JP3635137B2 - Heating device for ground fault detection - Google Patents

Heating device for ground fault detection Download PDF

Info

Publication number
JP3635137B2
JP3635137B2 JP28312495A JP28312495A JP3635137B2 JP 3635137 B2 JP3635137 B2 JP 3635137B2 JP 28312495 A JP28312495 A JP 28312495A JP 28312495 A JP28312495 A JP 28312495A JP 3635137 B2 JP3635137 B2 JP 3635137B2
Authority
JP
Japan
Prior art keywords
optical fiber
ground fault
detecting
temperature
heating device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28312495A
Other languages
Japanese (ja)
Other versions
JPH09127179A (en
Inventor
正明 村松
能康 森下
泰司 太田
泰好 進士
次雄 野田
質生 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichiyu Giken Kogyo Co Ltd
Chubu Electric Power Co Inc
Original Assignee
Nichiyu Giken Kogyo Co Ltd
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichiyu Giken Kogyo Co Ltd, Chubu Electric Power Co Inc filed Critical Nichiyu Giken Kogyo Co Ltd
Priority to JP28312495A priority Critical patent/JP3635137B2/en
Publication of JPH09127179A publication Critical patent/JPH09127179A/en
Application granted granted Critical
Publication of JP3635137B2 publication Critical patent/JP3635137B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Locating Faults (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、鳥獣害や落雷等による地絡故障の検出に利用される光ファイバ内蔵架空地線を加熱するための地絡故障点検出用加熱装置に関するものである。
【0002】
【従来の技術】
近年の電力に対する依存度の増大、および需要家設備の高度化に伴い、停電のない電力の供給が望まれている。落雷等の事故により地絡故障が起こり、停電が発生した場合には、早期に故障点を検出し復旧することが必要である。
【0003】
地絡故障点を発見するために利用されるものの一つに光ファイバ内蔵架空地線がある。光ファイバ内蔵架空地線には、光ファイバの昇温によるラマン乱光を検出して光ファイバ各部の温度を測定する温度測定装置に連結され、光ファイバ内蔵架空地線を加熱する装置が取り付けられて使用される。
【0004】
光ファイバ内蔵架空地線の加熱装置の例として、特開平4−5579号公報には、消石灰と水とを電熱線を内蔵した膜で仕切って収納した加熱部が光ファイバ内蔵架空地線に取り付けられ、雷サージ電流が流れると電熱線に電流が流れて膜が溶け、消石灰と水が混合することにより発熱して光ファイバ内蔵架空地線を加熱する装置が開示されている。
【0005】
また特開平4−5580号公報には、ニクロム線が光ファイバ内蔵架空地線に巻き付けられて断熱材で覆われ、ニクロム線はスイッチを介してバッテリーに接続され、バッテリーは充電用の太陽電池に接続され、雷サージ電流が流れるとスイッチが入り、ニクロム線に電流が流れることにより発熱して光ファイバ内蔵架空地線を加熱する装置が開示されている。
【0006】
【発明が解決しようとする課題】
しかしながら、特開平4−5579号公報に記載の加熱装置では、電熱線に電流が流れても膜が一様に溶けないため、消石灰と水が均一に混合せず加熱温度にばらつきが生じて、混合状態によっては約300℃に達して光ファイバの耐熱温度(150℃)を越えてしまい、光ファイバを破損することがあった。温度を150℃以下にするために断熱材を使用すると、加熱温度は消石灰と水との量配分および外気温度に左右され、所定の温度に加熱することは困難である。例えば常温で100±20℃になるように量配分を設定すると、外気温度が−20℃では加熱温度60±20℃、外気温度が50℃では加熱温度130±20℃となってしまい加熱温度を一定に制御できない。
【0007】
また特開平4−5580号公報に記載の加熱装置では、大容量のバッテリーや太陽電池が必要なため保守点検をしなければならない。また断熱材を使用するため光ファイバの加熱に時間がかかり、故障地点の発見までに数十分かかってしまい、さらにスイッチが入ったままでは光ファイバの耐熱温度以上に上昇してしまい、光ファイバを損傷する可能性がある。また光ファイバの加熱温度は、外気温度にも左右されるため一定に制御できない。
【0008】
本発明は前記の課題を解決するためなされたもので、架空地線に内蔵された光ファイバを加熱しすぎたり、加熱温度を外気温度に左右されることなく一定に制御でき、バッテリーや太陽電池を使用せず保守点検が不要な地絡故障点検出用加熱装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
前記の目的を達成するためになされた本発明の地絡故障点検出用加熱装置10は、図1に示すように、地絡故障点検出用の光ファイバ内蔵架空地線11を加熱する装置であって、水を吸収した高分子吸収剤を収納した蓄熱用袋1で鉄塔14(図2参照)間に架けられた光ファイバ内蔵架空地線11の一部が包まれ、固体燃焼剤3および固体燃焼剤3に点火する点火部4が収納された金属容器2が蓄熱用袋1に接触して配置され、地絡電流を検知して電流を流すリード線5が金属容器2外部から点火部4に接続され、蓄熱用袋1および金属容器2が断熱材6で包まれている。
【0010】
固体燃焼剤3は、B、FeSiおよびAlの中から選ばれる少なくとも一種類の金属粉末と、CuO、Pb34およびFe23の中から選ばれる少なくとも一種類の金属酸化物との混合物からなることが好ましい。
【0011】
前記混合物にタルク、アルミナおよびベントナイトの中から選ばれる少なくとも一種類の温度調節剤を添加しても良い。この温度調節剤を加えると、固体燃焼剤3の発熱量を調節できる。
【0012】
【作用】
本発明の地絡故障点検出用加熱装置10は、図1に示すように、水を吸収した高分子吸収剤を収納した蓄熱用袋1で光ファイバ内蔵架空地線11を包んでいるため、金属容器2内の固体燃焼剤3が燃焼して高温になっても、その熱は蓄熱用袋1内の高分子吸収剤が100℃に達した後は、水の気化熱として使用される。このため蓄熱用袋1は100℃を越えることなく100℃を保ち、光ファイバ12も100℃を保ち続ける。
【0013】
【実施例】
以下、本発明の実施例を詳細に説明する。
図1は、本発明を適用する地絡故障点検出用加熱装置10の実施例を示す横断面図および縦断面図である。
同図に示すように、光ファイバ内蔵架空地線11の一部は、アルミラミネート袋に水を吸収してゲル化した高分子吸収剤を収納した蓄熱用袋1に包まれている。半円筒形の金属容器2が、その内周に蓄熱用袋1が接触するように配置されている。金属容器2には、金属粉末と金属酸化物との混合物からなる固体燃焼剤3が充填され、シール材7で封止されている。シール材7の金属容器2内側には、点火部4が接着され、点火部4にはリード線5が金属容器2外側からシール材7を貫通して接続され、リード線5に電流が流れると点火部4が発火して固体燃焼剤3に点火するようになっている。蓄熱用袋1および金属容器2は、不燃性の断熱材6で包まれてバンド13が巻かれて固定されている。
【0014】
図2は、地絡故障点検出用加熱装置10を使用した状態を示す概略図である。鉄塔14の塔頂に地絡故障点表示器15が取り付けられて光ファイバ内蔵架空地線11に接続され、地絡故障点表示器15近傍の光ファイバ内蔵架空地線11に地絡故障点検出用加熱装置10が取り付けられている。地絡故障点表示器15に内蔵された地絡故障検出部と地絡故障点検出用加熱装置10はリード線5で接続され、その地絡故障検出部が地絡故障による地絡電流を検知するとリード線5に電流を流すようになっている。光ファイバ内蔵架空地線11に内蔵された光ファイバ12は端部で、光ファイバ12の昇温によるラマン乱光を検出して光ファイバ12各部の温度を測定する温度測定装置に連結されている。
【0015】
地絡故障点検出用加熱装置10は以下のように動作する。
