JPH1061531A - Mixture forming device and engine system for internal combustion engine - Google Patents

Mixture forming device and engine system for internal combustion engine

Info

Publication number
JPH1061531A
JPH1061531A JP8217675A JP21767596A JPH1061531A JP H1061531 A JPH1061531 A JP H1061531A JP 8217675 A JP8217675 A JP 8217675A JP 21767596 A JP21767596 A JP 21767596A JP H1061531 A JPH1061531 A JP H1061531A
Authority
JP
Japan
Prior art keywords
fuel
intake pipe
internal combustion
combustion engine
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8217675A
Other languages
Japanese (ja)
Inventor
Tomohiko Otani
朝彦 大谷
Masami Nagano
正美 永野
Makoto Tamura
誠 田村
Mamoru Nemoto
守 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Car Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Car Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP8217675A priority Critical patent/JPH1061531A/en
Priority to KR1019970038814A priority patent/KR19980018687A/en
Priority to GB9717488A priority patent/GB2316448B/en
Priority to CN97117720A priority patent/CN1092759C/en
Publication of JPH1061531A publication Critical patent/JPH1061531A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/04Injectors peculiar thereto
    • F02M69/042Positioning of injectors with respect to engine, e.g. in the air intake conduit
    • F02M69/044Positioning of injectors with respect to engine, e.g. in the air intake conduit for injecting into the intake conduit downstream of an air throttle valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/08Throttle valves specially adapted therefor; Arrangements of such valves in conduits
    • F02D9/10Throttle valves specially adapted therefor; Arrangements of such valves in conduits having pivotally-mounted flaps
    • F02D9/1035Details of the valve housing
    • F02D9/1055Details of the valve housing having a fluid by-pass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10209Fluid connections to the air intake system; their arrangement of pipes, valves or the like
    • F02M35/10216Fuel injectors; Fuel pipes or rails; Fuel pumps or pressure regulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/08Throttle valves specially adapted therefor; Arrangements of such valves in conduits
    • F02D9/10Throttle valves specially adapted therefor; Arrangements of such valves in conduits having pivotally-mounted flaps
    • F02D9/1035Details of the valve housing
    • F02D9/105Details of the valve housing having a throttle position sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10373Sensors for intake systems
    • F02M35/1038Sensors for intake systems for temperature or pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/112Intake manifolds for engines with cylinders all in one line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/182Discharge orifices being situated in different transversal planes with respect to valve member direction of movement

Abstract

PROBLEM TO BE SOLVED: To provide a mixture forming device for an internal combustion engine, by which fuel distributing performance to respective cylinders is improved, and good operating performance is secured. SOLUTION: A mixture forming device for an internal combustion engine is provided with an intake pipe 2 provided with a plurality of branch intake pipes 2b, 2d, 2c on the downstream part and connected to an internal combustion engine 1, a throttle valve 4 arranged in the upstream part of the intake pipe 2 and for controlling the flow rate of air flowing in the intake pipe 2, and a fuel injection valve 3 arranged among respective branch intake pipes 2b, 2d, 2c and the throttle valve 4, provided with injection ports arranged in line, and for injecting fuel from the injection ports toward respective branch intake pipes in many directions. The fuel injection valve 3 is so arranged that respective injection directional axes of fuel to be injected from the injection ports may approximately coincide with main stream lines of the flows of air flowing in respective branch intake pipes 2b, 2d, 2c toward the internal combustion engine 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関用混合気
形成装置に係り、特に、該内燃機関の複数の各気筒に向
けて一つの燃料噴射弁から多方向に燃料を噴射する燃料
噴射弁をスロットル弁よりも下流に備えた内燃機関用混
合気形成装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-fuel mixture forming apparatus for an internal combustion engine, and more particularly to a fuel injection valve for injecting fuel from one fuel injection valve in a plurality of directions toward a plurality of cylinders of the internal combustion engine. The present invention relates to an air-fuel mixture forming device for an internal combustion engine, which is provided downstream of a throttle valve.

【0002】[0002]

【従来の技術】従来から安価な内燃機関の燃料噴射装置
を実現するために、多方向に燃料を分岐噴射できる燃料
噴射弁をスロットル下流の各気筒に対応した吸気管集合
部に配置して、一本で複数の気筒に燃料を供給する方式
が提案されている。例えば、特開昭63−223364
号公報に開示されている。
2. Description of the Related Art Conventionally, in order to realize an inexpensive fuel injection device for an internal combustion engine, a fuel injection valve capable of branching and injecting fuel in multiple directions is arranged in an intake pipe assembly corresponding to each cylinder downstream of a throttle. A system for supplying fuel to a plurality of cylinders with one cylinder has been proposed. For example, JP-A-63-223364
No. 6,086,045.

【0003】一方、従来の気化器を用いた方式において
は、燃料は、その粒径が30μm程度まで非常によく微
粒化されている。また、従来のスロットルの上流に燃料
噴射弁を配置した所謂シングルポイント式の燃料噴射方
式においては、燃料の微粒化の程度は、前記気化器を用
いた方式よりも劣るものの、燃料噴射点から各気筒まで
の距離が比較的長くとれる。このため、両方式のもの
は、共に空気と燃料が均一に混合され易く、各気筒へ分
配される空気の量が均等になってさえいれば、途中の吸
気通路内において空気の流れに偏りがあっても、それが
各気筒の空燃比ばらつきの原因となることはない。
On the other hand, in the conventional system using a vaporizer, the fuel is very finely divided to a particle size of about 30 μm. Further, in a so-called single-point type fuel injection system in which a fuel injection valve is arranged upstream of a conventional throttle, although the degree of atomization of fuel is inferior to the system using the carburetor, each fuel injection point is different from the fuel injection point. The distance to the cylinder can be relatively long. For this reason, in both types, the air and fuel are both easily mixed uniformly, and the air flow in the middle of the intake passage is biased as long as the amount of air distributed to each cylinder is even. Even if it does, it does not cause the air-fuel ratio variation of each cylinder.

【0004】また、前述の特開昭63−223364号
公報において、吸気管の内壁に付着した燃料が及ぼす各
気筒への燃料の分配に対する影響が指摘されているが、
これは該公報にも述べられているように、吸気管が各気
筒に向かう分岐部での形状が大きく影響しており、主に
該吸気管の内壁の凹凸形状に起因している。従って、前
述のような吸気通路内における空気の流れの偏りとは無
関係の問題である。
In the above-mentioned Japanese Patent Application Laid-Open No. 63-223364, the effect of fuel adhering to the inner wall of the intake pipe on the distribution of fuel to each cylinder is pointed out.
As described in the publication, this is largely affected by the shape of the intake pipe at the branching portion toward each cylinder, and is mainly caused by the unevenness of the inner wall of the intake pipe. Therefore, it is a problem unrelated to the above-described bias of the air flow in the intake passage.

【0005】そして、上記多方向に分岐噴射する燃料噴
射弁をスロットルの下流に配置して一本で複数の気筒に
燃料を供給する方式においては、燃料分岐噴射点から内
燃機関までの距離が比較的短いために、空気と燃料は均
一に混合されにくいものの、各気筒への燃料の分配は多
方向燃料噴射弁自体の各方向への分岐燃料分配性能によ
ってほぽ支配され、各気筒へ分配される空気の量が均等
になっていれば、各気筒間の空燃比ばらつきは低く抑え
られると理解されている。上記特開昭63−22336
4号公報においても、各吸気管に供給される燃料量は燃
料噴射弁の各噴射口からの噴射量によって決定され、口
径ばらつきのみが各気筒間の燃料分配に影響するだけで
ある、と指摘している。
[0005] In the above-mentioned system in which the fuel injection valves for branch injection in multiple directions are arranged downstream of the throttle to supply fuel to a plurality of cylinders, the distance from the fuel branch injection point to the internal combustion engine is compared. Although the air and fuel are difficult to mix evenly due to the short length, the distribution of fuel to each cylinder is almost dominated by the branch fuel distribution performance of the multidirectional fuel injection valve itself in each direction, and is distributed to each cylinder. It is understood that the air-fuel ratio variation among the cylinders can be kept low if the amount of air flowing is uniform. JP-A-63-22336
No. 4 also points out that the amount of fuel supplied to each intake pipe is determined by the injection amount from each injection port of the fuel injection valve, and that only the variation in the diameter affects the fuel distribution between the cylinders. doing.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記従
来技術の多方向燃料噴射弁をスロットルの下流に配置し
て一本で複数の気筒に燃料を供給する方式において、各
気筒間の空燃比のばらつきを実験的に確認したが、必ず
しも上記理解されているようにはなっておらず、各気筒
へ分配される空気の量を均等にしたにもかかわらず、各
気筒間の空燃比ばらつきが大きくなって、内燃機関の出
力低下や排気ガス成分の悪化などを招いていることが判
明した。そして燃料の分配性能が悪化する原因を調査し
たところ、該原因はスロットル下流における空気流の流
れの偏りによる噴射される燃料の方向性の乱れと判り、
ここに未解決の課題があることが明らかになった。
However, in the above-mentioned conventional system in which the multidirectional fuel injection valve is disposed downstream of the throttle and supplies fuel to a plurality of cylinders, the variation in the air-fuel ratio among the cylinders is considered. Experimentally confirmed that the air-fuel ratio variation between the cylinders was large even though the amount of air distributed to each cylinder was equalized, although it was not always understood as described above. As a result, it has been found that the output of the internal combustion engine is reduced and the exhaust gas component is deteriorated. And when investigating the cause of the deterioration of the fuel distribution performance, the cause was found to be the disturbance of the directionality of the injected fuel due to the bias of the air flow downstream of the throttle,
It is clear that there are unresolved issues here.

