JPH1062335A - Measurement cell of infrared gas analyzer - Google Patents

Measurement cell of infrared gas analyzer

Info

Publication number
JPH1062335A
JPH1062335A JP21442996A JP21442996A JPH1062335A JP H1062335 A JPH1062335 A JP H1062335A JP 21442996 A JP21442996 A JP 21442996A JP 21442996 A JP21442996 A JP 21442996A JP H1062335 A JPH1062335 A JP H1062335A
Authority
JP
Japan
Prior art keywords
cylindrical body
measurement cell
measurement
gas analyzer
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21442996A
Other languages
Japanese (ja)
Inventor
Yusuke Nakamura
裕介 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP21442996A priority Critical patent/JPH1062335A/en
Publication of JPH1062335A publication Critical patent/JPH1062335A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To easily manufacture a measurement cell having an optical path length suitable to the concentration range of a measuring gas at low cost. SOLUTION: Denoted at IA is a first cylinder, 1B is a second cylinder, and they have natural convection holes 9 on the respective circumferential walls. A light source part 11 is arranged on the left side of the cylinder 1A, and a detection part 12 on the right side of the cylinder 1B shown by a dashed line herein. The left circumferential part of the cylinder 1B is fitted to the right circumferential part of the cylinder 1A so as to be relatively movable in the axial direction. Thus, a measurement cell. formed by mutually fitting the cylinders 1A, 1B can be continuously changed to an optical path length suitable to the concentration range of a measuring gas. When the relative positioning of each cylinder 1A, 1B is ended, the light source part 11 and the detection part 12 are installed, respectively, and fixed to a base not shown by each fixing leg 14.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、自動車の排ガス
測定や、ビルの空調管理、施設栽培の炭酸ガス濃度管
理、培養槽の炭酸ガス濃度管理などに用いられ、自然対
流方式によって測定ガスをサンプリングする赤外線ガス
分析計の測定セルであって、とくに測定ガスの濃度範囲
に適した光路長のものが簡単かつ低コストで製作できる
ように改善した測定セルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for measuring exhaust gas from automobiles, controlling air conditioning in buildings, controlling carbon dioxide concentration in facility cultivation, controlling carbon dioxide concentration in a culture tank, etc., and sampling a measured gas by a natural convection method. The present invention relates to a measuring cell for an infrared gas analyzer which has an optical path length suitable for a concentration range of a measuring gas and which can be manufactured easily and at low cost.

【0002】[0002]

【従来の技術】一般の従来例(測定セル)を用いた赤外
線ガス分析計について、図7の側面図を参照しながら説
明する。測定ガスが貫流する測定セル25を挟んで、左
側には同期モータ24とこれに直結される回転セクタ2
3を介して赤外線の光源部21が、右側には検出部22
がそれぞれ配設される。ここで、回転セクタ23と同期
モータ24によってチョッパ機構が構成される。測定セ
ル25は、左右がそれぞれ透明板によって密閉された円
筒体で、左右の端部近くにそれぞれガス入口26とガス
出口27を備える。測定ガスは、図示してないポンプと
フィルタを用いてガス入口26から供給され、ガス出口
27から排出される形で、測定セル25を左から右に貫
流する。光源部21から入射する赤外線が、測定セル2
5を貫流する測定ガスを透過するとき、特定波長部分が
測定ガスの分子に吸収されて減衰するから、その減衰率
を測定することによって測定ガス濃度が得られる。通
常、発光波長帯域の広い発熱体を備えた光源部を用い、
測定ガスを透過した光の強さを波長選択性のある検出部
で検出する。検出部の波長選択性は、検出部に予め封入
された測定ガスと同種類のガスによる赤外光吸収に基づ
く温度変化(または圧力変化)の検出によるか、また
は、測定に用いられる赤外波長のみを透過する多層薄膜
光学フィルタを検出部に前置することによって得られ
る。
2. Description of the Related Art An infrared gas analyzer using a general conventional example (measuring cell) will be described with reference to a side view of FIG. On the left side of the measuring cell 25 through which the measuring gas flows, a synchronous motor 24 and a rotating sector 2 directly connected to the synchronous motor 24 are provided.
3, a light source unit 21 for infrared rays, and a detection unit 22 on the right side.
Are respectively arranged. Here, the rotating sector 23 and the synchronous motor 24 constitute a chopper mechanism. The measurement cell 25 is a cylindrical body whose right and left sides are each closed by a transparent plate, and has a gas inlet 26 and a gas outlet 27 near the left and right ends, respectively. The measurement gas is supplied from a gas inlet 26 using a pump and a filter (not shown), and flows through the measurement cell 25 from left to right in a form of being discharged from a gas outlet 27. The infrared light incident from the light source unit 21 is transmitted to the measurement cell 2
Since the specific wavelength portion is absorbed by molecules of the measurement gas and attenuates when the measurement gas flows through the sample gas 5, the measurement gas concentration can be obtained by measuring the attenuation rate. Usually, using a light source unit with a heating element with a wide emission wavelength band,
The intensity of light transmitted through the measurement gas is detected by a wavelength-selective detector. The wavelength selectivity of the detection unit is determined by detecting a temperature change (or pressure change) based on infrared light absorption by a gas of the same type as the measurement gas previously sealed in the detection unit, or an infrared wavelength used for measurement. It can be obtained by placing a multilayer thin film optical filter that transmits only light in front of the detection unit.