図2に示すように、雷17が光ファイバ内蔵架空地線11に落ちて矢示のように鉄塔14に雷電流が流れ地絡故障が発生すると、地絡故障点表示器15の地絡故障検出部が地絡電流を検知してリード線5に電流を流す。すると図1に示すように、点火部4が発火して固体燃焼剤3に点火し、固体燃焼剤3は数秒間で燃焼する。その燃焼熱で金属容器2の表面温度は700〜800℃に加熱され、蓄熱用袋1は100℃まで加熱された後、100℃を保ち続けながら高分子吸収剤に吸収された水が気化されて水蒸気となる。水蒸気は、金属容器2の表面温度によってアルミラミネート袋の一部が溶け、その部分から放出される。このため光ファイバ内蔵架空地線11に内蔵された光ファイバ12も100℃まで加熱された後、100℃を保ち続け、このとき光ファイバ12内で発生するラマン乱光により温度測定装置16で温度上昇を検知し、地絡故障点が特定される。
【0016】
以下の条件の地絡故障点検出用加熱装置10を使用し、光ファイバ12の温度測定実験を行った。
半円筒形の金属容器2は内径28mm、外径60mm、長さ150mmの鉄製のもの、固体燃焼剤3はFeSiとFe23との混合物(発熱量約400cal/g)、蓄熱用袋1は水80gを高分子吸収剤1.6gに吸収させてアルミラミネート袋に収納させたものを使用した地絡故障点検出用加熱装置10を、常温23℃下でリード線5に通電して点火部4を発火させた。発火後の経過時間に対する光ファイバ12の温度を測定し、その結果を図3に示した。同図に示したように、光ファイバ12は100℃に達した後、約15分間その温度を維持した。
【0017】
次に同条件の地絡故障点検出用加熱装置10を、−20℃の恒温槽に5時間保存して水を吸収した高分子吸収剤を凍らせた後に、リード線5に通電して点火部4を発火させた。発火後の経過時間に対する光ファイバ12の温度を測定し、その結果を図4に示した。同図に示したように、光ファイバ12は高分子吸収剤を凍らせなかったときに比べて100℃に達するのに時間がかかったが、100℃に達した後、約10分間その温度を維持した。
【0018】
比較のため、蓄熱用袋1の代わりに厚さ2mmのセラミックペーパー1枚からなる断熱材で光ファイバ内蔵架空地線11を包んだ地絡故障点検出用加熱装置と、厚さ2mmのセラミックペーパー3枚からなる断熱材を使用して光ファイバ内蔵架空地線11を包んだ地絡故障点検出用加熱装置とを、常温23℃下でリード線5に通電して点火部4を発火させた。発火後の経過時間に対する光ファイバ12の温度を測定し、その結果を図5に実線と点線で示した。同図に示したように、厚さ2mmのセラミックペーパー1枚を使用したときは、光ファイバ12の耐熱温度の150℃を超えてしまい、その後温度は低下した。厚さ2mmのセラミックペーパー3枚を使用したときは、光ファイバ12は85℃までしか上昇せず、その後温度は低下した。このようにセラミックペーパーの断熱材を使用した際には、光ファイバ12の加熱温度を設定したり一定の温度に保つことはできなかった。
【0019】
【発明の効果】
以上、詳細に説明したように本発明の地絡故障点検出用加熱装置を使用すると、架空地線に内蔵された光ファイバの加熱温度を外気温度に左右されることなく一定に制御でき、100℃を超えて加熱されることがないため、光ファイバを破損することがない。また固体燃焼剤の量や蓄熱用袋内の高分子吸収剤に吸収させる水の量を変えることにより、光ファイバが100℃に達する時間や100℃を維持する時間を調節することができる。しかも装置の構成が簡単で、バッテリーや太陽電池を使用しないため保守点検が不要であり長期間使用できる。
【図面の簡単な説明】
【図1】本発明を適用する地絡故障点検出用加熱装置の実施例を示す横断面図および縦断面図である。
【図2】本発明を適用する地絡故障点検出用加熱装置を使用した状態を示す概略図である。
【図3】本発明を適用する地絡故障点検出用加熱装置の点火部発火後の経過時間と光ファイバの温度の関係を示す図である。
【図4】本発明を適用する地絡故障点検出用加熱装置の点火部発火後の経過時間と光ファイバの温度の関係を示す別の図である。
【図5】比較用の地絡故障点検出用加熱装置の点火部発火後の経過時間と光ファイバの温度の関係を示す図である。
【符号の説明】
1は蓄熱用袋、2は金属容器、3は固体燃焼剤、4は点火部、5はリード線、6は断熱材、7はシール材、10は地絡故障点検出用加熱装置、11は光ファイバ内蔵架空地線、12は光ファイバ、13はベルト、14は鉄塔、15は地絡故障点表示器、16は温度測定装置、17は雷である。
[0001]
[Industrial application fields]
The present invention relates to a heating device for detecting a ground fault point for heating an optical fiber built-in overhead ground wire used for detecting a ground fault caused by bird damage, lightning strikes, or the like.
[0002]
[Prior art]
With the recent increase in dependence on electric power and sophistication of customer facilities, it is desired to supply electric power without a power outage. When a ground fault occurs due to an accident such as a lightning strike and a power failure occurs, it is necessary to detect and restore the failure point at an early stage.
[0003]
One of the methods used to find ground fault points is an optical fiber built-in overhead wire. The optical fiber built-in ground wire is attached to detect the Raman scattering light due to heating of the optical fiber is connected to a temperature measuring device for measuring the temperature of the optical fiber units will be heated optical fiber built ground wire device Used.
[0004]
As an example of a heating device for an optical fiber built-in overhead ground wire, Japanese Patent Application Laid-Open No. 4-5579 discloses that a heating unit in which slaked lime and water are separated by a film containing a heating wire is attached to the optical fiber built-in overhead wire. In addition, there is disclosed a device for heating an optical fiber built-in overhead ground wire by generating a heat by mixing a slaked lime and water when a lightning surge current flows and the current flows through the heating wire to melt the film.
[0005]
In JP-A-4-5580, a nichrome wire is wound around an optical fiber built-in overhead ground wire and covered with a heat insulating material, the nichrome wire is connected to a battery via a switch, and the battery is connected to a solar cell for charging. A device is disclosed that is connected and switched on when a lightning surge current flows, and heats when the current flows through the nichrome wire to heat the overhead ground wire with built-in optical fiber.
[0006]
[Problems to be solved by the invention]
