JPH1062484A - Heating device for detecting failure point - Google Patents

Heating device for detecting failure point

Info

Publication number
JPH1062484A
JPH1062484A JP8218886A JP21888696A JPH1062484A JP H1062484 A JPH1062484 A JP H1062484A JP 8218886 A JP8218886 A JP 8218886A JP 21888696 A JP21888696 A JP 21888696A JP H1062484 A JPH1062484 A JP H1062484A
Authority
JP
Japan
Prior art keywords
heating device
optical fiber
detecting
heat
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8218886A
Other languages
Japanese (ja)
Other versions
JP4030612B2 (en
Inventor
Masaaki Muramatsu
正明 村松
Takayasu Morishita
能康 森下
Yasuyuki Otani
康幸 大谷
Taiji Ota
泰司 太田
Tsugio Noda
次雄 野田
Tomonori Takamizawa
智紀 高見澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichiyu Giken Kogyo Co Ltd
Chubu Electric Power Co Inc
Original Assignee
Nichiyu Giken Kogyo Co Ltd
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichiyu Giken Kogyo Co Ltd, Chubu Electric Power Co Inc filed Critical Nichiyu Giken Kogyo Co Ltd
Priority to JP21888696A priority Critical patent/JP4030612B2/en
Publication of JPH1062484A publication Critical patent/JPH1062484A/en
Application granted granted Critical
Publication of JP4030612B2 publication Critical patent/JP4030612B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Landscapes

  • Locating Faults (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heating device that does not heat an optical fiber incorporated in an overhead earth wire excessively, can control heating temperature constantly regardless of external air temperature, does not require any batteries, and does not require any maintenance inspection. SOLUTION: A heating device 10 is constituted to heat an overhead earth wire 11 incorporating an optical fiber for detecting failure points. In this case, one portion of an overhead earth wire 11 incorporating an optical fiber being overhung between transmission line iron towers is packed by a heat- accumulation bag 1 that accommodates an organic solvent with a boiling point within a temperature range of 100-150 deg.C, and a metal container 2 for accommodating a solid combustion agent 3 and an ignition part 4 for igniting the solid combustion agent 3 is arranged in contact with the heat-accumulation bag 1. Then, a lead wire 5 where a failure current flows is connected from the outside of the metal container 2 to the ignition part 4, and the heat-accumulation bag 1 and the metal container 2 are packed by a heat-insulating material 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鳥獣害や落雷等に
よる地絡故障や短絡故障の検出に利用される光ファイバ
内蔵架空地線を加熱するための故障点検出用加熱装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heating device for detecting a fault point for heating an overhead ground wire with a built-in optical fiber used for detecting a ground fault or a short-circuit fault due to birds and beasts damage or lightning. .

【0002】[0002]

【従来の技術】近年の電力に対する依存度の増大および
需要家設備の高度化に伴い、停電のない電力の供給が望
まれている。落雷等の事故により地絡故障や短絡故障が
起こり、停電が発生した場合には、早期に故障点を検出
し復旧することが必要である。
2. Description of the Related Art With the recent increase in dependence on electric power and the sophistication of customer facilities, it is desired to supply electric power without a power outage. When a ground fault or short-circuit fault occurs due to an accident such as a lightning strike, and a power failure occurs, it is necessary to detect and recover from the fault point early.

【0003】故障点を発見するために利用されるものの
一つに光ファイバ内蔵架空地線がある。光ファイバ内蔵
架空地線には光ファイバの昇温によるラマン散乱光を検
出して光ファイバの各部の温度を測定する温度測定装置
が連結されており、さらに加熱装置が取り付けられてい
る。地絡故障や短絡故障が起こった場合、加熱装置によ
って光ファイバ内蔵架空地線が加熱され、故障点の温度
変化が温度測定装置で確認される。
An overhead ground wire with a built-in optical fiber is one of those used for finding a fault point. A temperature measuring device that detects Raman scattered light due to a rise in the temperature of the optical fiber and measures the temperature of each part of the optical fiber is connected to the overhead ground wire with a built-in optical fiber, and a heating device is further attached. When a ground fault or short-circuit fault occurs, the heating device heats the optical fiber built-in overhead ground wire, and the temperature change at the fault point is confirmed by the temperature measuring device.