【0003】図7の赤外線ガス分析計では、測定ガスの
サンプリングのために、測定ガスを測定セル25の中を
貫流させる形をとり、そのためにモータとフィルタが用
いられ、いわゆる強制貫流方式がとられるから、保守に
手間がかかる欠点がある。この点を改善した方式が自然
対流(自然拡散ともいう)方式である。自然対流方式
は、測定ガス中に置かれた測定セルに対して自然に測定
ガスが流入・流出して、つまり自然な対流、または拡散
によってサンプリングされる方式である。この自然対流
方式の採用によって、ガス濃度の測定に面倒な保守の手
間が省け、かつコスト低減が図れる。この自然対流方式
に基づく従来例(測定セル)を用いた赤外線ガス分析計
について、図6の側面図を参照しながら説明する。両側
が開口した円筒状の測定セル15の両端に、それぞれ光
源部11と検出部12を嵌め込む形で配設する。光源部
11は、前記の一般的な従来例と同様に回転セクタを用
いたチョッパ機構を用いてもよいが、ここでは光源自体
を点滅させる方式をとって、構造を簡素化してある。ま
た、この光源部11には、測定セル15と逆側端面に校
正用ガスを流入させる入口13を、また下側にネジ穴が
切られた固定脚14を設ける。検出部12には、下側に
先と同じ固定脚14を設ける。この左右2個の固定脚1
4で、赤外線ガス分析計全体を図示してないベースに取
り付ける。さらに、測定セル15の周壁には、その内部
に測定ガスが自然に出入りする、自然対流用の穴16が
複数個、ここでは3個あけられる。
The infrared gas analyzer shown in FIG. 7 takes a form in which a measurement gas flows through a measurement cell 25 for sampling a measurement gas. For this purpose, a motor and a filter are used. Therefore, there is a disadvantage that maintenance is troublesome. A method that improves this point is a natural convection (also called natural diffusion) method. The natural convection method is a method in which the measurement gas naturally flows into and out of the measurement cell placed in the measurement gas, that is, is sampled by natural convection or diffusion. By adopting the natural convection method, troublesome maintenance work for measuring the gas concentration can be omitted, and the cost can be reduced. An infrared gas analyzer using a conventional example (measurement cell) based on the natural convection method will be described with reference to a side view of FIG. The light source unit 11 and the detection unit 12 are disposed at both ends of a cylindrical measurement cell 15 that is open on both sides, respectively. The light source unit 11 may use a chopper mechanism using a rotating sector in the same manner as in the above-mentioned general conventional example. However, here, the structure is simplified by blinking the light source itself. In addition, the light source unit 11 is provided with an inlet 13 through which a calibration gas flows into the end face opposite to the measuring cell 15 and a fixed leg 14 having a threaded hole at the lower side. The detection unit 12 is provided with the same fixed legs 14 on the lower side. These two fixed legs 1
At 4, the entire infrared gas analyzer is mounted on a base (not shown). Further, in the peripheral wall of the measurement cell 15, a plurality of holes, here three for natural convection, into which the measurement gas naturally enters and exits, are formed in this case.

【0004】[0004]

【発明が解決しようとする課題】以上に述べたように、
従来の測定セルは、強制貫流方式であれ、自然対流方式
であれ、その長さ(光路長)が、測定ガスの濃度範囲に
応じて、濃度が低いときには長く、逆に高いときには短
く設定される。この測定セルは、一般に耐熱性・耐衝撃
性に優れるABS樹脂などのプラスチック成形品で、赤
外光の洩れを抑えるために光沢のあるCr メッキかNi
メッキが施される。したがって、測定セルの部品は、測
定ガスの濃度範囲の種々な仕様に対応し得るよう、長さ
(光路長)の異なるものを多数用意しておく必要があ
り、このことが部品在庫管理を複雑にするのみならず、
コスト・納期上の問題を発生させてきた。
As described above, as described above,
Regarding the conventional measurement cell, whether it is of the forced once-through type or the natural convection type, its length (optical path length) is set to be long when the concentration is low and short when it is high according to the concentration range of the measurement gas. . This measuring cell is a plastic molded product such as ABS resin, which is generally excellent in heat resistance and impact resistance. To suppress the leakage of infrared light, glossy Cr plating or Ni is used.
Plating is applied. Therefore, it is necessary to prepare a large number of components of the measurement cell having different lengths (optical path lengths) so as to correspond to various specifications of the concentration range of the measurement gas, which complicates component inventory management. Not only
This has caused cost and delivery problems.

【0005】この発明が解決しようとする課題は、従来
の技術がもつ以上の問題点を解消して、測定ガスの濃度
範囲に適した光路長のものが簡単かつ低コストで製作で
きるように改善した赤外線ガス分析計の測定セルを提供
することにある。
[0005] The problem to be solved by the present invention is to solve the above problems of the prior art, and to improve the optical path length suitable for the concentration range of the measurement gas so that it can be manufactured simply and at low cost. To provide a measurement cell for an infrared gas analyzer.