However, in the heating device described in Japanese Patent Application Laid-Open No. 4-5579, the film does not melt uniformly even when current flows through the heating wire, so the slaked lime and water are not mixed uniformly and the heating temperature varies, Depending on the mixed state, the temperature reaches about 300 ° C. and exceeds the heat resistance temperature (150 ° C.) of the optical fiber, which may break the optical fiber. When a heat insulating material is used to make the temperature 150 ° C. or lower, the heating temperature depends on the amount distribution of slaked lime and water and the outside air temperature, and it is difficult to heat to a predetermined temperature. For example, if the quantity distribution is set to be 100 ± 20 ° C. at normal temperature, the heating temperature is 60 ± 20 ° C. when the outside air temperature is −20 ° C., and the heating temperature is 130 ± 20 ° C. when the outside air temperature is 50 ° C. It cannot be controlled to a certain level.
[0007]
In addition, the heating device described in Japanese Patent Laid-Open No. 4-5580 requires maintenance and inspection because a large capacity battery or solar cell is required. In addition, it takes time to heat the optical fiber due to the use of a heat insulating material, and it takes several tens of minutes to find the failure point. Further, if the switch is turned on, the temperature rises above the heat resistance temperature of the optical fiber. May damage it. Also, the heating temperature of the optical fiber depends on the outside air temperature, and cannot be controlled uniformly.
[0008]
The present invention has been made in order to solve the above-described problems, and it is possible to control the heating temperature of the optical fiber built in the overhead ground wire without being overheated or to be constant regardless of the outside air temperature. An object of the present invention is to provide a heating device for detecting a ground fault failure point that does not require maintenance and inspection.
[0009]
[Means for Solving the Problems]
A grounding fault point detection heating device 10 of the present invention made to achieve the above object is a device for heating an optical fiber built-in overhead ground wire 11 for detecting a ground fault point as shown in FIG. A portion of the optical fiber built-in overhead wire 11 spanned between the steel towers 14 (see FIG. 2) is wrapped in the heat storage bag 1 containing the polymer absorbent that has absorbed water, and the solid combustion agent 3 and A metal container 2 containing an ignition part 4 for igniting the solid combustion agent 3 is arranged in contact with the heat storage bag 1, and a lead wire 5 for detecting a ground fault current and flowing the current is provided from the outside of the metal container 2. 4, a heat storage bag 1 and a metal container 2 are wrapped with a heat insulating material 6.
[0010]
The solid combustion agent 3 is a mixture of at least one metal powder selected from B, FeSi and Al and at least one metal oxide selected from CuO, Pb 3 O 4 and Fe 2 O 3 . Preferably it consists of.
[0011]
At least one temperature regulator selected from talc, alumina, and bentonite may be added to the mixture. When this temperature regulator is added, the calorific value of the solid combustion agent 3 can be adjusted.
[0012]
[Action]
Since the heating device 10 for detecting a ground fault point of the present invention wraps the optical fiber built-in overhead wire 11 in a heat storage bag 1 containing a polymer absorbent that has absorbed water, as shown in FIG. Even if the solid combustion agent 3 in the metal container 2 burns and becomes high temperature, the heat is used as the heat of vaporization of water after the polymer absorbent in the heat storage bag 1 reaches 100 ° C. Therefore, the heat storage bag 1 maintains 100 ° C. without exceeding 100 ° C., and the optical fiber 12 also maintains 100 ° C.
[0013]
【Example】
Hereinafter, embodiments of the present invention will be described in detail.
FIG. 1 is a transverse sectional view and a longitudinal sectional view showing an embodiment of a heating device 10 for detecting a ground fault point to which the present invention is applied.