【0004】特開平4-5579号公報に開示されている光フ
ァイバ内蔵架空地線の加熱装置は、電熱線が内蔵された
膜で生石灰と水とを仕切り、両者を収納した加熱部が光
ファイバ内蔵架空地線に取り付けられたものである。雷
サージ電流が流れると電熱線に電流が流れて膜が溶け、
生石灰と水とが混合して発熱し、光ファイバ内蔵架空地
線が加熱される。
[0004] A heating device for an overhead ground wire with a built-in optical fiber disclosed in Japanese Patent Application Laid-Open No. 4-5579 separates quicklime and water with a film having a built-in heating wire, and a heating section containing both of them is an optical fiber. It is attached to the built-in overhead ground wire. When a lightning surge current flows, a current flows through the heating wire and the film melts,
The quicklime and water are mixed to generate heat, thereby heating the optical fiber built-in overhead ground wire.

【0005】また特開平4-5580号公報の加熱装置には、
光ファイバ内蔵架空地線に巻き付けられて断熱材で覆わ
れたニクロム線がスイッチを介してバッテリーに接続さ
れており、バッテリーに充電用の太陽電池が接続されて
いる。雷サージ電流が流れるとスイッチが入ってニクロ
ム線に電流が流れ、光ファイバ内蔵架空地線が加熱され
る。
[0005] The heating device disclosed in JP-A-4-5580 includes
A nichrome wire wound around an optical fiber built-in ground wire and covered with a heat insulating material is connected to a battery via a switch, and a solar cell for charging is connected to the battery. When a lightning surge current flows, the switch is turned on and a current flows through the nichrome wire, thereby heating the optical fiber built-in overhead ground wire.

【0006】[0006]

【発明が解決しようとする課題】特開平4-5579号公報に
記載の加熱装置を使用する場合、電熱線に電流が流れて
も膜が一様に溶けないため、生石灰と水とが均一に混合
せず加熱温度にばらつきが生じてしまう。混合状態によ
っては加熱温度が約300℃に達して光ファイバの耐熱
温度(150℃)を超えてしまい、光ファイバが破損す
ることがある。温度を150℃以下にするために断熱材
を使用すると、生石灰と水との量配分および外気温度に
よって加熱温度が左右される。例えば常温で100±2
0℃になるように量配分を設定すると、外気温度が−2
0℃では加熱温度60±20℃、外気温度が50℃では
加熱温度130±20℃となってしまい、加熱温度を一
定に制御できない。
When the heating device described in Japanese Patent Application Laid-Open No. 4-5579 is used, even if a current flows through the heating wire, the film does not dissolve uniformly, so that quicklime and water are uniformly distributed. Without mixing, the heating temperature varies. Depending on the mixing state, the heating temperature reaches about 300 ° C. and exceeds the heat resistant temperature (150 ° C.) of the optical fiber, and the optical fiber may be damaged. When a heat insulating material is used to keep the temperature at 150 ° C. or less, the heating temperature is influenced by the amount distribution of quicklime and water and the outside air temperature. For example, 100 ± 2 at room temperature
If the volume distribution is set to be 0 ° C, the outside air temperature will be -2
When the temperature is 0 ° C., the heating temperature is 60 ± 20 ° C., and when the outside air temperature is 50 ° C., the heating temperature is 130 ± 20 ° C., and the heating temperature cannot be controlled to be constant.

【0007】また特開平4-5580号公報に記載の加熱装置
では、大容量のバッテリーや太陽電池が必要なため保守
点検をしなければならない。断熱材を使用しているの
で、光ファイバの加熱に時間がかかり、故障地点の発見
までに数十分かかってしまう。さらにスイッチが入った
ままでは光ファイバの温度が耐熱温度以上に上昇してし
まい、光ファイバが損傷する可能性がある。光ファイバ
の加熱温度は、外気温度にも左右されるため一定には制
御できない。
In the heating apparatus described in Japanese Patent Application Laid-Open No. 4-5580, a large-capacity battery or a solar cell is required, so that maintenance and inspection must be performed. Since the heat insulating material is used, it takes time to heat the optical fiber, and it takes several tens of minutes to find a failure point. Further, if the switch is turned on, the temperature of the optical fiber rises above the heat-resistant temperature, and the optical fiber may be damaged. The heating temperature of the optical fiber cannot be constantly controlled because it is also affected by the outside air temperature.

【0008】本発明は前記の課題を解決するためなされ
たもので、架空地線に内蔵された光ファイバを加熱しす
ぎることがなく、外気温度の影響を受けずに加熱温度を
一定に制御でき、バッテリーや太陽電池を使用せず保守
点検が不要な地絡故障点検出用加熱装置、短絡故障点検
出用加熱装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problem, and does not overheat an optical fiber incorporated in an overhead ground wire, and can control the heating temperature to a constant value without being affected by the outside air temperature. It is another object of the present invention to provide a heating device for detecting a ground fault and a heating device for detecting a short-circuit fault, which does not require a battery or a solar cell and does not require maintenance.

【0009】[0009]

【課題を解決するための手段】前記の目的を達成するた
めになされた本発明の故障点検出用加熱装置10は、図
1に示すように、故障点検出用の光ファイバ内蔵架空地
線11を加熱する装置であって、100〜150℃の範
囲内に沸点を持つ有機溶剤を収納した蓄熱袋1で送電線
鉄塔14(図2参照)間に架けられた光ファイバ内蔵架
空地線11の一部が包まれ、固体燃焼剤3および固体燃
焼剤3に点火する点火部4を収納する金属容器2が蓄熱
袋1に接触して配置され、故障電流が流れるリード線5
が金属容器2外部から点火部4に接続され、蓄熱袋1お
よび金属容器2が断熱材6で包まれたものである。
As shown in FIG. 1, a heating apparatus 10 for detecting a failure point according to the present invention, which has been made to achieve the above object, has an overhead ground wire 11 with a built-in optical fiber for detecting a failure point. A heat storage bag 1 containing an organic solvent having a boiling point in the range of 100 to 150 ° C., and an optical fiber built-in overhead ground wire 11 bridged between power transmission towers 14 (see FIG. 2). A metal container 2, which is partially wrapped and contains a solid combustible 3 and an igniter 4 for igniting the solid combustible 3, is disposed in contact with the thermal storage bag 1, and a lead wire 5 through which a fault current flows
Is connected from the outside of the metal container 2 to the ignition section 4, and the heat storage bag 1 and the metal container 2 are wrapped with the heat insulating material 6.

【0010】有機溶剤は100℃よりも高く、かつ光フ
ァイバの耐熱温度である150℃よりも低い沸点を持つ
化合物が好ましい。具体的には沸点118℃の酢酸イソ
ブチル、沸点129℃の2−クロロエタノール、沸点1
42℃のジブチルエーテル、沸点110℃のイソ酪酸エ
チル、沸点143℃の塩化シクロヘキシル、沸点117
℃の1−ブタノールから選ばれる少なくとも1種の有機
化合物が挙げられる。
The organic solvent is preferably a compound having a boiling point higher than 100 ° C. and lower than 150 ° C., which is the heat-resistant temperature of the optical fiber. Specifically, isobutyl acetate having a boiling point of 118 ° C., 2-chloroethanol having a boiling point of 129 ° C., and a boiling point of 1
42 ° C. dibutyl ether, boiling point 110 ° C. ethyl isobutyrate, boiling point 143 ° C. cyclohexyl chloride, boiling point 117
At least one organic compound selected from 1-butanol at a temperature of 0 ° C.

【0011】有機溶剤はエチレングリコール、グリセリ
ン、ジエチルグリコール、1,4−ブタンジオールおよび
1−ヘキサノールから選ばれる少なくとも1種の有機化
合物と水との共沸混合物であり、100〜150℃の範
囲内に沸点を持つものでもよい。
The organic solvent is an azeotropic mixture of at least one organic compound selected from ethylene glycol, glycerin, diethyl glycol, 1,4-butanediol and 1-hexanol with water, and has a temperature in the range of 100 to 150 ° C. Those having a boiling point may be used.

【0012】蓄熱袋1は有機溶剤を液状のまま収納する
が、微粉シリカ、ガラス微粒子、脱脂綿および綿布から
選ばれる少なくとも1種の物質に吸収させて収納しても
よい。微粉シリカ、ガラス微粒子は有機溶剤の粘度を増
加させ、脱脂綿、綿布は有機溶剤を吸収する。
Although the heat storage bag 1 stores the organic solvent in a liquid state, it may be stored by absorbing at least one substance selected from finely divided silica, glass fine particles, absorbent cotton and cotton cloth. Fine silica and glass particles increase the viscosity of the organic solvent, and absorbent cotton and cotton cloth absorb the organic solvent.

【0013】固体燃焼剤3はB、FeSi、Mg、T
i、ZrおよびAlの中から選ばれる少なくとも一種類
の金属粉末と、CuO、Pb34、PbO2、MnO2
よびFe23から選ばれる少なくとも一種類の金属酸化
物との混合物を含んでいることが好ましい。
The solid combusting agent 3 is composed of B, FeSi, Mg, T
a mixture of at least one metal powder selected from i, Zr and Al, and at least one metal oxide selected from CuO, Pb 3 O 4 , PbO 2 , MnO 2 and Fe 2 O 3 Preferably.