【0006】[0006]

【課題を解決するための手段】請求項1に係る発明は、
自然対流方式によって測定ガスをサンプリングする赤外
線ガス分析計の測定セルであって、光源部を一方の端部
側に配設する第1の円筒体と、検出部を一方の端部側に
配設する第2の円筒体とからなり、この第1と第2の各
円筒体は、それぞれ他方の端部を含む部分同士で嵌合
し、軸線方向に相対的に移動可能である、という構成で
ある。
The invention according to claim 1 is
A measurement cell of an infrared gas analyzer for sampling a measurement gas by a natural convection method, wherein a first cylindrical body in which a light source unit is disposed on one end side and a detection unit is disposed on one end side. The first and second cylindrical bodies are fitted with each other including the other end, and are relatively movable in the axial direction. is there.

【0007】請求項2に係る発明は、自然対流方式によ
って測定ガスをサンプリングする赤外線ガス分析計の測
定セルであって、両端側にそれぞれ光源部と検出部を配
設する円筒体であって、この円筒体の長さ方向の複数箇
所それぞれに、その箇所での円周に沿って円周方向を長
手方向とし幅の狭い切断支援用のスリットが並設され
る、という構成である。
According to a second aspect of the present invention, there is provided a measurement cell of an infrared gas analyzer for sampling a measurement gas by a natural convection method, wherein the measurement cell is a cylindrical body having a light source unit and a detection unit disposed at both ends. At each of a plurality of locations in the length direction of the cylindrical body, slits for cutting support having a narrow width and having a circumferential direction as a longitudinal direction are provided in parallel along the circumference at the location.

【0008】また、この請求項2に係る発明において、
次の(1) 〜(3) の各項のように変形的な構成であるのが
好ましい。 (1) 円筒体の長さ方向の複数箇所それぞれに、その箇所
での円周に沿って切断支援用のV字形溝が、スリットと
併設的に形成される。 (2) 円筒体の長さ方向の複数箇所それぞれに、その箇所
での円周に沿って結合支援用のU字形溝が、スリット列
をU字の一方の脚部に近接させる形で内部に含んで形成
される。 (3) 切断支援用スリットに直交する結合支援用のスリッ
トが、U字形溝の底部を横断する形で形成される。
[0008] In the invention according to claim 2,
It is preferable that the configuration is modified as in each of the following items (1) to (3). (1) A V-shaped groove for cutting support is formed in each of a plurality of locations in the length direction of the cylindrical body along the circumference at the location, along with the slit. (2) At each of a plurality of locations in the length direction of the cylindrical body, a U-shaped groove for coupling support is formed along the circumference at the location, in such a manner that the slit row is brought close to one leg of the U-shape. It is formed including. (3) A coupling support slit orthogonal to the cutting support slit is formed so as to cross the bottom of the U-shaped groove.

【0009】したがって、請求項1に係る発明では、第
1と第2の各円筒体を、他方の端部を含む部分同士で嵌
合させ、軸線方向に相対的に移動させることによって、
測定ガスの濃度範囲に適した光路長に変更することがで
きる。また、請求項2に係る発明では、円筒体を選択さ
れた2箇所のスリットの部分で切断し(スリットが切断
を支援する)、その中間部分を除いて切断箇所の端面同
士を当接させることによって、測定ガスの濃度範囲に適
した光路長に変更することができる。
Therefore, in the first aspect of the present invention, the first and second cylindrical bodies are fitted to each other including the other end, and are relatively moved in the axial direction.
The optical path length can be changed to a suitable one for the concentration range of the measurement gas. In the invention according to claim 2, the cylindrical body is cut at two selected slit portions (the slit supports cutting), and end faces of the cut portions are brought into contact with each other except for an intermediate portion thereof. Thereby, the optical path length can be changed to a suitable one for the concentration range of the measurement gas.

【0010】さらに、前記(1) 〜(3) の各項に対応し
て、変形的に次の方法をとる。 (1) 選択された2箇所のスリットの部分でV字形溝に倣
って切断し、その中間部分を除いて切断箇所の端面同士
を当接させる。 (2) 選択された2箇所のスリットの部分で、U字形溝の
U字の一方の脚部に相当する壁面に倣う形で切断し、そ
の中間部分を除いて一方の切断箇所の円筒体中空部に他
方の切断箇所の円筒状段付き部の先端部を嵌め込む。 (3) 前項(2) で、結合支援用のスリットによって、円筒
状段付き部が円周に沿って複数個に分割され、弾性変形
しやすくなって相手側の円筒体中空部への嵌め込み結合
が支援される。
Further, the following method is modified according to the above items (1) to (3). (1) Cutting is performed along the V-shaped groove at the selected two slit portions, and end faces of the cut portions are brought into contact with each other except for an intermediate portion thereof. (2) At the two selected slits, cut along the wall corresponding to one of the legs of the U-shape of the U-shaped groove, and remove the hollow cylindrical body at one of the cuts except for the intermediate part. The distal end of the cylindrical stepped portion at the other cut location is fitted into the portion. (3) In the preceding paragraph (2), the cylindrical stepped portion is divided into a plurality of parts along the circumference by the slit for supporting the connection, and it is easily elastically deformed and fitted into the hollow part of the cylindrical body on the other side. Is supported.