As shown in the figure, a part of the optical fiber built-in overhead wire 11 is wrapped in a heat storage bag 1 containing a polymer absorbent that has gelled by absorbing water in an aluminum laminate bag. A semi-cylindrical metal container 2 is arranged so that the heat storage bag 1 is in contact with the inner periphery thereof. The metal container 2 is filled with a solid combustion agent 3 made of a mixture of metal powder and metal oxide and sealed with a sealing material 7. The ignition part 4 is bonded to the inside of the metal container 2 of the sealing material 7, and the lead wire 5 is connected to the ignition part 4 from the outside of the metal container 2 through the sealing material 7, and current flows through the lead wire 5. The ignition unit 4 ignites and ignites the solid combustion agent 3. The heat storage bag 1 and the metal container 2 are wrapped with a non-combustible heat insulating material 6 and a band 13 is wound around and fixed.
[0014]
FIG. 2 is a schematic diagram showing a state in which the ground fault fault detection heater 10 is used. A ground fault point indicator 15 is attached to the top of the tower 14 and connected to the optical fiber built-in overhead wire 11, and the ground fault point is detected in the optical fiber built-in ground wire 11 near the ground fault point indicator 15. A heating device 10 is attached. The ground fault detection unit incorporated in the ground fault point indicator 15 and the heating device 10 for detecting the ground fault point are connected by the lead wire 5, and the ground fault detection unit detects the ground fault current due to the ground fault. Then, a current is passed through the lead wire 5. In the optical fiber 12 included in the optical fiber built-in ground wire 11 ends, is connected to a temperature measuring device for measuring the temperature of the optical fiber 12 each section by detecting the Raman scattering light due to heating of the optical fiber 12 Yes.
[0015]
The ground fault fault detection heater 10 operates as follows.
As shown in FIG. 2, when a lightning 17 falls on the optical fiber built-in overhead wire 11 and a lightning current flows through the tower 14 as indicated by an arrow and a ground fault occurs, a ground fault of the ground fault point indicator 15 occurs. The detection unit detects a ground fault current and causes a current to flow through the lead wire 5. Then, as shown in FIG. 1, the igniter 4 ignites and ignites the solid combustion agent 3, and the solid combustion agent 3 burns in a few seconds. The surface temperature of the metal container 2 is heated to 700 to 800 ° C. by the combustion heat, and after the heat storage bag 1 is heated to 100 ° C., the water absorbed in the polymer absorbent is vaporized while maintaining 100 ° C. It becomes water vapor. A part of the aluminum laminate bag is melted by the surface temperature of the metal container 2, and the water vapor is released from that part. After being heated Therefore up to the optical fiber 12 is also 100 ° C. incorporated in the optical fiber built-in ground wire 11, it continues to maintain a 100 ° C., a temperature measuring device 16 by Raman scattering light at this time is generated in the optical fiber 12 within The temperature rise is detected and the ground fault point is identified.
[0016]
The temperature measurement experiment of the optical fiber 12 was performed using the heating device 10 for detecting a ground fault at the following conditions.
The semi-cylindrical metal container 2 is made of iron with an inner diameter of 28 mm, an outer diameter of 60 mm, and a length of 150 mm. The solid combustion agent 3 is a mixture of FeSi and Fe 2 O 3 (a calorific value of about 400 cal / g), a heat storage bag 1. Uses a heating device 10 for detecting a ground fault that uses 80 g of water absorbed in 1.6 g of a polymer absorbent and stored in an aluminum laminated bag. Part 4 was ignited. The temperature of the optical fiber 12 with respect to the elapsed time after ignition was measured, and the result is shown in FIG. As shown in the figure, the temperature of the optical fiber 12 was maintained for about 15 minutes after reaching 100 ° C.
[0017]
