosphorus P. For boron B, a spectrum is observed at a wavelength of 2497.7 angstroms, and for phosphorus P, a spectrum is observed at a wavelength of 2535.6 angstroms. The feature of the polishing apparatus shown in FIG. 2 (the first embodiment of the polishing apparatus of the present invention) is that it has an element component detector for detecting the component ratio of the element for detecting the end point in the abrasive.

【0023】次に、半導体ウェハ8を上記基板吸着フィ
ルム4を介して研磨ヘッド3下面側の図示しないチャッ
クプレートに吸着保持した状態にし、研磨定盤1及び研
磨ヘッド3をそれぞれの回転軸を介して図示しない駆動
手段により回転駆動すると共に、研磨剤供給用のノズル
5から研磨剤7を研磨パッド2上に供給し、その状態
で、図示しない加圧部により所定の研磨加工圧をもって
研磨パッド2表面に半導体ウェハ8を押しつける。これ
により半導体ウェハ8表面の被研磨膜の表面は研磨剤の
化学的研磨作用と機械的研磨作用とにより研磨される。
Next, the semiconductor wafer 8 is held by suction on a chuck plate (not shown) on the lower surface side of the polishing head 3 via the substrate suction film 4, and the polishing table 1 and the polishing head 3 are moved via their respective rotating shafts. The polishing pad 2 is rotated by a driving means (not shown) and the polishing agent 7 is supplied onto the polishing pad 2 from the nozzle 5 for supplying the polishing agent. The semiconductor wafer 8 is pressed against the surface. Thereby, the surface of the film to be polished on the surface of the semiconductor wafer 8 is polished by the chemical polishing action of the abrasive and the mechanical polishing action.

【0024】このときの化学的機械研磨(CMP)条件
は、研磨パッドがIC1000A21/SUBA4、研
磨剤がフュームドシリカ(SC112)で、その供給量
が0.3l(l:リットル)/min、研磨圧力が4.
5psi、SiO2 の研磨レートが80〜100nm/
minである。尚、上記研磨剤の主成分は、SiO2
2 O、KOHである。
At this time, the chemical mechanical polishing (CMP) conditions are as follows: the polishing pad is IC1000A21 / SUBA4, the polishing agent is fumed silica (SC112), the supply amount is 0.3 l (l: liter) / min, and the polishing is Pressure is 4.
5 psi, SiO 2 polishing rate 80-100 nm /
min. The main component of the abrasive is SiO 2 ,
H 2 O and KOH.

【0025】すると、研磨時間の経過に伴って図2の元
素成分検出器9の検出光強度を示す出力は図1(D)に
示すように変化する。即ち、最初に研磨されるのは終点
検出用膜14であり、その中には検出用元素であるリン
P(勿論、本例ではホウ素Bも含まれており、これを終
点検出用元素としても良い。)が含まれているので、研
磨に寄与し排出されようとする研磨剤7中にはその元素
リンPが含まれており、比較的その濃度(光強度に略比
例する。)は高い。そして、研磨が進み、被研磨膜13
を研磨する状態になると、該被研磨膜13中には当該元
素リンPが含まれていないので、そのリンPの研磨剤7
中における組成比(濃度)は急激に低下する。そして、
終点検出用膜13の凹部にあたる部分を研磨する状態に
なると、研磨面に占める終点検出用膜13の面積の割合
が増えるので、リンPの研磨剤7中における組成比が稍
高くなる。しかし、研磨面が平坦化を終了したい所とし
て設定された、終点検出用膜13のもっとも低い部分を
過ぎると、リンPの研磨剤7中における元素リンPの組
成比が0になる。その時をもって研磨の終点とし、研磨
を終了するのである。図1(B)は研磨終了時点におけ
る状態を示す。
Then, as the polishing time elapses, the output indicating the detected light intensity of the elemental component detector 9 shown in FIG. 2 changes as shown in FIG. 1 (D). That is, what is polished first is the end-point detection film 14, in which phosphorus P as a detection element (of course, boron B is also contained in this example, and this is used as the end-point detection element). ) Is contained in the polishing agent 7 that contributes to polishing and is to be discharged, and the elemental phosphorus P is contained therein, and its concentration (which is substantially proportional to the light intensity) is relatively high. . Then, polishing proceeds, and the film to be polished 13
Is polished, the polishing target film 13 does not contain the elemental phosphorus P.
The composition ratio (concentration) in the medium rapidly decreases. And
When the portion corresponding to the concave portion of the end point detecting film 13 is polished, the proportion of the area of the end point detecting film 13 occupying the polished surface increases, so that the composition ratio of phosphorus P in the polishing agent 7 becomes slightly higher. However, the composition ratio of elemental phosphorus P in the polishing agent 7 of phosphorus P becomes 0 when the polished surface passes the lowest portion of the end point detection film 13 which is set as a place where flattening is to be finished. At that time, the polishing is completed, and the polishing is completed. FIG. 1B shows a state at the end of polishing.