【0011】[0011]

【発明の実施の形態】この発明の実施の形態として、第
1〜第4の各実施例を以下に図を参照しながら説明す
る。図1は第1実施例の側面図である。図1において、
1Aは第1の円筒体、1Bは第2の円筒体で、それぞれ
の周壁に自然対流用穴9があけられている。円筒体1A
の左側に光源部11が、円筒体1Bの右側に検出部12
が配設される(ともに図6の従来例と同じもので、ここ
では一点鎖線表示される)。円筒体1Aの右側部分の内
周部に、円筒体1Bの左側部分の外周部が嵌合し、軸線
方向に相対的に移動可能である。したがって、各円筒体
1A,1Bが嵌合して構成される測定セルは、各円筒体
1A,1Bの相対的な移動によって、測定ガスの濃度範
囲に適した光路長に連続的に変更することができる。な
お、各円筒体1A,1Bの相対的な通常の移動範囲で
は、各穴9は相手側の円筒体によって塞がることがな
く、測定ガスのサンプリングは支障なくおこなわれる。
また、各円筒体1A,1Bの嵌合部分に存在する隙間も
各穴9と同様に自然対流用として機能する。さて、各円
筒体1A,1Bの相対的な位置決めが終わると、それぞ
れに光源部11と検出部12を装着し、各固定脚14で
図示してないベースに固定することによって、測定セル
の光路長が設定されることになる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As embodiments of the present invention, first to fourth embodiments will be described below with reference to the drawings. FIG. 1 is a side view of the first embodiment. In FIG.
1A is a first cylindrical body, 1B is a second cylindrical body, and a natural convection hole 9 is formed in each peripheral wall. Cylindrical body 1A
The light source unit 11 is on the left side of the body, and the detection unit 12 is on the right side of the cylindrical body 1B.
(Both are the same as the conventional example of FIG. 6 and are indicated by dashed lines here). The outer peripheral portion of the left side portion of the cylindrical body 1B is fitted to the inner peripheral portion of the right side portion of the cylindrical body 1A, and is relatively movable in the axial direction. Therefore, the measurement cell formed by fitting the cylinders 1A and 1B is continuously changed to an optical path length suitable for the concentration range of the measurement gas by the relative movement of the cylinders 1A and 1B. Can be. In addition, in the relative normal movement range of the cylinders 1A and 1B, the holes 9 are not closed by the other cylinder, and the sampling of the measurement gas is performed without any trouble.
In addition, the gap existing at the fitting portion of each of the cylindrical bodies 1A and 1B also functions as a natural convection, like the holes 9. When the relative positioning of the cylindrical bodies 1A and 1B is completed, the light source unit 11 and the detecting unit 12 are mounted on the cylindrical bodies 1A and 1B, respectively, and are fixed to the base (not shown) by the fixing legs 14, whereby the optical path of the measuring cell is set. The length will be set.

【0012】図2は第2実施例に関し、(a) はその基本
部品の側面図、(b) は光路長変更後の接合部の断面図で
ある。測定セルの基本部品は円筒体2である。この円筒
体2の両端側には、第1実施例におけると同様にそれぞ
れ光源部11と検出部12が配設される。また、円筒体
2の周壁には、第1実施例におけると同様に自然対流用
穴9が2箇所にあけられる他、新たに長さ方向のA,
B,C,Dの4箇所それぞれに、その箇所での円周に沿
って円周方向を長手方向とし幅の狭い切断支援用のスリ
ット6の8個が並設される。スリット6の列は、円筒体
2の切り取り線に相当し、これに倣って丸ノコや糸ノコ
を用いて容易に切断することができるとともに、自然対
流用穴も兼ねる。
FIGS. 2A and 2B relate to the second embodiment, in which FIG. 2A is a side view of the basic parts, and FIG. 2B is a cross-sectional view of the joint after the optical path length is changed. The basic part of the measuring cell is the cylinder 2. A light source unit 11 and a detection unit 12 are disposed on both ends of the cylindrical body 2 as in the first embodiment. In addition, two holes for natural convection 9 are formed in the peripheral wall of the cylindrical body 2 in the same manner as in the first embodiment.
At each of four locations B, C and D, eight slits 6 for cutting assistance having a narrow width and having a circumferential direction as a longitudinal direction along the circumference at the location are provided in parallel. The row of the slits 6 corresponds to a cut line of the cylindrical body 2 and can be easily cut using a circular saw or a thread saw according to the cut line, and also serves as a natural convection hole.

【0013】測定ガスの濃度範囲に応じて測定セルの光
路長を設定するときには、A,B,C,Dの4箇所のう
ちで選択された2箇所のスリット6の列部分で円筒体2
を切断し、その中間部分を除いて切断箇所の端面同士を
当接させる。つまり、基本部品は最低の濃度範囲に対応
することになる。なお、A,B,C,Dのうち、いずれ
か2箇所を選んで円筒体2を切断し中間部分を除くこと
で、それぞれ異なった光路長が得られるように設計して
ある。図2(a) では、各箇所A,Bを実際の切断面とし
て選び、切断後に断面Aと断面Bの中間部分を除き、
(b) のように各切断面A,Bを当接・接合させ、円筒体
2の基本部品のときより光路長を短縮させて仕様通りに
設定する。円筒体2の光路長の設定が終わると、左右の
各端部に、図1の第1実施例のように、それぞれ光源部
11と検出部12を装着し、各固定脚14を図示してな
いベースに固定することによって、測定セルの光路長が
設定される。なお、各切断A,Bの当接・接合面は、必
ずしも互いに接着する必要はなく若干の隙間があってよ
い。この隙間は、自然対流用穴9や、切断してない各箇
所C,Dのスリット6とともに自然対流をおこなうこと
ができる。
When the optical path length of the measuring cell is set in accordance with the concentration range of the measuring gas, the cylindrical body 2 is formed at the row portion of two slits 6 selected from A, B, C and D.
Is cut, and the end faces of the cut portion are brought into contact with each other except for an intermediate portion thereof. That is, the basic component corresponds to the lowest density range. It is designed such that different optical path lengths can be obtained by selecting any two of A, B, C, and D and cutting the cylindrical body 2 to remove an intermediate portion. In FIG. 2 (a), each point A, B is selected as an actual cut surface, and after cutting, except for an intermediate portion between the cross section A and the cross section B,
As shown in (b), the cut surfaces A and B are brought into contact with and joined to each other, and the optical path length is set shorter than that of the basic part of the cylindrical body 2 so as to meet the specifications. When the setting of the optical path length of the cylindrical body 2 is completed, the light source unit 11 and the detection unit 12 are attached to the left and right ends, respectively, as in the first embodiment of FIG. The optical path length of the measuring cell is set by fixing it to the base. The contact / joining surfaces of the cuts A and B do not necessarily have to be bonded to each other, and may have a slight gap. This gap can perform natural convection together with the natural convection hole 9 and the slits 6 at the uncut portions C and D.

【0014】図3は第3実施例に関し、(a) はその基本
部品の側面図、(b) は光路長変更後の接合部の断面図で
ある。第3実施例は、第2実施例に次のような追加加工
を施したものである。図3(a) において、円筒体3は、
その長さ方向のA,B,C,Dの4箇所それぞれに、そ
の箇所での円周に沿って切断支援用のV字形溝7を、ス
リット6と併設的に形成する。ここでは、選択された各
箇所A,Bのスリット6の部分でV字形溝7に倣って円
筒体3を切断し、その中間部分を除いて、(b)のように
切断箇所の各端面A,B同士を当接させるから、第2実
施例に比べて切断作業が正確かつ容易になるという利点
がある。
FIGS. 3A and 3B relate to the third embodiment, wherein FIG. 3A is a side view of a basic part thereof, and FIG. 3B is a cross-sectional view of a joint after an optical path length is changed. In the third embodiment, the following additional processing is performed on the second embodiment. In FIG. 3A, the cylindrical body 3 is
At each of four locations A, B, C, and D in the longitudinal direction, a V-shaped groove 7 for cutting support is formed along the circumference at the location along with the slit 6. Here, the cylindrical body 3 is cut along the V-shaped groove 7 at the slit 6 at each of the selected portions A and B, and each end face A of the cut portion is removed as shown in FIG. , B are brought into contact with each other, so that there is an advantage that the cutting operation is more accurate and easier than in the second embodiment.

【0015】図4は第4実施例に関し、(a) はその基本
部品の側面図、(b) は光路長変更後の接合部の断面図で
ある。第4実施例では、(a) のように円筒体4の長さ方
向のA,B,C,Dの4箇所それぞれに、その箇所での
円周に沿って結合支援用のU字形溝8が、スリット6の
列をU字の左側脚部に近接させる形で内部に含んで形成
される。ここでは、選択された各箇所A,Bのスリット
6の部分で、U字形溝8のU字の左側脚部に相当する壁
面に倣う形で円筒体4を切断し、その中間部分を除いて
左側の切断箇所Aの円筒体中空部に右側の切断箇所Bの
円筒状段付き部の先端部を嵌め込む。実際には、左側の
円筒体の端部内面の角を少し面取りして嵌め込みやすく
してある。第4実施例では、端部同士を嵌め込む形をと
るから、二つの円筒体部分が挿入結合されることにな
る。
FIGS. 4A and 4B relate to a fourth embodiment, in which FIG. 4A is a side view of the basic parts, and FIG. 4B is a cross-sectional view of the joint after the optical path length is changed. In the fourth embodiment, a U-shaped groove 8 for supporting the coupling is formed along each of the four points A, B, C and D in the longitudinal direction of the cylindrical body 4 as shown in FIG. Are formed in such a manner that the rows of the slits 6 are included inside the U-shaped left leg in proximity to the U-shaped left leg. Here, the cylindrical body 4 is cut at the slits 6 of the selected portions A and B so as to follow the wall surface of the U-shaped groove 8 corresponding to the left leg of the U-shape. The distal end of the cylindrical stepped portion at the right cut point B is fitted into the hollow portion of the cylindrical body at the left cut point A. Actually, the corner of the inner surface at the end of the left cylindrical body is slightly chamfered so that it can be easily fitted. In the fourth embodiment, the end portions are fitted to each other, so that the two cylindrical portions are inserted and connected.