Next, the ground fault failure point detection heating device 10 under the same conditions is stored in a thermostatic bath at -20 ° C. for 5 hours to freeze the polymer absorbent that has absorbed water, and then the lead wire 5 is energized and ignited. Part 4 was ignited. The temperature of the optical fiber 12 with respect to the elapsed time after ignition was measured, and the result is shown in FIG. As shown in the figure, the optical fiber 12 took more time to reach 100 ° C. than when the polymer absorbent was not frozen, but after reaching 100 ° C., the temperature was kept for about 10 minutes. Maintained.
[0018]
For comparison, a heating device for detecting a ground fault and enclosing the optical fiber built-in overhead wire 11 with a heat insulating material made of one piece of ceramic paper having a thickness of 2 mm instead of the heat storage bag 1 and a ceramic paper having a thickness of 2 mm. The ignition unit 4 was ignited by energizing the lead wire 5 at a room temperature of 23 ° C. with a heating device for detecting a ground fault using an insulating fiber consisting of three sheets and enclosing the optical fiber built-in overhead wire 11. . The temperature of the optical fiber 12 with respect to the elapsed time after ignition was measured, and the result is shown by a solid line and a dotted line in FIG. As shown in the figure, when one ceramic paper having a thickness of 2 mm was used, the heat resistance temperature of the optical fiber 12 exceeded 150 ° C., and then the temperature decreased. When three pieces of ceramic paper with a thickness of 2 mm were used, the optical fiber 12 rose only to 85 ° C., and then the temperature dropped. Thus, when the ceramic paper heat insulating material was used, the heating temperature of the optical fiber 12 could not be set or kept constant.
[0019]
【The invention's effect】
As described above in detail, when the heating device for detecting a ground fault point according to the present invention is used, the heating temperature of the optical fiber built in the overhead ground wire can be controlled to be constant regardless of the outside air temperature. The optical fiber is not damaged because it is not heated above ℃. Moreover, the time for the optical fiber to reach 100 ° C. and the time for maintaining 100 ° C. can be adjusted by changing the amount of the solid combustion agent and the amount of water absorbed by the polymer absorbent in the heat storage bag. In addition, the configuration of the apparatus is simple, and since no battery or solar cell is used, maintenance and inspection are not required and the apparatus can be used for a long time.
[Brief description of the drawings]
FIG. 1 is a transverse sectional view and a longitudinal sectional view showing an embodiment of a heating device for detecting a ground fault point to which the present invention is applied.
FIG. 2 is a schematic view showing a state in which a heating device for detecting a ground fault point to which the present invention is applied is used.
FIG. 3 is a diagram showing a relationship between an elapsed time after ignition of an ignition part and a temperature of an optical fiber in a heating device for detecting a ground fault point to which the present invention is applied.
FIG. 4 is another diagram showing the relationship between the elapsed time after ignition of the ignition unit and the temperature of the optical fiber of the heating device for detecting a ground fault point to which the present invention is applied.
FIG. 5 is a diagram showing a relationship between an elapsed time after ignition of ignition of a heating device for detecting a ground fault for comparison and the temperature of an optical fiber.
[Explanation of symbols]
1 is a heat storage bag, 2 is a metal container, 3 is a solid combustion agent, 4 is an ignition unit, 5 is a lead wire, 6 is a heat insulating material, 7 is a sealing material, 10 is a heating device for detecting a ground fault, and 11 An optical fiber built-in overhead ground wire, 12 is an optical fiber, 13 is a belt, 14 is a steel tower, 15 is a ground fault point indicator, 16 is a temperature measuring device, and 17 is a lightning.