【0007】一方、補助吸気通路を介して吸気通路内に
吹き出す空気の噴流が燃料の噴霧に対して偏りなく合流
する事が各気筒間の空燃比ばらつきを抑える上で重要で
あることも実験で確かめられた。補助吸気通路の構成に
ついても、上記特開昭63−223364号公報には開
示されておらず、特に燃料噴霧との関係については何等
記述されていないので、ここにも課題があることが判っ
た。
On the other hand, experiments have shown that it is important that the jets of air blown into the intake passage via the auxiliary intake passage merge evenly with the fuel spray in order to suppress variations in the air-fuel ratio between the cylinders. I was assured. The configuration of the auxiliary intake passage is not disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 63-223364, and the relationship with fuel spray is not described at all. .

【0008】したがって、本発明の目的は、燃料噴霧の
方向と空気流の偏りとの関係を考慮して、燃料を均等に
各気筒へ分配し、良好なる運転性が確保される内燃機関
用混合気形成装置及びエンジンシステムを提供するにあ
る。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a mixing system for an internal combustion engine which distributes fuel evenly to each cylinder in consideration of the relationship between the direction of fuel spray and the bias of air flow, thereby ensuring good operability. It is an object of the present invention to provide an air forming device and an engine system.

【0009】[0009]

【課題を解決するための手段】上記目的を達成する本発
明による内燃機関用混合気形成装置の特徴は、下流部位
に複数本の分岐吸気管を有し内燃機関に連接する吸気管
と、該吸気管の上流部位に配設されて当該吸気管内を流
れる空気流の流量を制御するスロットル弁と、前記分岐
吸気管と前記スロットル弁との間に配設されて一列に並
設された噴射口から前記各分岐吸気管に向けて多方向に
燃料を噴射する燃料噴射弁とを備え、前記燃料噴射弁
は、該燃料噴射弁の各噴射方向軸が形成する噴射口を頂
点とする略二等辺三角形の垂直二等分線を包含する平面
が、前記スロットル弁から前記分岐吸気管に向かって流
動する前記空気流の主流線も包含するよう、配設されて
いるにある。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides an air-fuel mixture forming apparatus for an internal combustion engine which has a plurality of branch intake pipes at a downstream portion thereof and which is connected to the internal combustion engine. A throttle valve disposed at an upstream portion of the intake pipe to control a flow rate of an airflow flowing through the intake pipe; and an injection port disposed between the branch intake pipe and the throttle valve and arranged in a line. A fuel injection valve for injecting fuel in multiple directions toward the respective branch intake pipes, wherein the fuel injection valve is substantially isosceles with an injection port formed by each injection direction axis of the fuel injection valve as an apex. A plane containing the triangular vertical bisector is arranged to also include the main streamline of the air flow flowing from the throttle valve toward the branch intake pipe.

【0010】または、他の特徴は、前記燃料噴射弁は、
前記噴射口から噴射する前記燃料の各噴射方向軸が前記
内燃機関に向かって前記各分岐吸気管を流動する前記空
気流の主流線と概ね合致しているよう、配設されている
点にある。本発明によれば、空気流の偏りが無く、か
つ、燃料の噴射方向性を阻害することが無いので、各気
筒への燃料分配性が向上し、良好なる運転性が確保され
る内燃機関用混合気形成装置及びエンジンシステムが提
供される。
[0010] Another feature is that the fuel injection valve comprises:
The point that each injection direction axis of the fuel injected from the injection port is disposed so as to substantially coincide with the main streamline of the air flow flowing through each of the branch intake pipes toward the internal combustion engine. . ADVANTAGE OF THE INVENTION According to this invention, since there is no deviation of air flow and it does not hinder the direction of fuel injection, the fuel distribution to each cylinder is improved, and the good operability is ensured for an internal combustion engine. An air-fuel mixture forming device and an engine system are provided.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を参照し説明する。図1は、本発明による一実
施例の内燃機関用混合気形成装置及びエンジンシステム
の構成を示す図である。本実施例の内燃機関用混合気形
成装置を内燃機関に実装したエンジンシステムの構成を
示したものである。 図において、本実施例の内燃機関
用混合気形成装置は、吸気通路としての吸気管2と、燃
料噴射弁3と、スロットル弁4と、補助吸気通路として
の補助吸気管8とを含み構成される。また、エンジンシ
ステムは、内燃機関1と、内燃機関用混合気形成装置
と、燃料噴射弁3などを制御する制御装置10と、燃料
噴射弁3に燃料を供給する燃料供給系(図示省略)と、制
御するための信号を検出する各種センサ(後述)とを含み
構成される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a configuration of an air-fuel mixture forming apparatus for an internal combustion engine and an engine system according to an embodiment of the present invention. 1 illustrates a configuration of an engine system in which an air-fuel mixture forming device for an internal combustion engine according to the present embodiment is mounted on an internal combustion engine. In the figure, the air-fuel mixture forming apparatus for an internal combustion engine according to the present embodiment includes an intake pipe 2 as an intake passage, a fuel injection valve 3, a throttle valve 4, and an auxiliary intake pipe 8 as an auxiliary intake passage. You. The engine system includes an internal combustion engine 1, an air-fuel mixture forming device for the internal combustion engine, a control device 10 for controlling the fuel injection valve 3 and the like, and a fuel supply system (not shown) for supplying fuel to the fuel injection valve 3. And various sensors (described later) that detect signals for control.

【0012】具体的には、内燃機関1はインライン式の
3気筒エンジンであり、該内燃機関1の吸気ポート1a
に吸気管2が連接される。該吸気管2は、分岐点2mを
中心にして放射状に分けられた形状の3本(複数本)の分
岐吸気管2b,2d,2cを下流部位に有している。ま
た、吸気管2には、燃料タンク(図示省略)や加圧ポンプ
(図示省略)などからなる燃料供給系から供給される燃料
を噴射する燃料噴射弁3が配設されている。該燃料噴射
弁3は、噴射口(噴射点o)から燃料を噴射している。そ
して、吸気管2に配設された燃料噴射弁3よりも、さら
に上流部位にはスロットル弁4が配設されている。
More specifically, the internal combustion engine 1 is an in-line type three-cylinder engine.
Is connected to the intake pipe 2. The intake pipe 2 has three (plural) branch intake pipes 2b, 2d, and 2c radially divided around a branch point 2m at a downstream portion. The intake pipe 2 includes a fuel tank (not shown) and a pressurizing pump.
A fuel injection valve 3 for injecting fuel supplied from a fuel supply system (not shown) or the like is provided. The fuel injection valve 3 injects fuel from an injection port (injection point o). Further, a throttle valve 4 is disposed further upstream than the fuel injection valve 3 disposed in the intake pipe 2.

【0013】さらにまた、吸気管2は、補助吸気管8を
有する場合があり、その場合の補助吸気管8は、スロッ
トル弁4をバイパスする空気通路であり、吸気の流れを
開閉する通路弁8aとスロットル弁4の下流部位に開口
している開口部8bとを有している。 一方、図1に
示すエンジンシステムの構成には、内燃機関1の負荷状
態を検知するための吸気管負圧センサ7が吸気管2に配
置されている。更に、内燃機関1の運転状態を検知する
ために、該内燃機関1の回転速度やクランク角度を検知
するクランク角センサ(図示省略)、スロットル開度セン
サ6、冷却水温センサ9などの各種センサが配置されて
いる。
Further, the intake pipe 2 may have an auxiliary intake pipe 8. In this case, the auxiliary intake pipe 8 is an air passage that bypasses the throttle valve 4, and a passage valve 8 a that opens and closes the flow of intake air. And an opening 8b opening at a downstream portion of the throttle valve 4. On the other hand, in the configuration of the engine system shown in FIG. 1, an intake pipe negative pressure sensor 7 for detecting a load state of the internal combustion engine 1 is arranged in the intake pipe 2. Further, in order to detect the operating state of the internal combustion engine 1, various sensors such as a crank angle sensor (not shown) for detecting a rotation speed and a crank angle of the internal combustion engine 1, a throttle opening degree sensor 6, and a cooling water temperature sensor 9 are provided. Are located.

【0014】図2、図3は、本発明による一実施例の燃
料噴射弁のノズル近傍を示す縦断面図及び平面図(底面
から視た図)である。 燃料噴射弁3の本体は、燃料を
その上部から導入して先端のノズル部30から噴射する
構造をなしており、該燃料は、電磁力によって上下する
可動弁31に制御されて、ノズル部30に設けられた3
個の噴射口としてのオリフィスから、即ち、第一気筒用
オリフィス32aと、第二気筒用オリフィス32bと、
第三気筒用オリフィス32cとから噴射される。そし
て、図3に示すように、3個のオリフィス(32a,32
b,32c)は一列に(直線状に)並設されている。
FIGS. 2 and 3 are a vertical sectional view and a plan view (viewed from the bottom) showing the vicinity of the nozzle of the fuel injection valve according to one embodiment of the present invention. The main body of the fuel injection valve 3 has a structure in which fuel is introduced from above and injected from the nozzle portion 30 at the tip. The fuel is controlled by a movable valve 31 which moves up and down by electromagnetic force, and 3 provided in
From the orifices serving as the individual injection ports, that is, the first cylinder orifice 32a, the second cylinder orifice 32b,
The fuel is injected from the third cylinder orifice 32c. Then, as shown in FIG. 3, three orifices (32a, 32
b, 32c) are arranged in a line (in a straight line).

【0015】図4は、図2の燃料噴射弁の噴霧状態を示
す図である。この燃料噴射弁3は、一個所(すなわち、
噴射点o)から多方向(複数の方向)に燃料を噴射するこ
とができるように複数のオリフィス(すなわち、噴射口)
を一個所に集中して具備しており、1個の燃料噴射弁3
で内燃機関1の各気筒に向けて吸気管2及び吸気ポート
1aを経由して燃料を放射状に噴射している。即ち、図
3において、3個のオリフィスが一列に並設されている
ので、図4のように、燃料はノズル部30の噴射点oか
らob軸,od軸,oc軸の各噴射方向軸に扇状の放射平
面で噴射される。換言すれば、 燃料は、 軸ノズル部3
0の噴射点oを頂点とする略二等辺三角形(ob軸,底辺
(b−c),oc軸)の垂直二等分線であるod軸を包含す
る平面状に噴射されている。尚、略二等辺三角形は単に
略三角形であって良い。
FIG. 4 is a view showing a spray state of the fuel injection valve of FIG. This fuel injection valve 3 is provided at one location (ie,
Multiple orifices (i.e., injection ports) so that fuel can be injected in multiple directions (multiple directions) from the injection point o)
Are concentrated in one place, and one fuel injection valve 3
The fuel is radially injected toward each cylinder of the internal combustion engine 1 via the intake pipe 2 and the intake port 1a. That is, in FIG. 3, since three orifices are arranged in a line in a row, as shown in FIG. Injected in a fan-shaped radial plane. In other words, the fuel is supplied to the shaft nozzle 3
A substantially isosceles triangle (ob axis, base
It is jetted in a plane including the od axis which is a perpendicular bisector of ((bc), oc axis). Note that the substantially isosceles triangle may simply be a substantially triangle.

【0016】図5は、本発明による一実施例の制御装置
の内部構成を示す図である。図に示すように、制御装置
10は、入力回路191,A/D変換部192,中央演
算部193,ROM194,RAM195および出力回
路196を含んだ構成とされている。入力回路191
は、入力信号190(例えば、冷却水温センサ9、スロ
ットル開度センサ6等からの信号)を受け付けて、該信
号からノイズ成分の除去等を行い、当該信号をA/D変
換部192に出力するためのものである。A/D変換部
192は、該信号をA/D変換し、中央演算部193に
出力するためのものである。中央演算部193は、該A
/D変換結果を取り込み、ROM194に記憶された所
定のプログラムを実行することによって、各制御及び診
断等を実行する機能を備えている。なお、演算結果およ
びA/D変換結果は、RAM195に一時保管されると
共に、該演算結果は、出力回路196を通じて制御出力
信号197として出力され、燃料噴射弁3等の制御に用
いられる構成となっている。但し、制御装置10の構成
はこれに限定されるものではない。
FIG. 5 is a diagram showing an internal configuration of a control device according to an embodiment of the present invention. As shown in the figure, the control device 10 includes an input circuit 191, an A / D converter 192, a central processing unit 193, a ROM 194, a RAM 195, and an output circuit 196. Input circuit 191
Receives an input signal 190 (for example, a signal from the cooling water temperature sensor 9, the throttle opening sensor 6, etc.), removes noise components from the signal, and outputs the signal to the A / D converter 192. It is for. The A / D conversion section 192 performs A / D conversion of the signal and outputs the signal to the central processing section 193. The central processing unit 193 calculates the A
It has a function of executing each control, diagnosis, and the like by fetching the / D conversion result and executing a predetermined program stored in the ROM 194. Note that the calculation result and the A / D conversion result are temporarily stored in the RAM 195, and the calculation result is output as a control output signal 197 through an output circuit 196 to be used for controlling the fuel injection valve 3 and the like. ing. However, the configuration of the control device 10 is not limited to this.

【0017】一方、制御装置10は、内燃機関1の負荷
状態を検知するための吸気管負圧センサ7や、内燃機関
1の運転状態を検知するためのスロットル開度センサ
6、冷却水温センサ9、クランク角センサからの検出信
号を取り込み、それらの検出結果に基づいて、燃料噴射
弁駆動信号3sを生成し、 これに依り燃料噴射弁3を制
御する。そして、点火コイル(図示省略)や点火プラグ
(図示省略)等も制御する。すなわち、制御装置10は、
エンジンシステムの燃焼制御を実行する。
On the other hand, the control device 10 includes an intake pipe negative pressure sensor 7 for detecting a load state of the internal combustion engine 1, a throttle opening degree sensor 6 for detecting an operation state of the internal combustion engine 1, and a cooling water temperature sensor 9. Detects the detection signals from the crank angle sensor, generates a fuel injection valve drive signal 3s based on the detection results, and controls the fuel injection valve 3 accordingly. And an ignition coil (not shown) and a spark plug
(Not shown) are also controlled. That is, the control device 10
Execute combustion control of the engine system.

【0018】制御装置10が生成する燃料噴射弁駆動信
号3sのパルス幅(Ti)は、 以下の式によって演算され
る。
The pulse width (Ti) of the fuel injector driving signal 3s generated by the control device 10 is calculated by the following equation.

【0019】 Ti=KM×PM+Tb (数1) ここで、PMは吸気管負圧センサ7で測定した吸気管負
圧、Tbは図6に示すインジェクタの流量特性(Qf)の
無効パルス幅補正項である。また、KMは補正係数であ
り、空燃比が目標値付近になるようにエンジンシステム
の全運転領域で補正を行うものである。その一例を図7
に示す。
Ti = KM × PM + Tb (Equation 1) Here, PM is the intake pipe negative pressure measured by the intake pipe negative pressure sensor 7, and Tb is an invalid pulse width correction term of the flow rate characteristic (Qf) of the injector shown in FIG. It is. In addition, KM is a correction coefficient, which performs correction in the entire operation range of the engine system so that the air-fuel ratio becomes close to the target value. An example is shown in FIG.
Shown in

【0020】図1に戻り、燃料噴射弁3のノズル部30
(即ち、噴射点o)は、吸気管2が各気筒に向けて、分岐
吸気管2b,2d,2cに分岐する箇所、即ち、吸気管2
のほぼ中央部近辺にある分岐点2mに位置していて、該
燃料噴射弁3の各噴射方向軸(図4のob軸,od軸,o
c軸)が 形成する噴射点o(即ち、噴射口)を頂点とする
略二等辺三角形 (図4のob軸,底辺(b−c),oc
軸)の垂直二等分線(od軸)を包含する平面が、 スロッ
トル弁4から内燃機関1に向かって、分岐吸気管2b,
2d,2cの内部を流動する空気流の主流線 (2bj
軸,2dj軸,2cj軸)も包含するように配設されて
いる。 すなわち、燃料噴射弁は、該燃料噴射弁の各噴
射方向軸が形成する噴射口を頂点とする略二等辺三角形
の垂直二等分線を包含する平面が、スロットル弁から分
岐吸気管に向かって流動する空気流の主流線も包含する
よう、配設されている構成である。
Returning to FIG. 1, the nozzle portion 30 of the fuel injection valve 3
(I.e., the injection point o) is where the intake pipe 2 branches into the branch intake pipes 2b, 2d, and 2c toward each cylinder, that is, the intake pipe 2
Of the fuel injection valve 3 (ob axis, od axis, o axis in FIG. 4).
A substantially isosceles triangle having an injection point o (ie, injection port) formed by the c-axis) as an apex (ob axis, base (bc), oc in FIG. 4)
The plane including the vertical bisector (od axis) of the throttle valve 4 extends from the throttle valve 4 toward the internal combustion engine 1 in the branch intake pipe 2b,
The main streamline of the airflow flowing inside 2d and 2c (2bj
Axis, 2dj axis, and 2cj axis). That is, the fuel injection valve has a plane including a vertical bisector of a substantially isosceles triangle having an injection port formed by each injection direction axis of the fuel injection valve as an apex, from the throttle valve toward the branch intake pipe. The configuration is such that the main streamline of the flowing airflow is also included.

【0021】換言すれば、 分岐点2mを中心にして放
射状に分岐している各分岐吸気管(2b,2d,2c)の内
部を流れる空気の主流線 (2bj軸,2dj軸,2cj
軸)を包含する平面が、 燃料噴射弁3の各噴射方向軸
(ob軸,od軸,oc軸)を包含する平面にほぼ重なる
関係に構成されていると言える。すなわち、本発明によ
る燃料噴射弁の特徴は、燃料噴射弁が形成する噴射口を
頂点とする扇状の放射平面に、スロットル弁から分岐吸
気管に向かって流動する空気流の主流線を包含するよう
に当該燃料噴射弁が配設されている点にある。
In other words, the main flow lines (2bj axis, 2dj axis, 2cj) of the air flowing through each of the branch intake pipes (2b, 2d, 2c) radially branching about the branch point 2m.
Axis) is the axis of each injection direction of the fuel injection valve 3.
It can be said that it is configured so as to substantially overlap a plane including (ob axis, odd axis, oc axis). That is, the feature of the fuel injection valve according to the present invention is such that the main flow line of the air flow flowing from the throttle valve to the branch intake pipe is included in the fan-shaped radial plane having the injection port formed by the fuel injection valve at the top. In that the fuel injection valve is disposed.

【0022】特に、図1に示すように、各分岐吸気管
(2b,2d,2c)は直線状に延長して内燃機関1と連接
して扇状の放射平面に空気流の主流線を包含することが
望ましく、別の言い方をすれば、燃料噴射弁3は、噴射
口から噴射する燃料の主流線としての各噴射方向軸 (o
b軸,od軸,oc軸の方向)と内燃機関1に向かって各
分岐吸気管 (2b,2d,2c)を流動する空気流の主流
線(2bj軸,2dj軸,2cj軸の方向)とが、概ね合
致するように配設されている構成である。 このような
構成にすることによって、燃料噴霧の主流が、空気流の
主流によって直接的(あるいは直線的)に内燃機関1(す
なわち、吸気ポート1a)に導かれるので、従来技術の
ような燃料噴霧が吸気管の壁面に当たり付着することが
回避され、換言すれば、燃料噴霧の方向と空気流の偏り
との関係が適正となって、 燃料(燃料噴霧)が均等に各
気筒へ分配されるものである。 これについては、後述
するように実験的に確認されたものである。
In particular, as shown in FIG.
(2b, 2d, 2c) is desirably extended linearly and connected to the internal combustion engine 1 to include the main streamline of the air flow in a fan-shaped radial plane. In other words, the fuel injection valve 3 is , Each injection direction axis as the main streamline of fuel injected from the injection port (o
main streamlines (directions of the 2bj axis, 2dj axis, and 2cj axis) of the airflow flowing through each branch intake pipe (2b, 2d, 2c) toward the internal combustion engine 1 and directions of the b axis, the od axis, and the oc axis. However, it is the structure arranged so that it may correspond substantially. With this configuration, the main flow of the fuel spray is directly (or linearly) guided to the internal combustion engine 1 (that is, the intake port 1a) by the main flow of the air flow. Is prevented from sticking to the wall of the intake pipe, in other words, the relationship between the direction of the fuel spray and the bias of the air flow becomes appropriate, and the fuel (fuel spray) is evenly distributed to each cylinder. It is. This has been experimentally confirmed as described later.

【0023】すなわち、上記構成の本発明に係る内燃機
関用混合気形成装置は、吸気管2内に配設されて該吸気
管2を流れる空気流量を制御するスロットル弁と、該ス
ロットル弁よりも下流部位に配設されて一列に並設され
た内燃機関の各気筒に向けて多方向に燃料を噴射する燃
料噴射弁とを備え、該燃料噴射弁の各噴射方向軸が形成
する噴射口を頂点とする略二等辺三角形の垂直二等分線
を包含する平面が、スロットル弁から内燃機関に向かっ
て流動する空気の主流線も包含するように、燃料噴射弁
が配設されていることを特徴としている。
That is, the air-fuel mixture forming device for an internal combustion engine according to the present invention having the above-described structure is provided in the intake pipe 2 and controls a flow rate of air flowing through the intake pipe 2. A fuel injection valve that injects fuel in multiple directions toward each cylinder of the internal combustion engine that is arranged at a downstream portion and arranged in a line, and an injection port formed by each injection direction axis of the fuel injection valve. The fuel injection valve is arranged so that a plane including a vertical bisector of a substantially isosceles triangle having a vertex also includes a main streamline of air flowing from the throttle valve toward the internal combustion engine. Features.

【0024】上述した本発明の特徴について、以下、詳
細に説明する。まず、空気流の流れの偏りが各気筒間の
空燃比ばらつきに悪影響を及ぼすメカニズムについて説
明する。燃料噴射弁から噴射された燃料は、その全てが
各々狙った方向に飛ぶわけではなく、粒径の細かい燃料
は、質量が小さいが故に貫通力が弱く該燃料噴射弁の周
囲に浮遊しているので、噴射口付近の空気の微弱な流れ
の偏りにも影響されて、非常に不安定な動きをする。そ
の結果、どの気筒に吸い込まれるかはまちまちであり、
その結果、各気筒間の空燃比ばらつきが発生するもので
ある。一方、粒径の大きな燃料は、質量が大きいが故に
貫通力が強くて狙った方向に飛び出すが、大きな偏りを
もった強い空気の流れに会っては、やはりその方向性は
乱され、各気筒間の空燃比ばらつきが発生するものであ
る。
The above-mentioned features of the present invention will be described in detail below. First, a description will be given of a mechanism in which the bias of the air flow adversely affects the air-fuel ratio variation among the cylinders. Not all of the fuel injected from the fuel injection valve flies in the target direction, and the fuel with a small particle diameter floats around the fuel injection valve because of its small mass and low penetration force. Therefore, the air is very unstable due to the weak air flow near the injection port. As a result, which cylinder is drawn into the cylinder varies.
As a result, variations in the air-fuel ratio among the cylinders occur. On the other hand, fuel with a large particle diameter jumps out in the target direction because of its large mass and high penetration force.However, when it encounters a strong air flow with a large bias, its directionality is again disturbed, and each cylinder This causes an air-fuel ratio variation between the two.

【0025】図8は、内燃機関の燃料噴射における空気
流が燃料液滴の到達方向に及ぼす影響を示す図である。
図8(a)は、大気圧中で空気流20m/s、図8(b)
は、大気圧中で空気流10m/s、 図8(c)は、 −2
00mmHgの負圧中で空気流10m/sの各状態を示
す図である。燃料粒(液滴)の到達方向が空気の流れに及
ぼされる影響をコンピュータシミュレーションで調査し
た結果を示している。図において、左下端が燃料噴射位
置で、縦軸が燃料噴射方向、横軸が空気の流れ方向を示
している。このシミュレーション結果から理解されるよ
うに、空気の流れに影響を及ぼされる燃料の粒径は、空
気の流速が高いほど、また、空気の密度(この場合、周
囲の気圧)が高いほど大きくなることが分かる。したが
って、極力、空気流に偏りが発生しないようにすること
が、各気筒間の空燃比ばらつきを抑える上で重要である
と言える。
FIG. 8 is a diagram showing the effect of the air flow in the fuel injection of the internal combustion engine on the direction of arrival of the fuel droplets.
FIG. 8A shows an air flow of 20 m / s at atmospheric pressure, and FIG.
Is an air flow of 10 m / s at atmospheric pressure, and FIG.
It is a figure which shows each state of 10 m / s of air flows under negative pressure of 00 mmHg. The result of having investigated by computer simulation the influence which the arrival direction of a fuel particle (droplet) has on the flow of air is shown. In the figure, the lower left end is the fuel injection position, the vertical axis is the fuel injection direction, and the horizontal axis is the air flow direction. As can be understood from the simulation results, the particle size of the fuel that affects the air flow increases as the air flow velocity increases and the air density (in this case, the ambient pressure) increases. I understand. Therefore, it can be said that it is important to minimize the deviation of the air flow in order to suppress the air-fuel ratio variation among the cylinders.

【0026】次に、空気流に偏りが発生する理由につい
て説明する。図9は、吸気管内の空気流のコンピュータ
シミュレーション結果を示す図である。スロットル弁4
の開度が小さい時の、吸気管2内の空気流をコンピュー
タシミュレーションで解析した結果を示したものであ
る。該結果によると、スロットル弁4の上流から下流へ
流れ出す空気流は、スロットル弁4の全周に亘って均等
に流れ出すのではなく、弁の両側外周端に偏って流れ出
すことが理解できる。しかもスロットル弁下流側の気圧
は殆ど真空に近いので、その時にスロットル弁4を通過
する空気流速は音速近くにまで速くなることが判明し
た。
Next, the reason why the air flow is biased will be described. FIG. 9 is a diagram showing a computer simulation result of an air flow in the intake pipe. Throttle valve 4
3 shows the result of analyzing the air flow in the intake pipe 2 by a computer simulation when the opening degree is small. According to the result, it can be understood that the airflow flowing from the upstream to the downstream of the throttle valve 4 does not flow uniformly over the entire circumference of the throttle valve 4, but flows out toward both outer peripheral ends of the valve. Moreover, since the air pressure on the downstream side of the throttle valve is almost close to the vacuum, it has been found that the flow velocity of the air passing through the throttle valve 4 at that time becomes close to the speed of sound.

【0027】したがって、空気流は、吸気管2内部の両
壁に沿って高速に流れ、著しく偏ったものになるものと
言える。この場合の偏りに関しては、回動式のスロット
ル弁を使用する限り不可避である。このため、各気筒間
の空燃比ばらつきを抑える上で、燃料噴射弁から噴射さ
れた燃料の方向性を乱さないためには、燃料の噴霧方向
に対してスロットル弁の回動方向を合わせ、如何に偏り
無く該空気流を合流させるかが大変重要な課題であるこ
とが理解される。
Therefore, it can be said that the air flow flows at high speed along both walls inside the intake pipe 2 and becomes extremely uneven. The bias in this case is inevitable as long as a rotary throttle valve is used. Therefore, in order to suppress the air-fuel ratio variation among the cylinders and not to disturb the directivity of the fuel injected from the fuel injection valve, the rotation direction of the throttle valve should be adjusted to the spray direction of the fuel. It is understood that it is a very important task to combine the air flows without bias.

【0028】そこで、発明者らがいろいろ検討した結
果、前述したように燃料噴射弁の各噴射方向軸が形成す
る噴射口を頂点とする略二等辺三角形の垂直二等分線を
包含する平面が、スロットル弁から内燃機関に向かって
流動する空気の主流線も包含するように、一列形状のノ
ズルを有する燃料噴射弁が配設されていることが良いこ
とが判明した。
Therefore, as a result of various studies by the inventors, as described above, a plane containing a vertical bisector of a substantially isosceles triangle having the injection port formed by each injection direction axis of the fuel injection valve as an apex is described. It has been found that a fuel injection valve having a row of nozzles is preferably provided so as to include the main streamline of air flowing from the throttle valve toward the internal combustion engine.