【0016】図5は第5実施例に関し、(a) はその基本
部品の側面図、(b) は光路長変更後の接合部の断面図で
ある。第5実施例は、第4実施例において、切断支援用
スリット6に直交する結合支援用のスリット10が、U
字形溝8の底部を横断する形で追加加工される点が異な
る。このスリット10によって、円筒状段付き部が円周
に沿って8個に分割され、弾性変形しやすくなって相手
側の円筒体中空部への嵌め込み結合が容易になる。
FIGS. 5A and 5B relate to the fifth embodiment, in which FIG. 5A is a side view of a basic part thereof, and FIG. The fifth embodiment is different from the fourth embodiment in that the slit 10 for joining support orthogonal to the slit 6 for cutting support is
The difference is that additional processing is performed across the bottom of the V-shaped groove 8. The slit 10 divides the cylindrical stepped portion into eight along the circumference, and is easily elastically deformed, so that the fitting into the mating cylindrical hollow portion is facilitated.

【0017】[0017]

【発明の効果】この発明によれば、総じて測定ガスの濃
度範囲に適した光路長のものが、組立調整によるか、切
断加工によるかの違いはあるものの、基本部品(プラス
チック成形品)から簡単かつ低コストで製作でき、部品
の標準化によって在庫部品点数の大幅な削減が可能とな
り、さらには管理コストの低減や納期の短縮を図ること
ができる、という優れた効果がある。とくに、 (1) 請求項1に係る発明によれば、第1と第2の各円筒
体を嵌合させて軸線方向に相対的に移動させる方法であ
るから、切断加工を要せず、要するのは組立調整だけで
あって、加工工数の短縮が図れるという利点がある。 (2) 請求項2に係る発明によれば、基本部品である一つ
の円筒体を選択された2箇所で切断して端面同士を合わ
せる方法であるから、標準部品が一つですむという利点
がある。とくに、スリットとV字形溝を併設することに
よって、切断作業がスリットだけのときに比べてより正
確かつ容易になる。また、スリットとU字形溝を併設す
ることによって、そのU字の一方の脚部に相当する壁面
に倣う形となるから、切断が正確かつ容易になるととも
に、一方の切断箇所の円筒体中空部に他方の切断箇所の
円筒状段付き部の先端部を嵌め込む形をとるから、二つ
の円筒体部分が固く挿入結合されることになる。さら
に、結合支援用のスリットによって、円筒状段付き部が
円周に沿って複数個に切り割りされ、弾性変形しやすく
なって相手側の円筒体中空部への嵌め込み結合が支援さ
れる。
According to the present invention, although the optical path length suitable for the concentration range of the measurement gas generally depends on the assembly adjustment or the cutting process, it is simple from the basic part (plastic molded article). In addition, there is an excellent effect that it can be manufactured at low cost, and the number of stocked parts can be significantly reduced by standardizing the parts, and further, the management cost and the delivery time can be reduced. In particular, (1) According to the first aspect of the present invention, since the first and second cylindrical bodies are fitted and moved relatively in the axial direction, cutting processing is not required, but required. There is an advantage that only the assembly adjustment is required, and the number of processing steps can be reduced. (2) According to the second aspect of the present invention, the method is a method in which one cylindrical body, which is a basic part, is cut at two selected places and the end faces are joined to each other, so that only one standard part is required. is there. In particular, by providing the slit and the V-shaped groove together, the cutting operation becomes more accurate and easier than when only the slit is used. In addition, since the slit and the U-shaped groove are provided side by side, the shape follows the wall surface corresponding to one of the legs of the U-shape, so that the cutting becomes accurate and easy, and the cylindrical hollow portion at one of the cut portions is provided. In this case, the distal end of the cylindrical stepped portion at the other cut point is fitted into the cylindrical portion, so that the two cylindrical portions are firmly inserted and connected. Further, the slit for supporting the connection divides the cylindrical stepped portion into a plurality of pieces along the circumference, is easily elastically deformed, and supports the fitting and fitting into the hollow portion of the cylindrical body on the other side.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に係る第1実施例の側面図FIG. 1 is a side view of a first embodiment according to the present invention.

【図2】同じくその第2実施例に関し、(a) はその基本
部品の側面図、(b) は光路長変更後の接合部の断面図
2 (a) is a side view of the basic component, and FIG. 2 (b) is a cross-sectional view of the joint after changing the optical path length.

【図3】同じくその第3実施例に関し、(a) はその基本
部品の側面図、(b) は光路長変更後の接合部の断面図
3 (a) is a side view of the basic component, and FIG. 3 (b) is a cross-sectional view of the joint after changing the optical path length.

【図4】同じくその第4実施例に関し、(a) はその基本
部品の側面図、(b) は光路長変更後の接合部の断面図
4 (a) is a side view of the basic component, and FIG. 4 (b) is a cross-sectional view of the joint after changing the optical path length.

【図5】同じくその第5実施例に関し、(a) はその基本
部品の側面図、(b) は光路長変更後の接合部の断面図
5 (a) is a side view of the basic component, and FIG. 5 (b) is a cross-sectional view of the junction after changing the optical path length.

【図6】自然対流方式をとる従来例を用いた赤外線ガス
分析計の側面図
FIG. 6 is a side view of a conventional infrared gas analyzer using a natural convection method.

【図7】一般の従来例を用いた赤外線ガス分析計の側面
FIG. 7 is a side view of an infrared gas analyzer using a general conventional example.

【符号の説明】[Explanation of symbols]

1A 円筒体(第1) 1B 円筒体(第2) 2,3,4,5 円筒体 6 スリット(切断支援用) 7 V字形溝 8 U字形溝 9 穴(自然対流用) 10 スリット(結合支援用) 11 光源部 12 検出部 13 校正ガス用入口 14 固定脚 1A cylindrical body (first) 1B cylindrical body (second) 2, 3, 4, 5 cylindrical body 6 slit (for cutting support) 7 V-shaped groove 8 U-shaped groove 9 hole (for natural convection) 10 slit (coupling support) 11) Light source 12 Detector 13 Calibration gas inlet 14 Fixed leg

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】自然対流方式によって測定ガスをサンプリ
ングする赤外線ガス分析計の測定セルであって、光源部
を一方の端部側に配設する第1の円筒体と、検出部を一
方の端部側に配設する第2の円筒体とからなり、この第
1と第2の各円筒体は、それぞれ他方の端部を含む部分
同士で嵌合し、軸線方向に相対的に移動可能である、こ
とを特徴とする赤外線ガス分析計の測定セル。
1. A measurement cell of an infrared gas analyzer for sampling a measurement gas by a natural convection method, comprising: a first cylindrical body having a light source disposed on one end side; The first and second cylindrical bodies are fitted with each other including the other end, and are relatively movable in the axial direction. A measuring cell for an infrared gas analyzer.
【請求項2】自然対流方式によって測定ガスをサンプリ
ングする赤外線ガス分析計の測定セルであって、両端側
にそれぞれ光源部と検出部を配設する円筒体であり、こ
の円筒体の長さ方向の複数箇所それぞれに、その箇所で
の円周に沿って円周方向を長手方向とし幅の狭い切断支
援用のスリットが並設される、ことを特徴とする赤外線
ガス分析計の測定セル。
2. A measurement cell of an infrared gas analyzer for sampling a measurement gas by a natural convection method, comprising a cylindrical body having a light source section and a detecting section disposed at both ends, respectively, in a longitudinal direction of the cylindrical body. A slit for assisting cutting, which has a circumferential direction as a longitudinal direction and a narrow width, is arranged in parallel at each of the plurality of locations.
【請求項3】請求項2に記載の測定セルにおいて、円筒
体の長さ方向の複数箇所それぞれに、その箇所での円周
に沿って切断支援用のV字形溝が、スリットと併設的に
形成される、ことを特徴とする赤外線ガス分析計の測定
セル。
3. The measuring cell according to claim 2, wherein a V-shaped groove for assisting cutting is provided at each of a plurality of locations in the length direction of the cylindrical body along the circumference at the location. A measuring cell for an infrared gas analyzer formed.
【請求項4】請求項2に記載の測定セルにおいて、円筒
体の長さ方向の複数箇所それぞれに、その箇所での円周
に沿って結合支援用のU字形溝が、スリット列をU字の
一方の脚部に近接させる形で内部に含んで形成される、
ことを特徴とする赤外線ガス分析計の測定セル。
4. The measuring cell according to claim 2, wherein a U-shaped groove for supporting the coupling is formed at each of a plurality of locations in the longitudinal direction of the cylindrical body along the circumference at the location, and the slit row is formed in a U-shape. Is formed so as to be included in the vicinity of one of the legs,
A measurement cell for an infrared gas analyzer, characterized in that:
【請求項5】請求項4に記載の測定セルにおいて、切断
支援用スリットに直交する結合支援用のスリットが、U
字形溝の底部を横断する形で形成される、ことを特徴と
する赤外線ガス分析計の測定セル。
5. The measurement cell according to claim 4, wherein the coupling support slit orthogonal to the cutting support slit is U-shaped.
A measurement cell for an infrared gas analyzer, wherein the measurement cell is formed so as to cross the bottom of a U-shaped groove.
JP21442996A 1996-08-14 1996-08-14 Measurement cell of infrared gas analyzer Pending JPH1062335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21442996A JPH1062335A (en) 1996-08-14 1996-08-14 Measurement cell of infrared gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21442996A JPH1062335A (en) 1996-08-14 1996-08-14 Measurement cell of infrared gas analyzer