Claims (2)

地絡故障点検出用の光ファイバ内蔵架空地線を加熱する装置であって、水を吸収した高分子吸収剤を収納した蓄熱用袋で鉄塔間に架けられた光ファイバ内蔵架空地線の一部が包まれ、固体燃焼剤および該固体燃焼剤に点火する点火部が収納された金属容器が該蓄熱用袋に接触して配置され、地絡電流を検知して電流を流すリード線が該金属容器外部から該点火部に接続され、該蓄熱用袋および該金属容器が断熱材で包まれていることを特徴とする地絡故障点検出用加熱装置。A device for heating an optical fiber built-in overhead ground wire for detecting a ground fault point. One of the optical fiber built-in ground wires built between steel towers with a heat storage bag containing a polymer absorbent that has absorbed water. A metal container containing a solid combustion agent and containing an ignition part for igniting the solid combustion agent is disposed in contact with the heat storage bag, and a lead wire for detecting a ground fault current and flowing the current is provided A heating device for detecting a ground fault, which is connected to the ignition unit from the outside of a metal container, and the heat storage bag and the metal container are wrapped with a heat insulating material. 前記固体燃焼剤が、B、FeSiおよびAlの中から選ばれる少なくとも一種類の金属粉末と、CuO、Pb34およびFe23の中から選ばれる少なくとも一種類の金属酸化物との混合物からなることを特徴とする請求項1に記載の地絡故障点検出用加熱装置。A mixture of at least one metal powder selected from the group consisting of B, FeSi and Al and at least one metal oxide selected from CuO, Pb 3 O 4 and Fe 2 O 3 . The heating device for detecting a ground fault point according to claim 1, comprising:
JP28312495A 1995-10-31 1995-10-31 Heating device for ground fault detection Expired - Fee Related JP3635137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28312495A JP3635137B2 (en) 1995-10-31 1995-10-31 Heating device for ground fault detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28312495A JP3635137B2 (en) 1995-10-31 1995-10-31 Heating device for ground fault detection

Publications (2)

Publication Number Publication Date
JPH09127179A JPH09127179A (en) 1997-05-16
JP3635137B2 true JP3635137B2 (en) 2005-04-06

Family

ID=17661545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28312495A Expired - Fee Related JP3635137B2 (en) 1995-10-31 1995-10-31 Heating device for ground fault detection

Country Status (1)

Country Link
JP (1) JP3635137B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011105431A (en) * 2009-11-16 2011-06-02 Murata Machinery Ltd Winding machine
CN106526348B (en) * 2015-09-14 2019-02-05 广州汽车集团股份有限公司 High-voltage wiring harness reliability checking method and device

Also Published As

Publication number Publication date
JPH09127179A (en) 1997-05-16

Similar Documents

Publication Publication Date Title
JP2777354B2 (en) Battery recharging method
TW366621B (en) Accumulation battery protector
JP2002025568A (en) Performance-improved thermobatter
CN101523636A (en) Battery pack and battery-mounted device
CN105927853B (en) Portable SF6 gas cylinders heating system
KR101926341B1 (en) Battery management system for photovoltaic power generating apparatus
JP3635137B2 (en) Heating device for ground fault detection
TW388999B (en) Overcharge preventing device
JP4030612B2 (en) Heating device for failure point detection
JP3611865B2 (en) Ignition device for recombining hydrogen in the air-fuel mixture and a nuclear safety vessel equipped with this ignition device
CN104267759B (en) Temperature control heating device, temperature control method thereof and gas cylinder trolley
GB2085802A (en) Insulation blanket
RU140018U1 (en) DEVICE FOR HEATING BATTERIES
JP2007292413A (en) Heating equipment with air blowing function
US8000075B2 (en) Tube integrity safety switch
CN208477996U (en) A kind of fire-retardant electric power connection line device of electric blanket
RU104467U1 (en) AUTOMATIC FIRE EXTINGUISHING INSTALLATION
JPS5457241A (en) Heat-sensitive body
KR200238723Y1 (en) Butane Gas Thermal Power Plant
JP2822343B2 (en) Apparatus for aquarium fish tank
CN211875689U (en) Pipeline heat preservation device
CN215570505U (en) Electric burner for multi-purpose furnace with carburizing atmosphere
CA2023083A1 (en) Ozone generator
JP3467070B2 (en) Burner ignition device
CN207184849U (en) A kind of silicon rubber heating tape with Thermal protection

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees