JPH1062731A - Optical phase modulator and light modulation device - Google Patents

Optical phase modulator and light modulation device

Info

Publication number
JPH1062731A
JPH1062731A JP22085896A JP22085896A JPH1062731A JP H1062731 A JPH1062731 A JP H1062731A JP 22085896 A JP22085896 A JP 22085896A JP 22085896 A JP22085896 A JP 22085896A JP H1062731 A JPH1062731 A JP H1062731A
Authority
JP
Japan
Prior art keywords
phase modulator
quantum well
change
optical phase
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22085896A
Other languages
Japanese (ja)
Other versions
JP3529072B2 (en
Inventor
Takayuki Yamanaka
孝之 山中
Naoto Yoshimoto
直人 吉本
Kiyoyuki Yokoyama
清行 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP22085896A priority Critical patent/JP3529072B2/en
Publication of JPH1062731A publication Critical patent/JPH1062731A/en
Application granted granted Critical
Publication of JP3529072B2 publication Critical patent/JP3529072B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an optical phase modulator and a light modulation device which control a light intensity passing through an optical waveguide or an optical phase by controlling a refractive index of multiplex quantum well layer composing an optical waveguide by an external applied voltage. SOLUTION: This optical phase modulator has a quantum well structure having a quantum well layer 3 consisting of one of InSb, InAs, InAsP, InSbP, or InAsSbP, and also, within a range of an applied voltage when the phase modulator operates, light absorption of the quantum well structure by transition of electron from a second quantum level of the valence band to heavy holes to a first quantum level of a conductive band is increased in the intensity as the applied voltage is increased in the absolute value, and the other light modulation device is such a device as the optical phase modulator and the phase modulator are additionally provided with an input means of optical signal consisting of TM polarized light.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光導波路を構成す
る多重量子井戸層の屈折率を外部印加電圧で制御して、
光導波路を通過する光の強度、あるいは位相を制御する
光位相変調器及び光変調装置に関する。
[0001] The present invention relates to a method for controlling the refractive index of a multiple quantum well layer constituting an optical waveguide by an externally applied voltage.
The present invention relates to an optical phase modulator and an optical modulator that control the intensity or phase of light passing through an optical waveguide.

【0002】[0002]

【従来の技術】近年、分子線エピタキシー(MBE)や
有機金属化学気相成長法(MOVPE)など化合物半導
体極薄膜作成技術の進展によって半導体多重量子井戸
(MQW)や超格子構造が登場し、従来のバルク半導体
に比べて著しいオプトエレクトロニクス素子の特性改良
が可能となっている。このうち、MQW構造に電界を印
加してその吸収係数あるいは屈折率を変化させる電界吸
収効果は、バルク半導体に比べ非常に顕著であり、これ
を用いて高速・低電圧駆動な光変調器が実現されてい
る。
2. Description of the Related Art In recent years, semiconductor multiple quantum wells (MQWs) and superlattice structures have appeared with the progress of compound semiconductor ultra-thin film forming technologies such as molecular beam epitaxy (MBE) and metal organic chemical vapor deposition (MOVPE). This makes it possible to remarkably improve the characteristics of optoelectronic devices as compared to bulk semiconductors. Of these, the electric field absorption effect of applying an electric field to the MQW structure to change its absorption coefficient or refractive index is much more remarkable than that of a bulk semiconductor, and a high-speed and low-voltage driven optical modulator is realized using this. Have been.

【0003】光変調器は、光の信号を変調するために、
二種類の物理量の変化を利用する。そのうち、波長(動
作波長)を吸収係数変化の小さい領域に設定し、そこで
の屈折率の変化を利用するものを位相変調器と称する。
この位相変調器では、可能な限り低い印加電圧(電界)
での大きな屈折率変化を得られることが必要であると同
時に、吸収係数及びその印加電圧による変化が小さいこ
とが必要である。
[0003] An optical modulator modulates an optical signal by:
The change of two kinds of physical quantities is used. Of these, the one that sets the wavelength (operating wavelength) in a region where the change in the absorption coefficient is small and uses the change in the refractive index there is called a phase modulator.
In this phase modulator, the applied voltage (electric field) is as low as possible.
It is necessary that a large change in the refractive index can be obtained at the same time, and that the change due to the absorption coefficient and its applied voltage is small.

【0004】前記屈折率を大きくするだけならば、動作
波長を吸収係数の大きな領域に設定すればよいが、導波
型光変調器の場合、屈折率変化で光の位相を変える前に
光は吸収されてしまう。通常、動作波長は吸収係数及び
その変動を無視できる領域に設定するため、屈折率変化
を稼ぐために、印加電圧が高くならざるを得ない状況が
続いていた。
If the refractive index is simply increased, the operating wavelength may be set in a region having a large absorption coefficient. However, in the case of a waveguide type optical modulator, light is changed before changing the phase of the light by changing the refractive index. It will be absorbed. Normally, the operating wavelength is set in a region where the absorption coefficient and its fluctuation can be neglected. Therefore, in order to obtain a change in the refractive index, it has been necessary to increase the applied voltage.

【0005】[0005]

【発明が解決しようとする課題】一般に、波長が吸収領
域から遠いところほど屈折率変化も小さくなるので、位
相変調器の高性能化を達成するためには、動作波長で吸
収係数は小さいが、屈折率変化はより大きくなるとい
う、一見矛盾した問いに対する答えを見出さなければな
らない。
Generally, as the wavelength is farther from the absorption region, the change in the refractive index becomes smaller. Therefore, in order to achieve high performance of the phase modulator, the absorption coefficient is small at the operating wavelength. We must find the answer to the seemingly contradictory question that the refractive index change will be larger.

【0006】本発明は、以上述べた事情に鑑み、吸収係
数及びその変動を十分抑制しつつ大きな屈折率変化が得
られる高性能な光位相変調器及び光変調装置を提供する
ことを課題とする。
SUMMARY OF THE INVENTION In view of the circumstances described above, it is an object of the present invention to provide a high-performance optical phase modulator and optical modulator capable of obtaining a large change in refractive index while sufficiently suppressing the absorption coefficient and its fluctuation. .

【0007】[0007]

【課題を解決するための手段】前記課題を解決する本発
明の光位相変調器は、InSb,InAs,InAs
P,InSbP又はInAsSbPのいずれか一つの材
料からなる量子井戸層を有する量子井戸構造をコアとす
ることを特徴とする。
According to the present invention, there is provided an optical phase modulator comprising InSb, InAs, and InAs.
A core has a quantum well structure having a quantum well layer made of any one of P, InSbP, and InAsSbP.

【0008】前記第1の光位相変調器において、前記位
相変調器に動作時に印加される電圧の範囲内で、印加電
圧の絶対値の増大とともに、重い正孔に対する価電子帯
の第二量子準位から伝導帯の第一量子準位への電子の遷
移による前記量子井戸構造の光吸収の強度が増加するこ
とを特徴とする。
In the first optical phase modulator, as the absolute value of the applied voltage increases within the range of the voltage applied to the phase modulator during operation, the second quantum level of the valence band for heavy holes increases. Characterized in that the light absorption intensity of the quantum well structure due to the transition of electrons from the potential to the first quantum level in the conduction band increases.

【0009】一方の本発明の光変調装置は、前記第1及
び第2の光位相変調器と、前記位相変調器にTM偏光か
らなる信号光を入力する手段とを備えたことを特徴とす
る。
On the other hand, an optical modulator according to the present invention is characterized by comprising the first and second optical phase modulators and means for inputting signal light composed of TM polarization to the phase modulator. .

【0010】現在の光変調器では、TE偏光による動作
が主である。図3にTE偏光した光を変調器に入射させ
た時の吸収係数スペクトルの電圧変化と電圧変化による
吸収係数スペクトルの変化分をプロットしたものを示
す。図3に示すように、三つの主な励起子吸収ピーク
は、重い正孔帯(HH)と軽い正孔帯(LH)からの遷
移を表す。電圧変化ΔFによる吸収係数変化Δαが波長
λの関数として与えられると、波長λ0 で得られる屈折
率変化Δnは以下の「数1」に示す式(1)の関数によ
り決まることとなる。
[0010] In the current optical modulator, the operation mainly using the TE polarized light is mainly performed. FIG. 3 shows a plot of the voltage change of the absorption coefficient spectrum and the change of the absorption coefficient spectrum due to the voltage change when the TE-polarized light is incident on the modulator. As shown in FIG. 3, the three main exciton absorption peaks represent transitions from the heavy hole band (HH) and the light hole band (LH). If the absorption coefficient change Δα due to the voltage change ΔF is given as a function of the wavelength λ, the refractive index change Δn obtained at the wavelength λ 0 will be determined by the function of the following equation (1) shown in “Equation 1”.

【0011】[0011]

【数1】 (Equation 1)

【0012】ここで、Ρは積分の主値をとることを意味
する。図3から、TE偏光ではHHの第一量子準位から
の励起子吸収(E1 −HH1)の寄与が大きいことが判
るが、吸収係数の変化は正と負の領域が同じ程度であ
り、互いに相殺されてしまうため、前記式(1)から明
らかなように屈折率変化の増大にはあまり寄与しない。
Here, Ρ means taking the principal value of the integral. From FIG. 3, it can be seen that the contribution of exciton absorption (E 1 −HH 1 ) from the first quantum level of HH is large in TE polarized light, but the change of the absorption coefficient is the same in the positive and negative regions. Are offset by each other, and as apparent from the above equation (1), they do not contribute much to an increase in the change in the refractive index.

【0013】そこで、本発明では、TM偏光による動作
に注目した。図4にTM偏光した光を変調器に入射させ
た時の吸収係数スペクトルの電圧変化と電圧変化による
吸収係数スペクトルの変化分をプロットした。
Accordingly, the present invention has focused on the operation by TM polarized light. FIG. 4 plots the voltage change of the absorption coefficient spectrum when the TM-polarized light is incident on the modulator and the change in the absorption coefficient spectrum due to the voltage change.

【0014】この図4から、TM偏光ではE1 −HH1
に替わって、HHの第二量子準位からの励起子吸収(E
1 −HH2 )とLHの第一量子準位から励起子吸収(E
1 −LH1 )との寄与が大きいことがわかる。ここで、
特に重要なことは、E1 −HH2 は電圧印加によってそ
の吸収ピークを増大させることにある。この吸収ピーク
の増大は、重い正孔と軽い正孔との間の相互作用である
バンドミキシング効果によるものである。その結果、図
4に示すように、吸収係数変化のE1 −HH2 のピーク
の増大によって、正の吸収変化分が大きくなり、前記式
(1)から判るように、屈折率変化は吸収係数変化の積
分で与えられるから、この場合屈折率変化をTE偏光に
比べて大きくとることが可能となる。さらに、動作波長
からみて、E1 −HH2 のピークはE1 −HH1 のピー
クよりも遠くにあり、TM偏光でのE1 −HH1 のピー
クはTE偏光でのそれにくらべて2〜3桁小さいため、
電圧印加による吸収係数変動を抑制できる。
[0014] From FIG. 4, E 1 -HH 1 for TM polarized light.
Instead of exciton absorption from the second quantum level of HH (E
1 -HH 2 ) and the exciton absorption (E
1 -LH 1 ). here,
Of particular importance is that E 1 -HH 2 increases its absorption peak upon application of a voltage. This increase in the absorption peak is due to the band mixing effect, which is the interaction between heavy and light holes. As a result, as shown in FIG. 4, the increase in the peak of E 1 −HH 2 of the change in the absorption coefficient increases the positive absorption change, and as can be seen from the above equation (1), the change in the refractive index is the absorption coefficient. In this case, since the refractive index is given by the integral of the change, the change in the refractive index can be made larger than that of the TE polarized light. Further, as viewed from the operating wavelength, the peak of the E 1 -HH 2 is farther than the peak of the E 1 -HH 1, the peak of the E 1 -HH 1 in TM polarization than that of the TE polarization 2-3 Order of magnitude smaller
Variation in absorption coefficient due to voltage application can be suppressed.

【0015】E1 −HH2 のピークの増大の程度は、井
戸層材料において、重い正孔と軽い正孔との量子井戸面
に垂直な方向の有効質量の差が大きい材料ほどよい。現
在の量子井戸結晶成長技術は、III 族とV族との化合物
半導体材料の上に成り立っている。理論計算から、III
−V族半導体材料の中で重い正孔と軽い正孔との有効質
量差が著しい化合物半導体は、InP,InAs,In
Sb又はこれら二元化合物の組合せで得られる三元化合
物ないし四元化合物であることが判明した。具体的に
は、InSb,InAs,InAsP,InSbP又は
InAsSbPのいずれか一つの材料から井戸層材料を
選定するのが好ましい。
The degree of increase in the peak of E 1 -HH 2 is better for a material having a larger effective mass of heavy holes and light holes in a direction perpendicular to the quantum well plane in the well layer material. Current quantum well crystal growth techniques are based on Group III and V compound semiconductor materials. From theoretical calculations, III
Among the group V semiconductor materials, compound semiconductors having a remarkable effective mass difference between heavy holes and light holes are InP, InAs, and InP.
It was found to be a ternary compound or quaternary compound obtained from Sb or a combination of these binary compounds. Specifically, it is preferable to select the well layer material from any one of InSb, InAs, InAsP, InSbP, and InAsSbP.

【0016】以上の知見に基づいて得られた本発明に基
づけば、今までにない大きな屈折率変化を吸収変動の増
加を抑制しつつ達成できる。
On the basis of the present invention obtained based on the above-mentioned findings, an unprecedented change in refractive index can be achieved while suppressing an increase in absorption fluctuation.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。
Embodiments of the present invention will be described below.

【0018】図1は本発明の実施の形態の位相光変調器
の模式図である。図1に示すように、n−InP基板1
上にはn−InPクラッド層2、ノンドープInSbA
sP/InPからなる多重量子井戸層3、p−InPク
ラッド層4、及びp−InGaAs層5が順次積層され
ている。前記n−InP基板1の裏面にはN側電極6
が、一方前記p−InGaAs層5側にはP側電極7が
各々設けられている。
FIG. 1 is a schematic diagram of a phase light modulator according to an embodiment of the present invention. As shown in FIG. 1, an n-InP substrate 1
An n-InP cladding layer 2 and a non-doped InSbA
A multiple quantum well layer 3 made of sP / InP, a p-InP cladding layer 4, and a p-InGaAs layer 5 are sequentially stacked. An N-side electrode 6 is provided on the back surface of the n-InP substrate 1.
On the other hand, a P-side electrode 7 is provided on the p-InGaAs layer 5 side.

【0019】前記P側電極7上には、変調信号に対応す
る電圧を印加するための電圧印加手段(図示せず)に接
続するためのリード線8が接続されている。図示しない
光源(レーザ)からのTM偏光からなる入射光9は、変
調光10として出射される。
A lead 8 is connected to the P-side electrode 7 for connection to voltage applying means (not shown) for applying a voltage corresponding to the modulation signal. Incident light 9 composed of TM polarized light from a light source (laser) not shown is emitted as modulated light 10.

【0020】ここで、前記量子井戸層3は、InSbA
sPとInPとをそれぞれ量子井戸層と障壁層とにする
多重量子井戸構造で、分子線エピタキシャル成長法や有
機金属気相成長法などの結晶成長法で作製される。
Here, the quantum well layer 3 is made of InSbA.
It has a multiple quantum well structure using sP and InP as a quantum well layer and a barrier layer, respectively, and is manufactured by a crystal growth method such as a molecular beam epitaxial growth method or a metal organic chemical vapor deposition method.

【0021】図2は、本発明にかかる図1の構造を有す
る位相変調器を用いて、屈折率変化の電圧依存性を実線
で示したものである。なお、比較として従来構造での典
型的な特性も併せて示した。
FIG. 2 shows the voltage dependence of the refractive index change by a solid line using the phase modulator having the structure of FIG. 1 according to the present invention. For comparison, typical characteristics of the conventional structure are also shown.

【0022】図2に示すように、両者の比較から、本発
明の構造の特性は、従来の特性に比べて屈折率変化の増
大が急激に起こり、同じ電圧での屈折率変化は従来に比
べて2〜3倍以上の高い値が得られることが判明した。
これは、前述したようにバンドミキシング効果が本発明
で採用した半導体材料によって増幅された結果である。
As shown in FIG. 2, from the comparison between the two, the characteristics of the structure of the present invention show that the change in the refractive index rapidly increases compared to the conventional characteristics, and the change in the refractive index at the same voltage is smaller than that of the conventional structure. It was found that a high value of 2 to 3 times or more could be obtained.
This is a result of the band mixing effect being amplified by the semiconductor material used in the present invention as described above.

【0023】但し、電圧がある閾値を超えると、重い正
孔と軽い正孔の有効質量の差が電界によるバンド構造の
変化により打ち消されてしまうため、バンドミキンシン
グ効果がもはや効かなくなり、屈折率変化の電圧依存性
は図にようなピーク構造を持つことになる。
However, if the voltage exceeds a certain threshold, the difference in effective mass between heavy holes and light holes is canceled out by the change in the band structure due to the electric field, so that the band mixing effect is no longer effective, and the refractive index is no longer effective. The voltage dependence of the change has a peak structure as shown in the figure.

【0024】尚、TM偏光からなる入射光9を得る手段
としは、種々のものがある。例えば、半導体レーザの出
力光を偏波保持ファイバで、図1に示す光変調器まで導
き、入射光がTM偏光となるように、ファイバの出力端
を回転させてもよい。このような手段と、図1に示す光
変調器とを組合せると、容易に入射光の位相を効率よく
変調する光変調装置を組み立てることができる。
There are various means for obtaining the incident light 9 composed of TM polarized light. For example, the output light of the semiconductor laser may be guided to the optical modulator shown in FIG. 1 by a polarization maintaining fiber, and the output end of the fiber may be rotated so that the incident light becomes TM polarized light. By combining such means with the optical modulator shown in FIG. 1, it is possible to easily assemble an optical modulator that efficiently modulates the phase of incident light.

【0025】[0025]

【発明の効果】以上、発明の実施の形態とともに説明し
たように、本発明によれば、InSb,InAs,In
AsP,InSbP又はInAsSbPのいずれか一つ
の材料で量子井戸層を構成することにより、TM偏光で
の価電子帯第二準位からの吸収ピークの電圧変化を、大
きくとることができるので、従来の変調動作を凌ぐ高性
能な位相変調器及び光変調装置を提供できる。
As described above, according to the present invention, InSb, InAs, InAs
When the quantum well layer is formed of any one of AsP, InSbP, and InAsSbP, the change in the voltage of the absorption peak from the valence band second level in TM polarized light can be made large. It is possible to provide a high-performance phase modulator and an optical modulation device that surpass modulation operations.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の光変調器の概略図であ
る。
FIG. 1 is a schematic diagram of an optical modulator according to an embodiment of the present invention.

【図2】本発明の実施の形態の光変調器の屈折率変化の
電圧依存性と従来構造での屈折率変化の電圧依存性の比
較図である。
FIG. 2 is a comparison diagram of the voltage dependence of the change in the refractive index of the optical modulator according to the embodiment of the present invention and the voltage dependence of the change in the refractive index in the conventional structure.

【図3】TE偏光での吸収係数スペクトルの電圧変化と
対応する吸収係数変化の波長スペクトル図である。
FIG. 3 is a wavelength spectrum diagram of a change in absorption coefficient corresponding to a voltage change in an absorption coefficient spectrum in TE polarized light.

【図4】TM偏光での吸収係数スペクトルの電圧変化と
対応する吸収係数変化の波長スペクトル図である。
FIG. 4 is a wavelength spectrum diagram of a change in absorption coefficient spectrum and a corresponding change in absorption coefficient spectrum in TM polarized light.

【符号の説明】[Explanation of symbols]

1 1n−InP基板 2 n−InPクラッド層 3 ノンドープInSbAsP/InPからなる多重量
子井戸層 4 p−InPクラッド層 5 p−InGaAs層 6 N側電極 7 P側電極 8 リード線 9 入射光 10 変調光
Reference Signs List 1 1 n-InP substrate 2 n-InP cladding layer 3 non-doped InSbAsP / InP multiple quantum well layer 4 p-InP cladding layer 5 p-InGaAs layer 6 N-side electrode 7 P-side electrode 8 Lead wire 9 incident light 10 modulated light

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 InSb,InAs,InAsP,In
SbP又はInAsSbPのいずれか一つの材料からな
る量子井戸層を有する量子井戸構造をコアとすることを
特徴とする光位相変調器。
1. InSb, InAs, InAsP, In
An optical phase modulator comprising a core having a quantum well structure having a quantum well layer made of any one of SbP and InAsSbP.
【請求項2】 請求項1記載の光位相変調器において、 前記位相変調器の動作時に印加される電圧の範囲内で、
印加電圧の絶対値の増大とともに、重い正孔に対する価
電子帯の第二量子準位から伝導帯の第一量子準位への電
子の遷移による前記量子井戸構造の光吸収の強度が増加
することを特徴とする光位相変調器。
2. The optical phase modulator according to claim 1, wherein within a range of a voltage applied when the phase modulator operates,
As the absolute value of the applied voltage increases, the intensity of light absorption of the quantum well structure due to the transition of electrons from the second quantum level in the valence band to the first quantum level in the conduction band for heavy holes increases. An optical phase modulator characterized by the above-mentioned.
【請求項3】 請求項1及び2記載の光位相変調器と、
前記位相変調器にTM偏光からなる信号光を入力する手
段とを備えたことを特徴とする光変調装置。
3. The optical phase modulator according to claim 1, wherein:
Means for inputting signal light composed of TM polarized light to the phase modulator.
JP22085896A 1996-08-22 1996-08-22 Optical phase modulator and optical modulator Expired - Lifetime JP3529072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22085896A JP3529072B2 (en) 1996-08-22 1996-08-22 Optical phase modulator and optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22085896A JP3529072B2 (en) 1996-08-22 1996-08-22 Optical phase modulator and optical modulator

Publications (2)

Publication Number Publication Date
JPH1062731A true JPH1062731A (en) 1998-03-06
JP3529072B2 JP3529072B2 (en) 2004-05-24

Family

ID=16757656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22085896A Expired - Lifetime JP3529072B2 (en) 1996-08-22 1996-08-22 Optical phase modulator and optical modulator

Country Status (1)

Country Link
JP (1) JP3529072B2 (en)

Also Published As

Publication number Publication date
JP3529072B2 (en) 2004-05-24

Similar Documents

Publication Publication Date Title
EP0645858B1 (en) Strained quantum well structure having variable polarization dependence and optical device inducing the strained quantum well structure
JP2606079B2 (en) Optical semiconductor device
JPH09318918A (en) Semiconductor optical modulator
JP3567997B2 (en) Electron absorption optical modulator
JP5207381B2 (en) Coupled quantum well structure
EP1729167B1 (en) Semiconductor optical modulator having a quantum well structure for increasing effective photocurrent generating capability
EP0614253B1 (en) Multi-quantum well (MQW) structure laser diode/modulator integrated light source
JP2003114407A (en) Electric field absorption type optical modulator
Dhingra et al. A review on quantum well structures in photonic devices for enhanced speed and span of the transmission network
JP7246591B1 (en) optical semiconductor device
JP6832936B2 (en) Light modulator
EP0721241B1 (en) Semiconductor quantum well structure and semiconductor device using the same
JP2019079993A (en) Semiconductor optical element
JP3529072B2 (en) Optical phase modulator and optical modulator
JPH08248363A (en) Waveguide type multiple quantum well optical control element
JP3249235B2 (en) Light switch
JPH1197790A (en) Semiconductor laser
JP4103490B2 (en) Light modulator
JP2000305055A (en) Electric field absorption optical modulator
JPH07321414A (en) Field absorption-type multiple quantum well optical control element
JPH11212036A (en) Multiple quantum well light modulator
JP3527078B2 (en) Light control element
JPH0682852A (en) Semiconductor device
JPH10239646A (en) Optical modulator
JPH0743490B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20031210

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040217

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20040220

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040220

RD04 Notification of resignation of power of attorney

Effective date: 20040220

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040220

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20110305

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20110305

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20120305

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20130305