【0026】このような方法によれば、確実且つ再現性
良く正確に終点検出ができる。具体的には、全ての基板
8で、研磨後における被研磨膜13の膜厚を一定にする
ことができた。即ち、再現性が良く、膜厚の精度を高く
することができたのである。図3(A)、(B)は本発
明研磨方法の第2の実施の形態を示すもので、(A)は
研磨前の半導体ウェハ8の断面図、(B)は研磨時間の
経過に伴う研磨剤の発光分析における光強度の変化を示
す研磨時間・光強度関係図である。
According to such a method, the end point can be detected accurately and with good reproducibility. Specifically, the film thickness of the film-to-be-polished 13 after polishing can be made constant for all the substrates 8. That is, the reproducibility was good, and the accuracy of the film thickness could be increased. FIGS. 3A and 3B show a second embodiment of the polishing method of the present invention, in which FIG. 3A is a cross-sectional view of the semiconductor wafer 8 before polishing, and FIG. FIG. 5 is a polishing time / light intensity relationship diagram showing a change in light intensity in emission analysis of an abrasive.

【0027】本実施の形態は、図1の実施の形態におい
て、BPSGからなる終点検出用膜14の表面に更に、
例えばバイアスECR−CVDによるSiO2 からなる
絶縁膜15を形成した上で研磨をするものである。
This embodiment is different from the embodiment of FIG. 1 in that the surface of the end point detecting film 14 made of BPSG is further added.
For example, polishing is performed after forming an insulating film 15 made of SiO 2 by bias ECR-CVD.

【0028】この場合、元素成分検出器9の出力は、図
3(B)に示すように、当初は強度0であり、終点検出
用(BPSG)膜14の高い部分の表面が露出するまで
は強度0の状態が続く。そして、終点検出用膜14の高
い部分の表面が露出すると、その後、元素成分検出器9
の出力は0から上昇し、やがて一つのピークに達するが
やがて低下する。この低下は、研磨面に被研磨膜13の
高い部分の表面が現れた後始まり、そして、終点検出用
膜14の低い部分の表面が露出すると、元素成分検出器
9の出力が再び上昇し始め2度目のピークに達する。し
かし、その後、その出力は低下し、終点検出用膜14が
完全に研磨されきった時点で元素成分検出器9の出力が
0になる。その時をもって研磨を終了する。本実施の形
態においても図1に示した実施の形態による場合と同様
に、全ての基板8で、研磨後における被研磨膜13の膜
厚を一定にすることができた。即ち、再現性が良く、膜
厚の精度を高くすることができた。
In this case, as shown in FIG. 3B, the output of the element component detector 9 has an intensity of 0 at the beginning, and the output of the high portion of the end point detection (BPSG) film 14 is exposed until the surface is exposed. The state of intensity 0 continues. When the surface of the high portion of the end point detection film 14 is exposed, the element component detector 9
Output rises from 0 and eventually reaches one peak, but then falls. This decrease starts after the surface of the high portion of the film-to-be-polished 13 appears on the polishing surface, and when the surface of the low portion of the end-point detection film 14 is exposed, the output of the elemental component detector 9 starts to increase again. The second peak is reached. However, thereafter, the output decreases, and the output of the elemental component detector 9 becomes 0 when the end point detection film 14 is completely polished. The polishing is completed at that time. In this embodiment, as in the case of the embodiment shown in FIG. 1, the film thickness of the film-to-be-polished 13 can be made constant for all the substrates 8 after polishing. That is, the reproducibility was good and the accuracy of the film thickness could be increased.

【0029】図4(A)、(B)は本発明研磨方法の第
3の実施の形態を示すもので、(A)は終点検出用膜形
成時の状態を示す断面図、(B)は研磨時間の経過に伴
う研磨剤の発光分析における光強度の変化を示す研磨時
間・光強度関係図である。
FIGS. 4A and 4B show a third embodiment of the polishing method of the present invention, wherein FIG. 4A is a cross-sectional view showing a state when an end point detecting film is formed, and FIG. FIG. 5 is a polishing time / light intensity relationship diagram showing a change in light intensity in emission analysis of an abrasive with the passage of polishing time.

【0030】本実施の形態は、段差のある被研磨膜13
の形成後、研磨前に、図4(A)に示すように、適宜な
エネルギーで、終点検出用の元素例えばリンPをイオン
打ち込みすることにより、被研磨膜13表面より適宜深
いところに薄いイオン打ち込み膜16を形成する。そし
て、被研磨膜13の低い部分の表面から適宜深いところ
に生じた打ち込み膜16をもって研磨を終了すべきとこ
ろとなるようにする。この場合、元素成分検出器9の出
力は図4(B)に示すように、変化する。即ち、研磨開
始当初、出力が0であるが、研磨面がイオン打ち込み膜
16の高い方の部分に達すると出力が上昇し、すぐに一
つのピークに達するが、すぐに出力が低下する。そし
て、研磨面がイオン打ち込み膜16の低い方の部分に達
するとその出力は上昇し、2回目のピークに達する。も
しそのまま研磨を続けると、その後、すぐに出力が低下
することになる。そこで、その2回目のピークに達した
ときに研磨を終了すると、略研磨面がイオン打ち込み膜
16の低い方の部分に達した所で研磨の終点とすること
ができる。
In the present embodiment, the polishing target film 13 having a step is used.
4A, before the polishing, as shown in FIG. 4 (A), an element for detecting the end point, for example, phosphorus P is ion-implanted with an appropriate energy, so that a thin ion is formed at a place deeper than the surface of the film 13 to be polished. An implantation film 16 is formed. Then, the polishing is to be finished with the implanted film 16 formed at an appropriate depth from the surface of the low portion of the film 13 to be polished. In this case, the output of the element component detector 9 changes as shown in FIG. That is, although the output is 0 at the beginning of the polishing, the output increases when the polished surface reaches the higher portion of the ion-implanted film 16 and immediately reaches one peak, but the output immediately decreases. Then, when the polished surface reaches the lower part of the ion-implanted film 16, the output increases and reaches the second peak. If the polishing is continued as it is, the output will immediately decrease. Therefore, when the polishing is completed when the second peak is reached, the polishing end point can be set when the polished surface substantially reaches the lower portion of the ion-implanted film 16.

【0031】尤も、不純物のイオン打ち込み膜16を完
全に除去しておきたい場合には、出力が0になってか
ら、或いは0になってから或る予め設定した時間経過し
た後、研磨を終了するようにしても良い。
However, if it is desired to completely remove the ion-implanted film 16 of the impurity, the polishing is terminated after the output becomes 0 or after a predetermined time elapses after the output becomes 0. You may do it.

【0032】図5(A)乃至(C)は本発明研磨方法の
第4の実施の形態を示すもので、(A)は研磨前の状態
を示す断面図、(B)は研磨後の状態を示す断面図、
(C)は研磨時間の経過に伴う研磨剤の発光分析におけ
る光強度の変化を示す研磨時間・光強度関係図である。
FIGS. 5A to 5C show a fourth embodiment of the polishing method of the present invention. FIG. 5A is a sectional view showing a state before polishing, and FIG. 5B is a state after polishing. A sectional view showing the
(C) is a polishing time-light intensity relationship diagram showing a change in light intensity in emission analysis of an abrasive with the passage of polishing time.

【0033】本実施の形態は、終点検出用の元素を含ん
だBPSGからなる層間絶縁膜17にアルミニウム配線
用の溝18、18を形成し、その後、アルミニウム膜1
9を形成した半導体ウェハ8に対して、そのアルミニウ
ム膜19の研磨処理を施そうとするものである。
In this embodiment, grooves 18 for aluminum wiring are formed in an interlayer insulating film 17 made of BPSG containing an element for detecting an end point.
This is to polish the aluminum film 19 of the semiconductor wafer 8 on which the semiconductor wafer 9 is formed.

【0034】研磨開始当初は、元素成分検出器9により
検出される研磨剤7中の終点検出用元素(例えばリン
P)の検出値、即ち、出力は0である。その後、研磨が
進み、研磨面が層間絶縁膜17の表面に達すると、元素
成分検出器9の出力が0より大きくなる。そこで、研磨
を終了する。すると、図5(B)に示すように、溝1
8、18外のアルミニウム膜19を完全に除去した状態
になる。
At the beginning of the polishing, the detection value of the element for detecting the end point (for example, phosphorus P) in the abrasive 7 detected by the element component detector 9, that is, the output is zero. Thereafter, when the polishing proceeds and the polished surface reaches the surface of the interlayer insulating film 17, the output of the element component detector 9 becomes larger than zero. Therefore, the polishing is terminated. Then, as shown in FIG.
The aluminum film 19 outside the portions 8 and 18 is completely removed.

【0035】本実施の形態においては、層間絶縁膜17
そのものが終点検出用膜としての役割を果たしている。
従って、終点検出用膜を形成するためだけの工程を必要
としない。
In the present embodiment, the interlayer insulating film 17
It plays a role as an end point detection film.
Therefore, a step only for forming the end point detecting film is not required.

【0036】図6(A)乃至(E)は本発明研磨方法の
第5の実施の形態を示すもので、(A)乃至(D)は製
造方法を工程順に示す断面図であり、(E)は研磨時間
の経過に伴う研磨剤の発光分析における光強度の変化を
示す研磨時間・光強度関係図である。
FIGS. 6A to 6E show a fifth embodiment of the polishing method of the present invention. FIGS. 6A to 6D are cross-sectional views showing the manufacturing method in the order of steps. () Is a polishing time-light intensity relationship diagram showing a change in light intensity in emission analysis of the polishing agent with the passage of polishing time.

【0037】(A)先ず、半導体基板8表面の酸化膜
(温度例えば850℃、Pyro酸化、厚さ例えば5n
m)20上にシリコンナイトライドSiNからなる終点
検出用膜(厚さ例えば150nm)21をCVDにより
形成する。本実施の形態における終点検出用の元素は窒
素Nである。図6(A)は終点検出用膜21の形成後の
状態を示す。
(A) First, an oxide film on the surface of the semiconductor substrate 8 (temperature: 850 ° C., Pyro oxidation, thickness: 5 n, for example)
m) An end point detecting film (thickness, for example, 150 nm) 21 made of silicon nitride SiN is formed on 20 by CVD. The element for detecting the end point in the present embodiment is nitrogen N. FIG. 6A shows a state after the formation of the end point detecting film 21.

【0038】(B)次に、フォトレジスト膜22を塗布
し、露光及び現像によりパターニングし、そのパターニ
ングされたフォトレジスト膜22をマスクとして基板8
表面部をドライエッチングすることにより素子間分離用
トレンチ23を形成する。図6(B)はトレンチ23形
成後の状態を示す。
(B) Next, a photoresist film 22 is coated, patterned by exposure and development, and the substrate 8 is patterned using the patterned photoresist film 22 as a mask.
The surface portion is dry-etched to form the inter-element isolation trench 23. FIG. 6B shows a state after the formation of the trench 23.

【0039】(C)次に、上記フォトレジスト膜22を
除去し、Pyro酸化にてトレンチ23内表面部に熱酸
化膜(厚さ例えば30nm)20を形成する。次に、バ
イアス−ECR−CVDにより二酸化シリコンSiO2
膜(膜厚例えば1000nm)24を形成する。この膜
24が本実施の形態における被研磨膜となる。図6
(C)は二酸化シリコンSiO2 膜24形成後、研磨前
の状態を示す。
(C) Next, the photoresist film 22 is removed, and a thermal oxide film 20 (thickness, for example, 30 nm) 20 is formed on the inner surface of the trench 23 by Pyro oxidation. Next, silicon dioxide SiO 2 was formed by bias-ECR-CVD.
A film (film thickness, for example, 1000 nm) 24 is formed. This film 24 is the film to be polished in the present embodiment. FIG.
(C) shows a state after formation of the silicon dioxide SiO 2 film 24 and before polishing.

【0040】(D)その後、被研磨(SiO2 )膜24
を研磨する。研磨開始後暫くの間は元素成分検出器9に
より検出される研磨剤7中の終点検出用元素(例えば窒
素N)の検出値は0である。その後、研磨が進み、研磨
面が終点検出用膜21の表面に達すると、元素成分検出
器9の出力が0より大きくなる。そこで、研磨を終了す
る。すると、図6(D)に示すように、溝23、23外
の二酸化シリコンSiO2 膜24を完全に除去した状態
になる。尚、出力が0より大きくなり始めてから一定時
間経過後研磨を終了することとしても良いことは言うま
でもない。
(D) Thereafter, the polished (SiO 2 ) film 24
Polish. For a while after the start of polishing, the detection value of the element for detecting the end point (for example, nitrogen N) in the abrasive 7 detected by the element component detector 9 is 0. Thereafter, when the polishing proceeds and the polished surface reaches the surface of the end point detecting film 21, the output of the element component detector 9 becomes larger than zero. Therefore, the polishing is terminated. Then, as shown in FIG. 6D, the silicon dioxide SiO 2 film 24 outside the grooves 23 is completely removed. Needless to say, the polishing may be terminated after a certain period of time from when the output starts to become larger than 0.

【0041】[0041]

【発明の効果】本発明によれば、研磨剤中のその元素の
成分比の変化を検出することにより終点検出ができ、全
ての種類の平坦化のための研磨において、終点判定を高
信頼度で再現性良く行うことが可能になる。
According to the present invention, the end point can be detected by detecting a change in the component ratio of the element in the abrasive, and the end point can be determined with high reliability in polishing for all kinds of flattening. Can be performed with good reproducibility.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(A)乃至(D)は本発明研磨方法の第1の実
施の形態を説明するためのもので、(A)は研磨開始前
の状態を示す半導体基板の断面図、(B)は研磨終了後
の状態を示す半導体基板の断面図、(C)は研磨剤の発
光分析におけるB(ホウ素)、P(リン)の波長・光強
度関係図、(D)は研磨時間の経過に伴う研磨剤の発光
分析における光強度の変化を示す研磨時間・光強度関係
図である。
FIGS. 1A to 1D are views for explaining a polishing method according to a first embodiment of the present invention, wherein FIG. 1A is a cross-sectional view of a semiconductor substrate showing a state before polishing is started, and FIG. ) Is a cross-sectional view of the semiconductor substrate showing the state after polishing is completed, (C) is a diagram showing the relationship between the wavelength and light intensity of B (boron) and P (phosphorus) in the emission analysis of the polishing agent, and (D) is the elapse of polishing time. FIG. 7 is a polishing time / light intensity relationship diagram showing a change in light intensity in emission analysis of the polishing agent accompanying the polishing.

【図2】本発明研磨方法の実施に用いる化学的・機械的
研磨装置の一例(本発明研磨装置の第1の実施の形態)
の概略構成図である。
FIG. 2 shows an example of a chemical / mechanical polishing apparatus used for carrying out the polishing method of the present invention (first embodiment of the polishing apparatus of the present invention).
FIG.

【図3】(A)、(B)は本発明研磨方法の第2の実施
の形態を示すもので、(A)は研磨前の半導体ウェハの
断面図、(B)は研磨時間の経過に伴う研磨剤の発光分
析における光強度の変化を示す研磨時間・光強度関係図
である。
FIGS. 3A and 3B show a second embodiment of the polishing method of the present invention, in which FIG. 3A is a cross-sectional view of a semiconductor wafer before polishing, and FIG. FIG. 6 is a polishing time / light intensity relationship diagram showing a change in light intensity in emission analysis of the polishing agent.

【図4】(A)、(B)は本発明研磨方法の第3の実施
の形態を示すもので、(A)は終点検出用膜形成時の状
態を示す断面図、(B)は研磨時間の経過に伴う研磨剤
の発光分析における光強度の変化を示す研磨時間・光強
度関係図である。
FIGS. 4A and 4B show a third embodiment of the polishing method of the present invention, wherein FIG. 4A is a sectional view showing a state when an end point detecting film is formed, and FIG. FIG. 5 is a polishing time-light intensity relationship diagram showing a change in light intensity in the emission analysis of the polishing agent with the passage of time.

【図5】(A)乃至(C)は本発明研磨方法の第2の実
施の形態を示すもので、(A)は研磨前の状態を示す断
面図、(B)は研磨後の状態を示す断面図、(C)は研
磨時間の経過に伴う研磨剤の発光分析における光強度の
変化を示す研磨時間・光強度関係図である。
5A to 5C show a second embodiment of the polishing method of the present invention, in which FIG. 5A is a sectional view showing a state before polishing, and FIG. 5B is a view showing a state after polishing. FIG. 7C is a polishing time-light intensity relationship diagram showing a change in light intensity in the emission analysis of the polishing agent with the passage of polishing time.

【図6】(A)乃至(E)は本発明研磨方法の第5の実
施の形態を示すもので、(A)乃至(D)は製造方法を
工程順に示す断面図であり、(E)は研磨時間の経過に
伴う研磨剤の発光分析における光強度の変化を示す研磨
時間・光強度関係図である。
6 (A) to 6 (E) show a fifth embodiment of the polishing method of the present invention, and FIGS. 6 (A) to 6 (D) are sectional views showing the manufacturing method in the order of steps; FIG. 4 is a polishing time-light intensity relationship diagram showing a change in light intensity in emission analysis of the polishing agent with the passage of polishing time.

【図7】研磨装置の従来例を示す概略図である。FIG. 7 is a schematic view showing a conventional example of a polishing apparatus.

【符号の説明】[Explanation of symbols]

1、2、3・・・研磨部、5、6・・・研磨剤供給部、
7・・・研磨剤、8・・・被研磨板(半導体ウェハ)、
9・・・終点検出用元素成分検出器、13・・・被研磨
膜、14・・・終点検出用膜、16・・・終点検出用
膜、17・・・層間絶縁膜兼用終点検出用膜、21・・
・終点検出用膜、24・・・被研磨膜。
1, 2, 3 ... polishing section, 5, 6 ... abrasive supply section,
7: abrasive, 8: plate to be polished (semiconductor wafer),
9 ... End point detection element component detector, 13 ... Film to be polished, 14 ... End point detection film, 16 ... End point detection film, 17 ... Interlayer insulation film / end point detection film , 21 ...
・ Film for detecting end point, 24 ... Film to be polished.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 段差を有する被研磨板の表面を研磨剤を
用いて研磨する研磨方法において、 被研磨部及び研磨剤には存在しない元素を含有する終点
検出用層を、上記被研磨板の研磨の終点とすべき深さの
ところ乃至その近傍に少なくとも存在するように形成し
ておき、 研磨に用いられ排出された研磨剤中の上記元素を検出し
ながら研磨を行うこととし、 上記元素の成分比の変化をもって研磨の終了時点とする
ことを特徴とする研磨方法。
In a polishing method for polishing a surface of a plate having a step with a polishing agent, an end point detection layer containing an element which is not present in the portion to be polished and the polishing agent is provided on the plate to be polished. It is formed so as to be present at least at or near the depth to be the end point of the polishing, and the polishing is performed while detecting the above-mentioned element in the discharged abrasive used for the polishing. A polishing method characterized in that the end of polishing is determined by a change in the component ratio.
【請求項2】 研磨の終了時点とする元素の成分比の変
化が、元素の成分の減少であることを特徴とする請求項
1記載の研磨方法。
2. The polishing method according to claim 1, wherein the change in the component ratio of the element at the end of polishing is a decrease in the component of the element.
【請求項3】 研磨の終了時点とする元素の成分比の変
化が、元素の成分の増加であることを特徴とする請求項
1記載の研磨方法。
3. The polishing method according to claim 1, wherein the change in the component ratio of the element at the end of the polishing is an increase in the component of the element.
【請求項4】 段差を有する被研磨板の表面を研磨する
研磨部と、 上記研磨部に研磨剤を供給する研磨剤供給部と、 研磨を済んだ研磨剤中の特定元素の成分を分析する元素
成分検出器と、 を少なくとも有することを特徴とする研磨装置。
4. A polishing section for polishing a surface of a plate to be polished having a step, an abrasive supply section for supplying an abrasive to the polishing section, and analyzing a component of a specific element in the polished abrasive. A polishing apparatus comprising at least: an element component detector;
JP21367296A 1996-08-13 1996-08-13 Method and device for polishing Pending JPH1064859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21367296A JPH1064859A (en) 1996-08-13 1996-08-13 Method and device for polishing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21367296A JPH1064859A (en) 1996-08-13 1996-08-13 Method and device for polishing

Publications (1)

Publication Number Publication Date
JPH1064859A true JPH1064859A (en) 1998-03-06

Family

ID=16643065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21367296A Pending JPH1064859A (en) 1996-08-13 1996-08-13 Method and device for polishing

Country Status (1)

Country Link
JP (1) JPH1064859A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6323046B1 (en) * 1998-08-25 2001-11-27 Micron Technology, Inc. Method and apparatus for endpointing a chemical-mechanical planarization process
KR100543194B1 (en) * 1998-06-27 2006-03-31 주식회사 하이닉스반도체 Method of manufacturing semiconductor device using end point detection in chemical and mechanical polishing processes
US7176145B2 (en) 2003-01-27 2007-02-13 Elpida Memory, Inc. Manufacturing method of semiconductor device
JP2011018760A (en) * 2009-07-08 2011-01-27 Yamaha Corp Method for manufacturing semiconductor device
KR20190064381A (en) * 2017-11-30 2019-06-10 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Performing planarization process controls in semiconductor fabrication

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100543194B1 (en) * 1998-06-27 2006-03-31 주식회사 하이닉스반도체 Method of manufacturing semiconductor device using end point detection in chemical and mechanical polishing processes
US6323046B1 (en) * 1998-08-25 2001-11-27 Micron Technology, Inc. Method and apparatus for endpointing a chemical-mechanical planarization process
US6517668B2 (en) 1998-08-25 2003-02-11 Micron Technology, Inc. Method and apparatus for endpointing a chemical-mechanical planarization process
US6562182B2 (en) * 1998-08-25 2003-05-13 Micron Technology, Inc. Method and apparatus for endpointing a chemical-mechanical planarization process
US6776871B2 (en) 1998-08-25 2004-08-17 Micron Technology, Inc. Method and apparatus for endpointing a chemical-mechanical planarization process
US7176145B2 (en) 2003-01-27 2007-02-13 Elpida Memory, Inc. Manufacturing method of semiconductor device
JP2011018760A (en) * 2009-07-08 2011-01-27 Yamaha Corp Method for manufacturing semiconductor device
KR20190064381A (en) * 2017-11-30 2019-06-10 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Performing planarization process controls in semiconductor fabrication

Similar Documents

Publication Publication Date Title
US7132035B2 (en) Methods, apparatuses, and substrate assembly structures for fabricating microelectronic components using mechanical and chemical-mechanical planarization processes
US5265378A (en) Detecting the endpoint of chem-mech polishing and resulting semiconductor device
JP6030703B2 (en) Use of CsOH in dielectric CMP slurry
USRE38029E1 (en) Wafer polishing and endpoint detection
US5736462A (en) Method of etching back layer on substrate
KR20000006580A (en) Method for fabricating semiconductor device
JPH09139367A (en) Method and device for flattening semiconductor device
JP2002530861A (en) Method for reducing dishing speed during CMP in metal semiconductor structure
US6165052A (en) Method and apparatus for chemical/mechanical planarization (CMP) of a semiconductor substrate having shallow trench isolation
US20120171931A1 (en) Polishing method, polishing apparatus, and method for manufacturing semiconductor device
US6254453B1 (en) Optimization of chemical mechanical process by detection of oxide/nitride interface using CLD system
JP3340333B2 (en) Semiconductor device and manufacturing method thereof
JPH1064859A (en) Method and device for polishing
JP2000156360A (en) Manufacture of semiconductor device
US20100285655A1 (en) Method of producing bonded wafer
US6593238B1 (en) Method for determining an endpoint and semiconductor wafer
JP2008205464A (en) Polishing method of semiconductor substrate
US7125321B2 (en) Multi-platen multi-slurry chemical mechanical polishing process
JPH08339982A (en) Semiconductor manufacturing equipment, and manufacture of semiconductor device
JP4546071B2 (en) Manufacturing method of semiconductor device
JP2000091415A (en) Sti-forming method
KR100543195B1 (en) Chemical mechanical polishing equipment
CN112086354B (en) Flattening method of IGBT device
JP2007019428A (en) Method of manufacturing semiconductor device
KR100543194B1 (en) Method of manufacturing semiconductor device using end point detection in chemical and mechanical polishing processes