Publications (1)

Publication Number Publication Date
JPH1062335A true JPH1062335A (en) 1998-03-06

Family

ID=16655646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21442996A Pending JPH1062335A (en) 1996-08-14 1996-08-14 Measurement cell of infrared gas analyzer

Country Status (1)

Country Link
JP (1) JPH1062335A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2369884A (en) * 2000-11-24 2002-06-12 Draeger Safety Ag & Co Kgaa Optical gas sensor
JP2006153543A (en) * 2004-11-26 2006-06-15 Yazaki Corp Device for supporting optical path length setting, and concentration measuring system
WO2012066123A1 (en) 2010-11-19 2012-05-24 Sven Krause Gas cell for the optical analysis of gases
CN102621065A (en) * 2012-04-16 2012-08-01 江苏大学 Chemical oxygen demand (COD) automatic detection cuvette optical distance self-adaption adjusting method and COD automatic detection cuvette optical distance self-adaption adjusting device
CN104141792A (en) * 2014-07-24 2014-11-12 昆山禾信质谱技术有限公司 Sealing device based on cavity ring-down spectroscopy technology
CN105548052A (en) * 2015-02-13 2016-05-04 北京仁木科技有限公司 Testing cavity with continuously adjustable length applied to cavity ring-down spectroscope technology
CN112649389A (en) * 2020-12-07 2021-04-13 珠海格力电器股份有限公司 Sensor optical path component, gas sensor, measuring method and air conditioning system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2369884A (en) * 2000-11-24 2002-06-12 Draeger Safety Ag & Co Kgaa Optical gas sensor
GB2369884B (en) * 2000-11-24 2003-05-07 Draeger Safety Ag & Co Kgaa Optical gas sensor
JP2006153543A (en) * 2004-11-26 2006-06-15 Yazaki Corp Device for supporting optical path length setting, and concentration measuring system
JP4641410B2 (en) * 2004-11-26 2011-03-02 矢崎総業株式会社 Optical path length setting support device and concentration measurement system
WO2012066123A1 (en) 2010-11-19 2012-05-24 Sven Krause Gas cell for the optical analysis of gases
DE102010051928A1 (en) 2010-11-19 2012-05-24 Tutech Innovation Gmbh Gas cell for optical analysis of gases
DE102010051928B4 (en) * 2010-11-19 2012-08-09 Tutech Innovation Gmbh Gas cell for optical analysis of gases
CN102621065A (en) * 2012-04-16 2012-08-01 江苏大学 Chemical oxygen demand (COD) automatic detection cuvette optical distance self-adaption adjusting method and COD automatic detection cuvette optical distance self-adaption adjusting device
CN104141792A (en) * 2014-07-24 2014-11-12 昆山禾信质谱技术有限公司 Sealing device based on cavity ring-down spectroscopy technology
CN105548052A (en) * 2015-02-13 2016-05-04 北京仁木科技有限公司 Testing cavity with continuously adjustable length applied to cavity ring-down spectroscope technology
CN112649389A (en) * 2020-12-07 2021-04-13 珠海格力电器股份有限公司 Sensor optical path component, gas sensor, measuring method and air conditioning system
CN112649389B (en) * 2020-12-07 2022-03-08 珠海格力电器股份有限公司 Sensor optical path component, gas sensor, measuring method and air conditioning system

Similar Documents

Publication Publication Date Title
US5251009A (en) Interferometric measuring arrangement for refractive index measurements in capillary tubes
JP3016789B2 (en) Detector cell assembly for spectrophotometer
CN104335018B (en) Laser power sensor
US5811812A (en) Multiple-gas NDIR analyzer
CN101324522A (en) Attenuated total reflection sensor
EP1332346B1 (en) Respiratory gas analyzer
JPH1062335A (en) Measurement cell of infrared gas analyzer
WO1994017389A1 (en) Gas sample chamber for use with a source of coherent radiation
FI107194B (en) Analysis of gas mixtures by infrared method
EP1229322B1 (en) Cell for analyzing fluid and analyzing apparatus using the same
FI95322C (en) Spectroscopic measuring sensor for analyzing media
JP4260909B2 (en) Collection transmission device and collection transmission method for collecting and transmitting chemiluminescence light
KR20020042629A (en) Biosensor and method for its preparation
US5094600A (en) Apparatus for measuring eccentricities of a rod of plastic material
US10436709B2 (en) Calibration unit for optical detector
JPH08304178A (en) Component measuring system for liquid sample and flow cell used in system thereof and manufacture of flow cell thereof
EP1027592B1 (en) Diffusion-type ndir gas analyzer with convection flow
JPH1026584A (en) Flow cell
EP0817982A1 (en) Optical flow cell for use in spectral analysis
JP3221818B2 (en) Analyzer with easy change of measuring cell length
KR200238966Y1 (en) Gas analysis machine
CN106483085B (en) Light absorption test light pool for photometer
CN202548050U (en) Semi-automatic biochemical colorimetric system
JP3036930U (en) Absorption photometric detector
CN210071677U (en) Calibration-free online laser gas concentration measurement gas chamber