【0014】混合物は、前記金属粉末と前記金属酸化物
との酸化還元反応によって発熱する。混合物にはタル
ク、アルミナおよびベントナイトから選ばれる少なくと
も一種類の温度調節剤を添加してもよい。温度調節剤を
加えると、混合物を含んでいる固体燃焼剤3の発熱量お
よび燃焼速度を調節することができる。
The mixture generates heat by an oxidation-reduction reaction between the metal powder and the metal oxide. At least one type of temperature regulator selected from talc, alumina and bentonite may be added to the mixture. By adding the temperature regulator, the calorific value and the burning rate of the solid combustible 3 containing the mixture can be regulated.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施例を詳細に説
明する。図1は、本発明を適用する故障点検出用加熱装
置10の一実施例を示す横断面図および縦断面図であ
る。同図に示すように、光ファイバ内蔵架空地線11の
一部は、アルミラミネート袋の蓄熱袋1に包まれてい
る。蓄熱袋1には、エチレングリコールと水との比が
7:3で沸点が約110℃の共沸混合物が収納されてい
る。この蓄熱袋1は、半円筒型の金属容器2の内周に接
触するように配置される。金属容器2には金属粉末であ
るAlおよびFeSiと、金属酸化物であるFe23
よびCuOと、燃焼調整剤であるアルミナとを含む固体
燃焼剤3(発熱量約430cal/g)が充填されてお
り、シール材7によって封止されている。シール材7の
金属容器2内側には点火部4が接着され、点火部4には
金属容器2外側からシール材7を貫通してリード線5が
接続され、リード線5に電流が流れると点火部4が発火
して固体燃焼剤3に点火するようになっている。蓄熱袋
1および金属容器2は不燃性の断熱材6で包まれ、バン
ド13で巻かれて固定されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail. FIG. 1 is a transverse sectional view and a longitudinal sectional view showing one embodiment of a heating device 10 for detecting a failure point to which the present invention is applied. As shown in the figure, a part of the optical fiber built-in overhead ground wire 11 is wrapped in a heat storage bag 1 of an aluminum laminated bag. The heat storage bag 1 contains an azeotropic mixture having a ratio of ethylene glycol to water of 7: 3 and a boiling point of about 110 ° C. The heat storage bag 1 is arranged so as to be in contact with the inner circumference of the semi-cylindrical metal container 2. The metal container 2 is filled with a solid combustor 3 (calorific value of about 430 cal / g) containing Al and FeSi as metal powders, Fe 2 O 3 and CuO as metal oxides, and alumina as a combustion regulator. And is sealed by the sealing material 7. An ignition portion 4 is adhered to the inside of the metal container 2 of the sealing material 7, and a lead wire 5 is connected to the ignition portion 4 from the outside of the metal container 2 through the sealing material 7. The part 4 is ignited and ignites the solid combustion agent 3. The heat storage bag 1 and the metal container 2 are wrapped with a non-combustible heat insulating material 6, wound around a band 13 and fixed.

【0016】図2は、故障点検出用加熱装置10を使用
した状態を示す概略図である。鉄塔14の塔頂に取り付
けられた地絡故障点表示器15には光ファイバ内蔵架空
地線11が接続されており、地絡故障点表示器15近傍
の内蔵架空地線11には故障点検出用加熱装置10が取
り付けられている。故障点検出用加熱装置10と、地絡
故障点表示器15に内蔵されている地絡故障検出部とは
リード線5で接続されている。地絡故障検出部は地絡故
障によって生じた地絡電流を検知し、リード線5に電流
を流す。光ファイバ内蔵架空地線11に内蔵された光フ
ァイバ12の端部には、光ファイバ12の昇温によるラ
マン散乱光を検出して光ファイバ12各部の温度を測定
する温度測定装置16が連結されている。
FIG. 2 is a schematic diagram showing a state in which the heating device 10 for detecting a failure point is used. An optical fiber built-in overhead ground wire 11 is connected to a ground fault point indicator 15 attached to the top of the steel tower 14, and a fault point is detected on the built-in overhead ground wire 11 near the ground fault point indicator 15. Heating device 10 is attached. The heating device 10 for detecting a fault point and a ground fault detecting unit incorporated in the ground fault point indicator 15 are connected by a lead wire 5. The ground fault detecting unit detects a ground fault current generated by the ground fault and sends a current to the lead wire 5. A temperature measuring device 16 that detects Raman scattered light due to a rise in the temperature of the optical fiber 12 and measures the temperature of each part of the optical fiber 12 is connected to an end of the optical fiber 12 embedded in the optical fiber built-in overhead ground wire 11. ing.