【0029】しかしながら、スロットル弁の回動方向と
燃料の噴霧方向の関係によっては差が生じる場合がある
ことも判り、そこで、スロットル弁の回動方向を燃料の
噴霧方向に関して、気筒毎の空燃比ばらつきを評価基準
とし実験的に調査検討した。この結果について、比較例
と本発明による実施例とを比較して説明する。まず、図
10〜図12を参照して比較例について説明する。図1
0,図11は、比較例のスロットル弁軸方向と燃料噴射
方向の関係を示す横断面図および縦断面図である。図1
2は、比較例のスロットル弁軸の方向による空気流の偏
りとその燃料噴霧の方向性への影響を示す概念図であ
る。
However, it is also understood that a difference may occur depending on the relationship between the rotation direction of the throttle valve and the spray direction of the fuel. Therefore, the rotation direction of the throttle valve is changed with respect to the air spray ratio of each cylinder with respect to the fuel spray direction. The variation was evaluated and evaluated experimentally. The results will be described by comparing a comparative example with an example according to the present invention. First, a comparative example will be described with reference to FIGS. FIG.
0 and FIG. 11 are a cross-sectional view and a vertical cross-sectional view showing a relationship between a throttle valve axial direction and a fuel injection direction in a comparative example. FIG.
FIG. 2 is a conceptual diagram showing the deviation of the air flow due to the direction of the throttle valve shaft and the effect on the directionality of fuel spray in the comparative example.

【0030】図10,図11に示す如く、 燃料噴射弁
3の各噴射方向軸(ob軸,od軸,oc軸)が形成す
る、 噴射口を頂点とする略二等辺三角形の垂直二等分
線を包含し且つ該略二等辺三角形の底辺(b−c)に直交
する平面 (すなわち、od軸を包含する平面)が、 スロ
ットル弁4から内燃機関1に向かう吸気管2の軸線2a
jをも包含するように、燃料噴射弁3(すなわち、噴射
点o)が配設されている。
As shown in FIGS. 10 and 11, each injection direction axis (ob axis, od axis, oc axis) of the fuel injection valve 3 forms a vertical bisecting of an approximately isosceles triangle having an injection port as a vertex. A plane containing the line and orthogonal to the base (bc) of the substantially isosceles triangle (that is, a plane containing the od axis) is an axis 2a of the intake pipe 2 from the throttle valve 4 to the internal combustion engine 1.
The fuel injection valve 3 (that is, the injection point o) is provided so as to also include j.

【0031】このような構成の場合は、吸気管2の中心
に向かって均等に燃料が噴射されているにも関わらず、
底辺(b−c)を軸とする方向と弁軸4aの軸方向とが、
直角となる関係に配設されているため、図12の概念図
に示す如く、スロットル弁4が開口する吸気管2の両外
側(壁面側)の空気流5a,5bが多くなる偏流分布を示
し、その結果、燃料噴霧が矢印X,Yのように外側から
内側方向に押し退けられて、気筒毎の空燃比に大きなば
らつきが発生していることが判明した。すなわち、比較
例の気筒毎の空燃比ばらつき(△A/F)は、後述する図
15の「比較例」に示したように、内燃機関の運転条件に
よっては、許容値に対して約3倍もの値を示す場合があ
ることが判った。
In the case of such a configuration, although the fuel is uniformly injected toward the center of the intake pipe 2,
The direction with the base (bc) as the axis and the axial direction of the valve shaft 4a are:
As shown in the conceptual diagram of FIG. 12, the airflows 5a and 5b on both outer sides (wall surfaces) of the intake pipe 2 in which the throttle valve 4 opens are increased, as shown in the conceptual diagram of FIG. As a result, it was found that the fuel spray was pushed away from the outside toward the inside as indicated by arrows X and Y, and that the air-fuel ratio for each cylinder varied greatly. That is, the air-fuel ratio variation (△ A / F) of each cylinder of the comparative example is about three times as large as the allowable value depending on the operating conditions of the internal combustion engine, as shown in “Comparative Example” of FIG. It was found that the value might be shown.

【0032】一方、図13〜図15を参照して本発明に
よる他の実施例について説明する。図13,図14は、
本発明による実施例のスロットル弁軸方向と燃料噴射方
向の関係を示す横断面図および縦断面図である。図15
は、スロットル弁軸方向と△A/Fとの関係の調査結果
を比較した図である。 図13,図14に示す如く、
スロットル弁4の弁軸4aの向きを90度回転して配設
し、底辺(b−c)の方向と、弁軸4aの方向とが平行に
なるように配設したところ、図15の「実施例」に示した
如く、内燃機関の広い運転条件の範囲において、空燃比
ばらつき(△A/F)を許容値内に抑えることができた。
このように、燃料の噴霧に対して空気を偏りなく合流さ
せることも、各気筒間の空燃比ばらつきを抑える上で、
大変重要であることが実験から確かめられた。換言すれ
ば、従来技術(特開昭63−223364号公報)におい
て、 「各気筒間の燃料分配に影響するのは 燃料噴射弁
の各噴射口の口径ばらつきのみである」としており本発
明の特徴とする構成に関しては何ら開示されていないと
言える。
On the other hand, another embodiment according to the present invention will be described with reference to FIGS. FIG. 13 and FIG.
FIG. 3 is a cross-sectional view and a vertical cross-sectional view showing a relationship between a throttle valve axial direction and a fuel injection direction in an embodiment according to the present invention. FIG.
FIG. 4 is a diagram comparing the results of an investigation on the relationship between the throttle valve axis direction and ΔA / F. As shown in FIGS. 13 and 14,
When the direction of the valve shaft 4a of the throttle valve 4 is arranged to be rotated by 90 degrees and the direction of the base (bc) and the direction of the valve shaft 4a are arranged in parallel, FIG. As shown in "Example", the air-fuel ratio variation (△ A / F) could be suppressed to within an allowable value in a wide range of operating conditions of the internal combustion engine.
In this manner, the air is evenly merged with the fuel spray to reduce the air-fuel ratio variation among the cylinders.
The experiments proved to be very important. In other words, in the prior art (Japanese Patent Laid-Open No. 63-223364), it is stated that "the only influence on the fuel distribution between the cylinders is the variation in the diameter of each injection port of the fuel injector". No configuration is disclosed.

【0033】以上のように、燃料噴射弁3の噴射方向と
スロットル弁4の弁軸4aの方向の間には、最適な関係
があり、即ち、スロットル弁4の弁軸方向が、燃料噴射
弁3から平面状に噴射される燃料噴霧が形成する噴射口
(噴射点o)を頂点とする略二等辺三角形の底辺(b−c)
の方向と概ね平行となる関係に配設した本発明による構
成によって、空燃比ばらつき(△A/F)を小さく抑える
ことができた。
As described above, there is an optimal relationship between the injection direction of the fuel injection valve 3 and the direction of the valve shaft 4a of the throttle valve 4, that is, the valve axis direction of the throttle valve 4 is Injection formed by fuel spray injected flat from 3
The base (bc) of a substantially isosceles triangle having the vertex at (injection point o)
With the configuration according to the present invention disposed in a relationship substantially parallel to the direction, the air-fuel ratio variation (△ A / F) could be suppressed to a small value.

【0034】即ち、本発明による内燃機関用混合気形成
装置の他の特徴は、スロットル弁の弁軸方向を、前述の
想定された略二等辺三角形の底辺方向と概ね平行の関係
に設定することによって、スロットル開度が小さい領域
での空気流が燃料噴射弁の各噴射方向軸が形成する扇状
の面に対して偏りを持たないようにした点にある。した
がって、図15に示したように、本実施例のような構成
の内燃機関用混合気形成装置を用いれば、広い範囲にお
いて良好なる運転が確保されるエンジンシステムが提供
される。
That is, another feature of the air-fuel mixture forming apparatus for an internal combustion engine according to the present invention is that the valve axis direction of the throttle valve is set to be substantially parallel to the base direction of the assumed substantially isosceles triangle. Thus, the air flow in the region where the throttle opening is small is not deviated from the fan-shaped surface formed by each injection direction axis of the fuel injection valve. Therefore, as shown in FIG. 15, the use of the air-fuel mixture formation device having the configuration as in the present embodiment provides an engine system that ensures good operation in a wide range.

【0035】ところで、弁軸4aと底辺(b−c)との位
置関係は、必ずしも図13,図14に示すものに限られ
るものではない。これについて説明する。図16は、本
発明による他の実施例のスロットル弁軸方向と燃料噴射
方向の関係を示す概念図である。図17は、本発明によ
る別の実施例のスロットル弁軸方向と燃料噴射方向の関
係を示す概念図である。図16に示すように、弁軸4a
の辺(p−q)と底辺(b−c)の両者が、長方形または台
形の対峙する2辺となるように概ね平行に配設されてい
ても良いことが確認された。更に、図17の如く、 弁
軸4aの辺(p−q)と底辺(b−c)からなる平面(p−
q−c−b)に噴射点oを包含した構成配置、 あるい
は、オフセットした平面(p'−q'−n−m)と平面(m
−n−c−b)とからなる構成配置でも良く、さらに、
角度をもって離れた位置に弁軸4aが配置された平面
(p−q−n−m)と平面(m−n−c−b)とからなる構
成配置でも良いことは容易に推考できる。
Incidentally, the positional relationship between the valve shaft 4a and the base (bc) is not necessarily limited to those shown in FIGS. This will be described. FIG. 16 is a conceptual diagram showing the relationship between the axial direction of the throttle valve and the fuel injection direction in another embodiment according to the present invention. FIG. 17 is a conceptual diagram showing the relationship between the axial direction of the throttle valve and the fuel injection direction according to another embodiment of the present invention. As shown in FIG. 16, the valve shaft 4a
It has been confirmed that both sides (pq) and bottom sides (bc) may be arranged substantially in parallel so as to be two opposing sides of a rectangle or a trapezoid. Further, as shown in FIG. 17, a plane (p−q) composed of the side (p−q) and the bottom side (bc) of the valve shaft 4a.
qcb) includes the injection point o, or the offset plane (p'-q'-nm) and the plane (m
-N-c-b).
A plane in which the valve shaft 4a is arranged at a position separated by an angle
It can be easily inferred that a configuration arrangement consisting of (pqnm) and a plane (mncc) may be used.

【0036】次に、スロットル弁をバイパスし、一部の
吸気を補助吸気通路を介して吸気通路内に吹き出す(補
助空気噴流の)構成の実施例について説明する。 補助
吸気通路としての補助吸気管8を通過する空気量は、ス
ロットル弁4がほぼ全閉に近い場合に該通路開口面積が
大きくなるほど多くなる。該補助吸気管8は、通常、吸
気管2の壁面に開口した吹き出し孔としての開口部8b
に連通されていて、補助吸気管8を通過した空気流は、
通路弁8aの開閉によって開口部8bから噴流となっ
て、吸気管2を流れる空気流と衝突混流する。ここで、
スロットル弁開口面積よりも補助吸気管8の開口面積の
方が大きい場合には、補助空気の噴流の勢いの方が強く
なり、吸気管2内の空気流は補助空気の流れが支配的に
なる。従って、開口部8bの位置や向きが偏向している
と、その偏向に追従して吸気管2内の空気流に偏りが発
生することになる。
Next, a description will be given of an embodiment in which a part of the intake air is blown into the intake passage through the auxiliary intake passage (by the auxiliary air jet), bypassing the throttle valve. When the throttle valve 4 is almost fully closed, the amount of air passing through the auxiliary intake pipe 8 as the auxiliary intake passage increases as the passage opening area increases. The auxiliary intake pipe 8 is usually provided with an opening 8b as a blow-out hole opened on the wall surface of the intake pipe 2.
Air flowing through the auxiliary intake pipe 8
The opening and closing of the passage valve 8a causes a jet flow from the opening 8b to collide with the airflow flowing through the intake pipe 2. here,
When the opening area of the auxiliary intake pipe 8 is larger than the opening area of the throttle valve, the momentum of the auxiliary air jet becomes stronger, and the air flow in the intake pipe 2 is dominated by the flow of the auxiliary air. . Therefore, if the position or the direction of the opening 8b is deflected, the air flow in the intake pipe 2 will be deviated following the deflection.

【0037】そこで、補助空気系通路8の開口部8bの
位置について、補助吸気管8を介して吸気管2内に吹き
出す空気の噴流方向を変え、 気筒毎の空燃比ばらつき
(△A/F)を評価基準として、実験的に調査検討した。
これについて説明する。 図18,図19は、比較例の
補助空気系の通路出口位置と燃料噴射方向の関係を示す
横断面図および縦断面図である。補助吸気管8の下流側
の開口部8bの位置を、吸気管2内に吹き出す空気の噴
流が燃料の噴霧方向に対して交差させた場合である。
Therefore, the direction of the jet of the air blown into the intake pipe 2 via the auxiliary intake pipe 8 is changed for the position of the opening 8b of the auxiliary air system passage 8, and the air-fuel ratio variation for each cylinder
Using (△ A / F) as an evaluation criterion, an experimental investigation was conducted.
This will be described. 18 and 19 are a cross-sectional view and a vertical cross-sectional view showing the relationship between the position of the passage outlet of the auxiliary air system and the fuel injection direction in the comparative example. This is the case where the position of the opening 8b on the downstream side of the auxiliary intake pipe 8 is such that the jet of air blown into the intake pipe 2 intersects the fuel spray direction.

【0038】この比較例では、図18,図19に示す如
く、補助吸気管8の下流側の開口部8bは第1気筒側
(分岐吸気管2b側)に偏った構成になっている。このた
め第1気筒側には、より多くの空気が分配されて燃料量
が薄くなり、一方、他の気筒側においては、押し退けら
れた燃料噴霧がより多く分配されて燃料量が濃くなった
ために、後述するように△A/Fが悪化することが判明
した。換言すれば、前述のようにスロットル弁4の開き
方向と弁軸4aの向きとを適切にすることで、△A/F
を許容値以下に抑えることはできるが、補助吸気管8を
図18,図19に示す構成で設けた場合であれば、△A
/Fが悪化することが判明した。
In this comparative example, as shown in FIGS. 18 and 19, the opening 8b on the downstream side of the auxiliary intake pipe 8 is located on the first cylinder side.
(Branch intake pipe 2b side). For this reason, more air is distributed to the first cylinder side and the fuel amount is reduced, while on the other cylinder side, the displaced fuel spray is distributed more and the fuel amount is increased. It was found that ΔA / F deteriorated as described later. In other words, by appropriately setting the opening direction of the throttle valve 4 and the direction of the valve shaft 4a as described above, the ΔA / F
Can be suppressed below the allowable value. However, if the auxiliary intake pipe 8 is provided with the configuration shown in FIGS.
/ F was found to be worse.

【0039】図20,図21は、本発明による実施例の
補助空気系の通路出口位置と燃料噴射方向の関係を示す
縦断面図および縦断面図である。図22は、補助空気系
の通路出口位置と△A/Fとの関係の調査結果を比較し
た図である。図20,図21に示す如く、補助吸気管8
の下流側の開口部8bが吸気管2のほぼ中央に来るよう
に配置した構成にしており、図22に示した如く、本実
施例の構成であれば、△A/Fを許容値内に抑えること
ができることが判明した。
FIGS. 20 and 21 are a longitudinal sectional view and a longitudinal sectional view showing the relationship between the position of the outlet of the auxiliary air system and the fuel injection direction in the embodiment according to the present invention. FIG. 22 is a diagram comparing the examination results of the relationship between the position of the passage outlet of the auxiliary air system and ΔA / F. As shown in FIGS. 20 and 21, the auxiliary intake pipe 8
22 is arranged so that the downstream opening 8b is located substantially at the center of the intake pipe 2. As shown in FIG. 22, according to the configuration of the present embodiment, ΔA / F is set within an allowable value. It turns out that it can be suppressed.

【0040】即ち、図20,図21に示す如く、補助吸
気管8の配置を90度ずらして、補助吸気管8の下流側
の開口部8bは、当該開口部8bから吸気管2内に吹き
出す空気流の噴流方向が、前述の垂直二等分線(od軸)
の方向と概ね重なるように、吸気管2に開口している、
換言すれば、開口部8bが吸気管2のほぼ中央に来るよ
うに配置したところ、気筒毎の空燃比ばらつき(△A/
F)を許容値内に抑えることができた。
That is, as shown in FIGS. 20 and 21, the arrangement of the auxiliary intake pipe 8 is shifted by 90 degrees, and the opening 8b on the downstream side of the auxiliary intake pipe 8 is blown into the intake pipe 2 from the opening 8b. The jet direction of the air flow is the perpendicular bisector (od axis) described above.
Opening in the intake pipe 2 so as to substantially overlap the direction of
In other words, when the opening 8b is disposed so as to be substantially at the center of the intake pipe 2, the air-fuel ratio variation (△ A /
F) was able to be kept within the allowable value.

【0041】従って、本発明による内燃機関用混合気形
成装置の別の特徴は、吸気管は、スロットル弁をバイパ
スして当該吸気管に空気を導入する補助吸気管を備え、
該補助吸気管は、当該補助吸気管から吸気管内に吹き出
す空気の噴流方向が、燃料の噴射方向に対して平行で、
かつ、略二等辺三角形の垂直二等分線の方向と概ね重な
る構成となるように、吸気管に開口している点にある。
Therefore, another feature of the air-fuel mixture formation device for an internal combustion engine according to the present invention is that the intake pipe includes an auxiliary intake pipe for introducing air into the intake pipe by bypassing the throttle valve.
In the auxiliary intake pipe, a jet direction of air blown from the auxiliary intake pipe into the intake pipe is parallel to a fuel injection direction,
In addition, the opening is formed in the intake pipe so as to substantially overlap the direction of the perpendicular bisector of the substantially isosceles triangle.

【0042】ところで、開口部8bの位置は必ずしも図
20,図21の通りである必要はなく、これについて説
明する。図23は、本発明による他の実施例の補助空気
系の通路出口位置と燃料噴射方向の関係を示す縦断面図
である。図23に示す如く、該補助吸気管8の下流側の
開口部8bは、スロットル弁4から内燃機関1に向かう
吸気管2の軸線2ajと燃料噴射弁3の噴射点o (噴射
口)とを包含する面(2aj−o)が、吸気管2の壁面と
交差してなる線(l,m,n)の近傍に、 該開口部8b
の中心部が配置されるように構成しても良いことが容易
に推考できる。
By the way, the position of the opening 8b does not necessarily have to be as shown in FIGS. 20 and 21, and this will be described. FIG. 23 is a longitudinal sectional view showing a relationship between a passage outlet position of an auxiliary air system and a fuel injection direction according to another embodiment of the present invention. As shown in FIG. 23, the opening 8 b on the downstream side of the auxiliary intake pipe 8 connects the axis 2 aj of the intake pipe 2 from the throttle valve 4 to the internal combustion engine 1 and the injection point o (injection port) of the fuel injection valve 3. The opening 8b is located near a line (l, m, n) where the plane (2aj-o) to be included intersects the wall surface of the intake pipe 2.
It can be easily inferred that a configuration may be adopted in which the central portion of the above may be arranged.

【0043】以上のように、本発明によって、燃料噴霧
の方向と空気流の偏りとの関係を考慮し燃料を均等に各
気筒へ分配することを可能とする内燃機関用混合気形成
装置が提供され、そして、該内燃機関用混合気形成装置
を用いたエンジンシステムであれば、広い範囲において
良好なる運転が確保される。
As described above, according to the present invention, there is provided an air-fuel mixture forming apparatus for an internal combustion engine capable of uniformly distributing fuel to each cylinder in consideration of the relationship between the direction of fuel spray and the bias of air flow. In addition, in the case of an engine system using the air-fuel mixture forming device for an internal combustion engine, good operation is ensured in a wide range.

【0044】[0044]

【発明の効果】本発明によれば、内燃機関の回転に同期
して、該内燃機関の複数の気筒に向けて一つの燃料噴射
弁から多方向に燃料を噴射する燃料噴射弁を備えた内燃
機関用混合気形成装置において、空気の流れの偏りを無
くし、かつ、燃料の噴射方向性を阻害することが無いの
で、各気筒への燃料分配性が良い内燃機関用混合気形成
装置ならびに良好な運転性を持つエンジンシステムが実
現できる効果がある。
According to the present invention, an internal combustion engine having a fuel injection valve for injecting fuel from one fuel injection valve in multiple directions toward a plurality of cylinders of the internal combustion engine in synchronization with the rotation of the internal combustion engine is provided. In the air-fuel mixture forming device for an engine, since the bias of the air flow is eliminated and the fuel injection direction is not hindered, the air-fuel mixture forming device for an internal combustion engine with good fuel distribution to each cylinder and a good air-fuel mixture forming device are provided. There is an effect that an engine system having drivability can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による一実施例の内燃機関用燃料噴射装
置の構成を示す図である。
FIG. 1 is a diagram showing a configuration of a fuel injection device for an internal combustion engine according to one embodiment of the present invention.

【図2】本発明による一実施例の燃料噴射弁のノズル近
傍を示す縦断面図である。
FIG. 2 is a longitudinal sectional view showing the vicinity of a nozzle of a fuel injection valve according to an embodiment of the present invention.

【図3】本発明による一実施例の燃料噴射弁のノズル近
傍を示す平面図である。
FIG. 3 is a plan view showing the vicinity of a nozzle of a fuel injection valve according to an embodiment of the present invention.

【図4】図2の燃料噴射弁の噴霧状態を示す図である。FIG. 4 is a view showing a spray state of a fuel injection valve of FIG. 2;

【図5】本発明による一実施例の制御装置の内部構成を
示す図である。
FIG. 5 is a diagram showing an internal configuration of a control device according to an embodiment of the present invention.

【図6】図5の制御装置に制御された図2の燃料噴射弁
の流量特性を示す図である。
6 is a view showing a flow rate characteristic of the fuel injection valve of FIG. 2 controlled by the control device of FIG. 5;

【図7】図2の燃料噴射弁の燃料噴射パルス幅の補正係
数を示す図である。
FIG. 7 is a diagram showing a correction coefficient of a fuel injection pulse width of the fuel injection valve of FIG. 2;

【図8】内燃機関の燃料噴射における空気流が燃料液滴
の到達方向に及ぼす影響を示す図である。
FIG. 8 is a diagram showing an effect of an air flow in fuel injection of an internal combustion engine on a direction in which fuel droplets reach.

【図9】吸気管内の空気流のコンピュータシミュレーシ
ョン結果を示す図である。
FIG. 9 is a diagram showing a computer simulation result of an air flow in an intake pipe.

【図10】比較例のスロットル弁軸方向と燃料噴射方向
の関係を示す横断面図である。
FIG. 10 is a cross-sectional view illustrating a relationship between a throttle valve axial direction and a fuel injection direction in a comparative example.

【図11】比較例のスロットル弁軸方向と燃料噴射方向
の関係を示す縦断面図である。
FIG. 11 is a longitudinal sectional view showing a relationship between a throttle valve axial direction and a fuel injection direction in a comparative example.

【図12】比較例のスロットル弁軸の方向による空気流
の偏りとその燃料噴霧の方向性への影響を示す概念図で
ある。
FIG. 12 is a conceptual diagram showing a deviation of an air flow due to a direction of a throttle valve shaft of a comparative example and its influence on the directionality of fuel spray.

【図13】本発明による実施例のスロットル弁軸方向と
燃料噴射方向の関係を示す横断面図である。
FIG. 13 is a cross-sectional view showing a relationship between a throttle valve axial direction and a fuel injection direction in an embodiment according to the present invention.

【図14】本発明による実施例のスロットル弁軸方向と
燃料噴射方向の関係を示す縦断面図である。
FIG. 14 is a longitudinal sectional view showing a relationship between a throttle valve axial direction and a fuel injection direction in an embodiment according to the present invention.

【図15】スロットル弁軸方向と△A/Fとの関係の調
査結果を比較した図である。
FIG. 15 is a diagram comparing the results of an investigation on the relationship between the throttle valve axial direction and ΔA / F.

【図16】本発明による他の実施例のスロットル弁軸方
向と燃料噴射方向の関係を示す概念図である。
FIG. 16 is a conceptual diagram illustrating a relationship between a throttle valve axial direction and a fuel injection direction according to another embodiment of the present invention.

【図17】本発明による別の実施例のスロットル弁軸方
向と燃料噴射方向の関係を示す概念図である。
FIG. 17 is a conceptual diagram showing a relationship between a throttle valve axial direction and a fuel injection direction of another embodiment according to the present invention.

【図18】比較例の補助空気系の通路出口位置と燃料噴
射方向の関係を示す横断面図である。
FIG. 18 is a cross-sectional view showing a relationship between a passage outlet position of an auxiliary air system and a fuel injection direction in a comparative example.

【図19】比較例の補助空気系の通路出口位置と燃料噴
射方向の関係を示す縦断面図である。
FIG. 19 is a longitudinal sectional view showing a relationship between a passage outlet position of an auxiliary air system and a fuel injection direction in a comparative example.

【図20】本発明による実施例の補助空気系の通路出口
位置と燃料噴射方向の関係を示す横断面図である。
FIG. 20 is a cross-sectional view showing a relationship between a passage outlet position of an auxiliary air system and a fuel injection direction in an embodiment according to the present invention.

【図21】本発明による実施例の補助空気系の通路出口
位置と燃料噴射方向の関係を示す縦断面図である。
FIG. 21 is a longitudinal sectional view showing a relationship between a passage outlet position of an auxiliary air system and a fuel injection direction in an embodiment according to the present invention.

【図22】補助空気系の通路出口位置と、△A/Fとの
関係の調査結果を比較した図である。
FIG. 22 is a diagram comparing the examination results of the relationship between the position of the passage outlet of the auxiliary air system and ΔA / F.

【図23】本発明による他の実施例の補助空気系の通路
出口位置と燃料噴射方向の関係を示す縦断面図である。
FIG. 23 is a longitudinal sectional view showing a relationship between a passage outlet position of an auxiliary air system and a fuel injection direction according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…内燃機関、1a…吸気ポート、2…吸気管、2b,
2c,2d…分岐吸気管、3…燃料噴射弁、3s…燃料
噴射弁駆動信号、4…スロットル弁、4a…弁軸、5
a,5b…空気流、6…スロットル開度センサ、7…吸
気管負圧センサ、8…補助吸気管、8a…通路弁、8b
…開口部、9…冷却水温センサ、10…制御装置、30
…ノズル部、31…可動弁、32a…第一気筒用オリフ
ィス、32b…第二気筒用オリフィス、32c…第三気
筒用オリフィス、190…入力信号、191…入力回路、192
…A/D変換部、193…中央演算部、194…ROM、195
…RAM、196…出力回路、197…制御出力信号
DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine, 1a ... Intake port, 2 ... Intake pipe, 2b,
2c, 2d: branch intake pipe, 3: fuel injection valve, 3s: fuel injection valve drive signal, 4: throttle valve, 4a: valve shaft, 5
a, 5b: air flow, 6: throttle opening sensor, 7: intake pipe negative pressure sensor, 8: auxiliary intake pipe, 8a: passage valve, 8b
... opening, 9 ... cooling water temperature sensor, 10 ... control device, 30
... Nozzle part, 31 ... Movable valve, 32a ... First cylinder orifice, 32b ... Second cylinder orifice, 32c ... Third cylinder orifice, 190 ... Input signal, 191 ... Input circuit, 192
... A / D converter, 193 ... Central processing unit, 194 ... ROM, 195
… RAM, 196… Output circuit, 197… Control output signal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田村 誠 茨城県ひたちなか市大字高場2520番地 株 式会社日立製作所自動車機器事業部内 (72)発明者 根本 守 茨城県ひたちなか市高場2477番地 株式会 社日立カーエンジニアリング内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Makoto Tamura 2520 Ojitakaba, Hitachinaka City, Ibaraki Prefecture Inside the Automotive Equipment Division of Hitachi, Ltd. (72) Inventor Mamoru Nemoto 2477 Takaba Hitachinaka City, Ibaraki Pref. Within Hitachi Car Engineering

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】下流部位に複数本の分岐吸気管を有し内燃
機関に連接する吸気管と、該吸気管の上流部位に配設さ
れて当該吸気管内を流れる空気流の流量を制御するスロ
ットル弁と、前記分岐吸気管と前記スロットル弁との間
に配設されて一列に並設された噴射口から前記各分岐吸
気管に向けて多方向に燃料を噴射する燃料噴射弁とを備
え、 前記燃料噴射弁は、該燃料噴射弁の各噴射方向軸が形成
する噴射口を頂点とする略二等辺三角形の垂直二等分線
を包含する平面が、前記スロットル弁から前記分岐吸気
管に向かって流動する前記空気流の主流線も包含するよ
う、配設されていることを特徴とする内燃機関用混合気
形成装置。
An intake pipe having a plurality of branch intake pipes at a downstream portion and connected to an internal combustion engine, and a throttle disposed at an upstream portion of the intake pipe and controlling a flow rate of an airflow flowing through the intake pipe. A valve, and a fuel injection valve that is disposed between the branch intake pipe and the throttle valve and that injects fuel in multiple directions toward the respective branch intake pipes from injection ports arranged in a line. In the fuel injection valve, a plane including a vertical bisector of a substantially isosceles triangle having an injection port formed by each injection direction axis of the fuel injection valve as an apex is directed from the throttle valve to the branch intake pipe. An air-fuel mixture forming apparatus for an internal combustion engine, which is provided so as to also include a main streamline of the flowing air flow.
【請求項2】請求項1において、前記スロットル弁の弁
軸方向は、前記略二等辺三角形の底辺方向と概ね平行と
なる関係に配設されていることを特徴とする内燃機関用
混合気形成装置。
2. The air-fuel mixture formation for an internal combustion engine according to claim 1, wherein a valve axis direction of said throttle valve is disposed so as to be substantially parallel to a base direction of said substantially isosceles triangle. apparatus.
【請求項3】請求項1または請求項2において、前記吸
気管は、前記スロットル弁をバイパスして前記空気流を
導入する補助吸気管を有し、 該補助吸気管の下流側の開口部は、当該開口部から前記
吸気管内に吹き出す前記空気流の噴流方向が前記垂直二
等分線の方向と概ね重なるよう前記吸気管に開口してい
ることを特徴とする内燃機関用混合気形成装置。
3. The intake pipe according to claim 1, wherein the intake pipe has an auxiliary intake pipe for introducing the air flow by bypassing the throttle valve, and an opening on a downstream side of the auxiliary intake pipe is provided. An air-fuel mixture forming device for an internal combustion engine, characterized in that the opening is formed in the intake pipe such that a jet direction of the air flow blown into the intake pipe from the opening substantially overlaps a direction of the vertical bisector.
【請求項4】下流部位に複数本の分岐吸気管を有し内燃
機関に連接する吸気管と、該吸気管の上流部位に配設さ
れて当該吸気管内を流れる空気流の流量を制御するスロ
ットル弁と、前記分岐吸気管と前記スロットル弁との間
に配設されて一列に並設された噴射口から前記各分岐吸
気管に向けて多方向に燃料を噴射する燃料噴射弁とを備
え、 前記燃料噴射弁は、前記噴射口から噴射する前記燃料の
各噴射方向軸が前記内燃機関に向かって前記各分岐吸気
管を流動する前記空気流の主流線と概ね合致しているよ
う、配設されていることを特徴とする内燃機関用混合気
形成装置。
4. An intake pipe having a plurality of branch intake pipes at a downstream portion and connected to an internal combustion engine, and a throttle disposed at an upstream portion of the intake pipe and controlling a flow rate of an airflow flowing through the intake pipe. A valve, and a fuel injection valve that is disposed between the branch intake pipe and the throttle valve and that injects fuel in multiple directions toward the respective branch intake pipes from injection ports arranged in a line. The fuel injection valve is disposed such that each injection direction axis of the fuel injected from the injection port substantially matches a main streamline of the air flow flowing through each of the branch intake pipes toward the internal combustion engine. An air-fuel mixture forming apparatus for an internal combustion engine, comprising:
【請求項5】請求項1ないし請求項4のいずれか1項記
載の内燃機関用混合気形成装置を用いたことを特徴とす
るエンジンシステム。
5. An engine system using the air-fuel mixture forming device for an internal combustion engine according to claim 1.
JP8217675A 1996-08-20 1996-08-20 Mixture forming device and engine system for internal combustion engine Pending JPH1061531A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP8217675A JPH1061531A (en) 1996-08-20 1996-08-20 Mixture forming device and engine system for internal combustion engine
KR1019970038814A KR19980018687A (en) 1996-08-20 1997-08-14 Mixer forming apparatus and engine system for internal combustion engines
GB9717488A GB2316448B (en) 1996-08-20 1997-08-18 Apparatus for forming air fuel mixture for internal combustion engine and engine system
CN97117720A CN1092759C (en) 1996-08-20 1997-08-20 Apparatus for forming air-fuel mixture for internal combustion engine and engine system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8217675A JPH1061531A (en) 1996-08-20 1996-08-20 Mixture forming device and engine system for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH1061531A true JPH1061531A (en) 1998-03-03

Family

ID=16707970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8217675A Pending JPH1061531A (en) 1996-08-20 1996-08-20 Mixture forming device and engine system for internal combustion engine

Country Status (4)

Country Link
JP (1) JPH1061531A (en)
KR (1) KR19980018687A (en)
CN (1) CN1092759C (en)
GB (1) GB2316448B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7296560B2 (en) * 2005-01-20 2007-11-20 Kubota Corporation Engine of spark-ignition type
FR2916246B1 (en) * 2007-05-16 2009-07-03 Renault Sas THERMAL MOTOR COMPRISING A COMMON INLET DUCT WITH TWO CYLINDERS
DE102007056555A1 (en) * 2007-11-23 2009-05-28 Robert Bosch Gmbh Fuel injector
DE102008044056A1 (en) * 2008-11-25 2010-05-27 Robert Bosch Gmbh Fuel injector
JP2011236867A (en) * 2010-05-13 2011-11-24 Hino Motors Ltd Fuel spray nozzle
CN102953887B (en) * 2012-11-06 2014-11-05 天津大学 Penetration distance-composited alcohol spraying method and device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4159703A (en) * 1976-12-10 1979-07-03 The Bendix Corporation Air assisted fuel atomizer
JPS55156240A (en) * 1979-05-24 1980-12-05 Nippon Denso Co Ltd Air intake device of engine
JPS5641452A (en) * 1979-09-12 1981-04-18 Toyota Central Res & Dev Lab Inc Fuel injection device of multicylinder internal combustion engine
JPS63223364A (en) * 1987-03-12 1988-09-16 Mitsubishi Electric Corp Fuel injection device of gasoline engine
JP2537234B2 (en) * 1987-05-29 1996-09-25 スズキ株式会社 Multi-cylinder engine cold starter
JPH01152062U (en) * 1988-04-09 1989-10-19
JPH0317279A (en) * 1989-06-13 1991-01-25 Kobe Steel Ltd Chemical conversion treatment for steel strip
JPH03122269A (en) * 1989-10-06 1991-05-24 Toshiba Corp Evaporating device
JPH06257432A (en) * 1993-03-04 1994-09-13 Nissan Motor Co Ltd Fuel supply system for internal combustion engine
KR102059503B1 (en) * 2018-07-31 2019-12-26 충북대학교 산학협력단 SNP marker composition for resistance individual discriminating of porcine respiratory and reproductive syndrome virus

Also Published As

Publication number Publication date
CN1092759C (en) 2002-10-16
KR19980018687A (en) 1998-06-05
GB2316448B (en) 1999-01-06
CN1174286A (en) 1998-02-25
GB2316448A (en) 1998-02-25
GB9717488D0 (en) 1997-10-22

Similar Documents

Publication Publication Date Title
JPH1061531A (en) Mixture forming device and engine system for internal combustion engine
JP3329935B2 (en) Intake device for internal combustion engine
GB2274877A (en) Fuel injected i.c. engine.
JP7298484B2 (en) Intake structure of internal combustion engine
JPS63223364A (en) Fuel injection device of gasoline engine
US6045054A (en) Air shroud for air assist fuel injector
JP3103771B2 (en) Fuel injection system for multi-cylinder internal combustion engine
KR100339679B1 (en) Multi-cylinder internal combustion engine with multi-directional fuel injection valve and its intake pipe structure
JPH10115269A (en) Fuel injection device for engine
JPH05340326A (en) Fuel supply device for internal combustion engine
JP2588891Y2 (en) Multi-injection nozzle for vaporizer
JPH0450472A (en) Fuel jet device for internal combustion engine
JPH05321791A (en) Air assist injector
KR100300108B1 (en) Fuel feed apparatus for internal combustion engine and fuel feed method the reof
JPH0752371Y2 (en) 2-way fuel injection valve
JP3786050B2 (en) Intake device for internal combustion engine
JP2906895B2 (en) Fuel supply device for internal combustion engine
JP2002310043A (en) Intake air device of internal combustion engine
JP2589850B2 (en) Fuel injection device
JPH09303238A (en) Intake system device for internal combustion engine
JPS62182475A (en) Fuel injection valve
JPH07332203A (en) Automobile engine fuel supply system
JPH06123267A (en) Fuel injection device for internal combustion engine
JPH06101602A (en) Fuel supply device for internal combustion engine
JPH01121563A (en) Fuel injection device