【0017】また送電線17に取り付けられた短絡故障
検出部18と故障点検出用加熱装置10とはリード線5
で接続され、送電線17に短絡故障が発生した場合、短
絡故障検出部18が短絡電流を検知し、リード線5を通
って故障点検出用加熱装置10に電流が流れる。送電線
17に内蔵された光ファイバ12の端部には、温度測定
装置16が連結されている。
The short-circuit fault detecting section 18 attached to the transmission line 17 and the fault point detecting heating device 10 are connected to the lead wire 5.
When a short-circuit fault occurs in the transmission line 17, the short-circuit fault detecting unit 18 detects a short-circuit current, and a current flows through the lead wire 5 to the heating device 10 for fault point detection. A temperature measuring device 16 is connected to an end of the optical fiber 12 built in the transmission line 17.

【0018】故障点検出用加熱装置10は、以下のよう
に動作する。図2に示すように、雷19が光ファイバ内
蔵架空地線11に落ちて地絡故障が発生したり、雷19
が鉄塔14に落ち、送電線が同時に地絡故障を発生した
場合に短絡故障となる。地絡故障点表示器15の地絡電
流検出部が地絡電流を検知し、リード線5を通って故障
点検出用加熱装置10に電流が流れる。短絡故障検出部
18も短絡電流を検知し、同様に電流が流れる。すると
図1に示すように、点火部4が発火して固体燃焼剤3に
点火し、固体燃焼剤3は数秒間で燃焼し、その燃焼熱で
金属容器2の表面温度が700〜800℃に加熱され
る。蓄熱袋1に収納されたエチレンと水との共沸混合物
の温度が110℃(沸点)に達し、その後の燃焼熱が気
化熱となる。共沸混合物は110℃を保ちながら蒸発を
続ける。蒸気の圧力によって蓄熱袋1の溶着部の一部に
穴が開き、蒸気がその穴から外部へ放出される。このた
め光ファイバ内蔵架空地線11に内蔵された光ファイバ
12も110℃まで加熱された後、その温度を保ち続け
る。光ファイバ12内で発生するラマン散乱光による温
度上昇が温度測定装置16で検知されて、故障点が特定
される。
The heating device 10 for detecting a fault operates as follows. As shown in FIG. 2, the lightning 19 falls on the overhead ground wire 11 with a built-in optical fiber, and a ground fault occurs.
Is dropped on the steel tower 14, and a short circuit fault occurs when the transmission line simultaneously generates a ground fault. The ground fault current detector of the ground fault fault point indicator 15 detects the ground fault current, and the current flows through the lead wire 5 to the fault point detecting heating device 10. The short-circuit fault detecting unit 18 also detects the short-circuit current, and the current flows similarly. Then, as shown in FIG. 1, the igniter 4 ignites and ignites the solid combustible agent 3, the solid combustible agent 3 burns in several seconds, and the heat of combustion causes the surface temperature of the metal container 2 to reach 700 to 800 ° C. Heated. The temperature of the azeotropic mixture of ethylene and water stored in the thermal storage bag 1 reaches 110 ° C. (boiling point), and the subsequent heat of combustion becomes heat of vaporization. The azeotrope continues to evaporate while maintaining 110 ° C. A hole is opened in a part of the welded portion of the thermal storage bag 1 due to the pressure of the steam, and the steam is discharged to the outside from the hole. For this reason, the optical fiber 12 embedded in the optical fiber built-in overhead ground wire 11 is also heated to 110 ° C., and then keeps the temperature. A temperature rise due to Raman scattered light generated in the optical fiber 12 is detected by the temperature measuring device 16 and a failure point is specified.

【0019】上記実施例の故障点検出用加熱装置10に
よって、実際に光ファイバ12の温度測定を行った。そ
の実験例を以下に示す。半円筒形の金属容器2は内径2
8mm、外形60mm、長さ150mmのステンレス製
のものであり、エチレングリコールと水との共沸混合物
が蓄熱剤として収納されたアルミラミネート袋を溶着に
よって密閉した。1mに切断した光ファイバ内蔵架空地
線11を故障点検出用加熱装置10にはさみ、点火部4
を発火させた。発火後の経過時間に対する光ファイバ1
2の温度を測定し、その結果を図3に示した。同図に示
したように、光ファイバ12の温度は、共沸混合物の沸
点である110℃を20分間維持することができた。
The temperature of the optical fiber 12 was actually measured by the heating device 10 for detecting a fault point in the above embodiment. The experimental example is shown below. The semi-cylindrical metal container 2 has an inner diameter of 2
An aluminum laminate bag of 8 mm, outer shape 60 mm, and length 150 mm made of stainless steel and containing an azeotropic mixture of ethylene glycol and water as a heat storage agent was sealed by welding. The optical fiber built-in overhead ground wire 11 cut to 1 m is sandwiched between the faulty point detecting heating device 10 and the ignition unit 4.
Was ignited. Optical fiber 1 for elapsed time after ignition
2 was measured, and the results are shown in FIG. As shown in the figure, the temperature of the optical fiber 12 was maintained at 110 ° C., which is the boiling point of the azeotropic mixture, for 20 minutes.

【0020】次に蓄熱剤として沸点142℃のジブチル
エーテルを使用し、それ以外は前記と全く同じ構成の故
障点検出用加熱装置を組み立てた。リード線5に通電し
て点火部4を発火させ、発火後の経過時間に対する光フ
ァイバの温度を測定した。その結果を図4に示す。同図
に示すように、光ファイバ12は、蓄熱剤の沸点である
142℃を約15分間維持することができた。
Next, a failure point detecting heating device having exactly the same configuration as that described above was assembled using dibutyl ether having a boiling point of 142 ° C. as a heat storage agent. The lead wire 5 was energized to ignite the ignition part 4, and the temperature of the optical fiber with respect to the elapsed time after the ignition was measured. FIG. 4 shows the results. As shown in the figure, the optical fiber 12 was able to maintain the boiling point of the heat storage agent at 142 ° C. for about 15 minutes.

【0021】比較のため、蓄熱袋1の代わりに厚さ2m
mのセラミックペーパー1枚からなる断熱材で光ファイ
バ内蔵架空地線11を包んだ故障点検出用加熱装置、厚
さ2mmのセラミックペーパー3枚からなる断熱材で光
ファイバ内蔵架空地線11を包んだ故障点検出用加熱装
置で、光ファイバ12をそれぞれ加熱した。常温23℃
の下でリード線5に通電して点火部4を発火させ、発火
後の経過時間に対する光ファイバ12の温度を測定し、
その結果を図5に示した。同図に示すように、厚さ2m
mのセラミックペーパー1枚を使用したときは、光ファ
イバ12の耐熱温度(150℃)を超えてしまい、その
後、温度は低下した。厚さ2mmのセラミックペーパー
3枚を使用したときは、光ファイバ12は85℃までし
か上昇せず、その後、温度は低下した。このようにセラ
ミックペーパーの断熱材を使用した場合、光ファイバ1
2の加熱温度を100〜150℃に保つことはできなか
った。
For comparison, the thermal storage bag 1 was replaced with a 2 m thick
Heating device for detecting a fault which wraps the optical fiber built-in ground wire 11 with a heat insulating material made of one piece of ceramic paper of m length, and wraps the optical fiber built-in ground wire 11 with a heat insulating material made of three 2 mm thick ceramic paper. Each of the optical fibers 12 was heated by a heating device for detecting a failure point. Room temperature 23 ° C
The lead wire 5 is energized to ignite the igniter 4 and the temperature of the optical fiber 12 with respect to the elapsed time after the ignition is measured.
The results are shown in FIG. As shown in FIG.
When one m of ceramic paper was used, the temperature exceeded the heat-resistant temperature (150 ° C.) of the optical fiber 12, and thereafter, the temperature decreased. When three ceramic papers each having a thickness of 2 mm were used, the temperature of the optical fiber 12 rose only to 85 ° C., and then the temperature dropped. When the heat insulating material of ceramic paper is used, the optical fiber 1
The heating temperature of No. 2 could not be maintained at 100 to 150 ° C.

【0022】[0022]

【発明の効果】本発明の故障点検出用加熱装置を使用す
ると、架空地線に内蔵された光ファイバの温度は、外気
温度に関係なく一定に制御される。蓄熱袋内の有機溶剤
の沸点が光ファイバの耐熱温度より低いため、光ファイ
バは熱によって破損することがない。光ファイバの加熱
温度や保持時間は、固体燃焼剤および有機溶剤の種類や
量を変えることで、調節できる。装置の構成が簡単でバ
ッテリーや太陽電池を使用しないため、保守点検が不要
で長期の使用が可能である。
When the heating device for detecting a fault point according to the present invention is used, the temperature of an optical fiber incorporated in an overhead ground wire is controlled to be constant regardless of the outside air temperature. Since the boiling point of the organic solvent in the thermal storage bag is lower than the heat resistant temperature of the optical fiber, the optical fiber is not damaged by heat. The heating temperature and the holding time of the optical fiber can be adjusted by changing the types and amounts of the solid combustion agent and the organic solvent. Since the device configuration is simple and no batteries or solar cells are used, maintenance and inspection are unnecessary and long-term use is possible.

【0023】また、地絡故障検出器や短絡故障検出器か
ら別々の故障点検出装置へ接続して故障別毎に検知した
り、ひとつの故障点検出装置へ並列に接続することによ
って、地絡故障または短絡故障のどちらが発生しても故
障点を検出できる。
In addition, by connecting the ground fault detector or the short-circuit fault detector to a separate fault point detecting device and detecting each fault, or by connecting to one fault point detecting device in parallel, a ground fault is detected. The fault point can be detected regardless of whether a fault or a short-circuit fault occurs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用する故障点検出用加熱装置の一実
施例を示す横断面図および縦断面図である。
FIG. 1 is a transverse sectional view and a longitudinal sectional view showing one embodiment of a heating device for detecting a failure point to which the present invention is applied.

【図2】本発明を適用する故障点検出用加熱装置を使用
した状態を示す概略図である。
FIG. 2 is a schematic diagram showing a state in which a heating device for detecting a failure point to which the present invention is applied is used.

【図3】本発明を適用する故障点検出用加熱装置の点火
部発火後の経過時間と光ファイバの温度との関係を示す
図である。
FIG. 3 is a diagram showing the relationship between the elapsed time after the ignition of the ignition unit of the heating device for detecting a failure point to which the present invention is applied and the temperature of the optical fiber.

【図4】本発明を適用する故障点検出用加熱装置の点火
部発火後の経過時間と光ファイバの温度との関係を示す
別の図である。である。
FIG. 4 is another diagram showing the relationship between the elapsed time after the ignition of the ignition section of the heating device for detecting a failure point to which the present invention is applied and the temperature of the optical fiber. It is.

【図5】比較用の故障点検出用加熱装置の点火部発火後
の経過時間と光ファイバの温度との関係を示す図であ
る。
FIG. 5 is a diagram showing the relationship between the elapsed time after the ignition of the ignition unit of the heating device for detecting a failure point for comparison and the temperature of the optical fiber.

【符号の説明】[Explanation of symbols]

1は蓄熱袋、2は金属容器、3は固体燃焼剤、4は点火
部、5はリード線、6は断熱材、7はシール材、10は
故障点検出用加熱装置、11は光ファイバ内蔵架空地
線、12は光ファイバ、13はベルト、14は鉄塔、1
5は地絡故障点表示器、16は温度測定装置、17は送
電線、18は短絡故障検出部、19は雷である。
1 is a thermal storage bag, 2 is a metal container, 3 is a solid combustible, 4 is an ignition part, 5 is a lead wire, 6 is a heat insulating material, 7 is a sealing material, 10 is a heating device for detecting a failure point, and 11 is a built-in optical fiber. Overhead ground wire, 12 is an optical fiber, 13 is a belt, 14 is a steel tower, 1
5 is a ground fault point indicator, 16 is a temperature measuring device, 17 is a transmission line, 18 is a short-circuit fault detecting unit, and 19 is lightning.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 太田 泰司 三重県鈴鹿市神戸九丁目8番20号 (72)発明者 野田 次雄 埼玉県入間郡毛呂山町葛貫76−3 (72)発明者 高見澤 智紀 埼玉県川越市大字的場931−2グランドヴ ィラ201 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Yasushi Ota 9-8-20 Kobe 9-chome, Suzuka-shi, Mie (72) Inventor Tsuguo Noda 76-3, Kunuki, Moroyama-cho, Iruma-gun, Saitama (72) Inventor Tomoki Takamizawa 931-2 Grand Villa 201, Kawagata-shi, Saitama

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 故障点検出用の光ファイバ内蔵架空地線
を加熱する装置であって、100〜150℃の範囲内に
沸点を持つ有機溶剤を収納した蓄熱袋で、送電線鉄塔間
に架けられた光ファイバ内蔵架空地線の一部が包まれ、
固体燃焼剤および該固体燃焼剤に点火する点火部を収納
する金属容器が該蓄熱袋に接触して配置され、故障電流
が流れるリード線が金属容器外部から該点火部に接続さ
れ、蓄熱袋および金属容器が断熱材で包まれていること
を特徴とする故障点検出用加熱装置。
1. An apparatus for heating an overhead ground wire with a built-in optical fiber for detecting a fault point, wherein the thermal storage bag contains an organic solvent having a boiling point in a range of 100 to 150 ° C. Part of the optical fiber built-in overhead ground wire
A metal container containing the solid combustible and an ignition unit for igniting the solid combustible is arranged in contact with the heat storage bag, a lead wire through which a fault current flows is connected to the ignition unit from outside the metal container, and the heat storage bag and A heating device for detecting a fault, wherein the metal container is wrapped with a heat insulating material.
【請求項2】 前記有機溶剤が酢酸イソブチル、2−ク
ロロエタノール、イソ酪酸エチル、塩化シクロヘキシ
ル、1−ブタノールおよびジブチルエーテルから選ばれ
る少なくとも1種の有機化合物であることを特徴とする
請求項1に記載の故障点検出用加熱装置。
2. The method according to claim 1, wherein the organic solvent is at least one organic compound selected from isobutyl acetate, 2-chloroethanol, ethyl isobutyrate, cyclohexyl chloride, 1-butanol and dibutyl ether. The heating device for detecting a failure point according to the description.
【請求項3】 前記有機溶剤がエチレングリコール、グ
リセリン、ジエチルグリコール、1,4−ブタンジオール
および1−ヘキサノールから選ばれる少なくとも1種の
有機化合物と水との共沸混合物であり、100〜150
℃の範囲内に沸点を持っていることを特徴とする請求項
1に記載の故障点検出用加熱装置。
3. The azeotropic mixture of at least one organic compound selected from ethylene glycol, glycerin, diethyl glycol, 1,4-butanediol and 1-hexanol with water and 100 to 150.
The heating device for detecting a failure point according to claim 1, wherein the heating device has a boiling point in a range of ° C.
【請求項4】 前記蓄熱袋が該有機溶剤を微粉シリカ、
ガラス微粒子、脱脂綿および綿布から選ばれる少なくと
も1種の物質に吸収させて収納していることを特徴とす
る請求項1に記載の故障点検出用加熱装置。
4. The thermal storage bag converts the organic solvent into finely divided silica,
The failure point detecting heating device according to claim 1, wherein the heating device is stored by absorbing at least one substance selected from glass fine particles, absorbent cotton, and cotton cloth.
JP21888696A 1996-08-20 1996-08-20 Heating device for failure point detection Expired - Fee Related JP4030612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21888696A JP4030612B2 (en) 1996-08-20 1996-08-20 Heating device for failure point detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21888696A JP4030612B2 (en) 1996-08-20 1996-08-20 Heating device for failure point detection

Publications (2)

Publication Number Publication Date
JPH1062484A true JPH1062484A (en) 1998-03-06
JP4030612B2 JP4030612B2 (en) 2008-01-09

Family

ID=16726858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21888696A Expired - Fee Related JP4030612B2 (en) 1996-08-20 1996-08-20 Heating device for failure point detection

Country Status (1)

Country Link
JP (1) JP4030612B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2281254A (en) * 1993-08-23 1995-03-01 Northern Telecom Ltd Polishing polycrystalline films
JP2000021278A (en) * 1998-06-30 2000-01-21 Yazaki Corp Low melting point material fusing device and circuit breaking device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2281254A (en) * 1993-08-23 1995-03-01 Northern Telecom Ltd Polishing polycrystalline films
GB2281254B (en) * 1993-08-23 1996-11-27 Northern Telecom Ltd Polishing polycrystalline films
JP2000021278A (en) * 1998-06-30 2000-01-21 Yazaki Corp Low melting point material fusing device and circuit breaking device

Also Published As

Publication number Publication date
JP4030612B2 (en) 2008-01-09

Similar Documents

Publication Publication Date Title
CN101523636B (en) Battery pack and battery-mounted device
JP6103887B2 (en) Power storage system
KR940001060B1 (en) Self heating container
JP6586524B2 (en) Electrochemical equipment using aerosol fire extinguishing device
JPH072047A (en) Inflator device
JP2002025568A (en) Performance-improved thermobatter
JP2008117756A (en) Battery pack, and battery-mounting device
US5167426A (en) Auto-ignition device for an air bag inflator
JP2008304237A (en) Combustible gas sensor, fuel cell system equipped with gas sensor, abnormality detection method of combustible gas sensor, and control method of fuel cell system using abnormality detection method
JP2019078491A (en) Ignition device and aerosol extinction device comprising the same
JPH1062484A (en) Heating device for detecting failure point
JP2001257006A (en) Battery system, industrial system equipped with battery system and mobile structure
JP2001332237A (en) Battery device
JP3635137B2 (en) Heating device for ground fault detection
CN217606892U (en) Fire extinguishing device, battery box and battery
JP3611865B2 (en) Ignition device for recombining hydrogen in the air-fuel mixture and a nuclear safety vessel equipped with this ignition device
JP2007292413A (en) Heating equipment with air blowing function
JPH04162346A (en) Battery pack
JPS63286799A (en) Combustion controller for firing hydrogen air mixed gas in water-cooled reactor container
CN218458525U (en) Fire extinguishing composite layer and fire extinguishing device
JP2010505258A (en) Energy storage module
CN210612746U (en) Unattended directional throwing type fire extinguisher
CN206499803U (en) A kind of temperature-sensing magnetic power generation starter
CN219290509U (en) Aerosol extinguishing device suitable for energy storage equipment
CN221041421U (en) End cover for battery pack and battery pack

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071017

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees