JPH1055816A - Hydrogen storage power generation system - Google Patents

Hydrogen storage power generation system

Info

Publication number
JPH1055816A
JPH1055816A JP8208687A JP20868796A JPH1055816A JP H1055816 A JPH1055816 A JP H1055816A JP 8208687 A JP8208687 A JP 8208687A JP 20868796 A JP20868796 A JP 20868796A JP H1055816 A JPH1055816 A JP H1055816A
Authority
JP
Japan
Prior art keywords
hydrogen
pure water
water
gas
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8208687A
Other languages
Japanese (ja)
Inventor
Yasushi Sawada
靖 沢田
Yoshiaki Kurata
義昭 倉田
Takeo Takahashi
武男 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP8208687A priority Critical patent/JPH1055816A/en
Publication of JPH1055816A publication Critical patent/JPH1055816A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen storage power generation system allowing hydrogen to be stored at high pressure, consuming a small amount of distilled water and ensuring high efficiency as well as high economy. SOLUTION: This system is equipped with a storage tank 22 for hydrogen and water used for a water electrolysis device 24, a pressure control valve 27 connected to the storage tank 22, and a gas-liquid separator 25. In this case, the storage tank 22 for hydrogen and distilled water supplies high pressure of distilled water to the anode of the water electrolysis device 24, and the gas-liquid separator 25 releases high pressure of stored oxygen via a float valve driven on the floating motion thereof in the distilled water. Furthermore, high pressure of distilled water after gas-liquid separation is supplied to the anode of the water electrolysis device 24, together with the distilled water in the storage tank 22.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は水素貯蔵発電シス
テムに係り、特に水素貯蔵発電システムの水電解装置に
用いられる純水供給とガス貯蔵の機構に関する。
The present invention relates to a hydrogen storage and power generation system, and more particularly to a pure water supply and gas storage mechanism used in a water electrolysis apparatus of a hydrogen storage and power generation system.

【0002】[0002]

【従来の技術】電力貯蔵手段には現在色々のものが提唱
されている。例えば超伝導やフライホイール、圧縮空気
を利用するものなどである。現在用いられているものに
は二次電池があり、また夜間の余剰電力を利用する揚水
発電システムも採用されている。停電時の非常用電源装
置としては軽油,重油を用いるエンジン発電機がある。
2. Description of the Related Art Various types of power storage means are currently proposed. For example, those using superconductivity, a flywheel, or compressed air. Currently used ones are secondary batteries, and pumped-storage power generation systems that utilize surplus power at night are also employed. As an emergency power supply device at the time of a power failure, there is an engine generator using light oil and heavy oil.

【0003】[0003]

【発明が解決しようとする課題】しかしながら現在用い
られている二次電池はコスト高であり、寿命が短く、ま
た大容量の電力の貯蔵には適していない。揚水発電シス
テムは大規模の貯水施設を要し、電力需要の多い都市近
郊での建設は不可能である。また軽油,重油を用いるエ
ンジン発電機は運転により窒素酸化物等の環境汚染物質
を放出する問題がある。
However, the secondary batteries currently used are expensive, have a short life, and are not suitable for storing large-capacity electric power. Pumped storage systems require large-scale water storage facilities and cannot be constructed near cities with high power demand. In addition, engine generators using light oil and heavy oil have a problem of releasing environmental pollutants such as nitrogen oxides during operation.

【0004】これらの問題を解決するために特開平8―
64220号公報に水素貯蔵発電システムが開示されて
いる。図5は従来の水素貯蔵発電システムを示す系統図
である。この水素貯蔵発電システムは一次電源1と、一
次電源1から給電して水素を発生させる水電解装置4
と、水電解装置で生成した水素を除湿するガス乾燥装置
5と、水素吸蔵合金7を用いて前記水素を吸蔵.放出す
る水素貯蔵装置6と、水素貯蔵装置6から放出した水素
を燃料とする発電装置8からなり一次電源1の電力を水
素の形に変換して貯蔵し、必要な時に水素吸蔵合金7か
ら放出された水素を利用して発電し電力として取り出す
ものである。
In order to solve these problems, Japanese Patent Laid-Open Publication No. Hei 8-
Japanese Patent No. 64220 discloses a hydrogen storage and power generation system. FIG. 5 is a system diagram showing a conventional hydrogen storage and power generation system. The hydrogen storage and power generation system includes a primary power source 1 and a water electrolysis device 4 for supplying hydrogen from the primary power source 1 to generate hydrogen.
A gas drying device 5 for dehumidifying the hydrogen generated by the water electrolysis device; and a hydrogen storage alloy 7 for storing the hydrogen. It consists of a hydrogen storage device 6 to be released, and a power generation device 8 using hydrogen released from the hydrogen storage device 6 as fuel. The power of the primary power source 1 is converted into hydrogen and stored, and released from the hydrogen storage alloy 7 when necessary. It generates electricity using the hydrogen thus obtained and extracts it as electric power.

【0005】この水素貯蔵発電システムの水電解装置に
は固体高分子膜型水電解装置が用いられる。図3は従来
の水電解装置を示す断面図である。図4は従来の水電解
装置の純水供給機構を示す系統図である。固体高分子膜
型水電解装置は固体高分子膜41をアノード43とカソ
ード42が挟む。この固体高分子膜型水電解装置のアノ
ード43には水電解に必要な純水が酸素と純水のタンク
32よりガス逆止装置31を経由して供給される。水電
解によって生成した酸素は純水との気液混合系となった
のちに酸素は浮上して酸素と純水のタンク32に導かれ
る。酸素と純水のタンク32内の酸素の圧力は通常0.
05KG/cm2Gの範囲にある。水電解によって生成した水
素は純水との気液混合系となって水素と純水の回収タン
ク33に導かれる。
[0005] A solid polymer membrane type water electrolyzer is used as the water electrolyzer of the hydrogen storage and power generation system. FIG. 3 is a sectional view showing a conventional water electrolysis device. FIG. 4 is a system diagram showing a pure water supply mechanism of a conventional water electrolysis device. In the solid polymer membrane type water electrolysis device, an anode 43 and a cathode 42 sandwich a solid polymer membrane 41. Pure water required for water electrolysis is supplied from an oxygen and pure water tank 32 to the anode 43 of the solid polymer membrane type water electrolysis device via the gas check device 31. Oxygen generated by water electrolysis becomes a gas-liquid mixed system with pure water, and then the oxygen floats and is led to a tank 32 of oxygen and pure water. The pressure of oxygen in the tank 32 of oxygen and pure water is usually 0.1.
It is in the range of 05KG / cm 2 G. Hydrogen generated by the water electrolysis becomes a gas-liquid mixed system with pure water and is led to a recovery tank 33 of hydrogen and pure water.

【0006】しかしながら上述のような従来の純水供給
機構を用いる場合は水電解装置4のアノード43とカソ
ード42における流体圧力が異なること、および固体高
分子膜41の耐圧が小さいことの二つの理由により、例
えば水素と純水の回収タンク33内の水素の圧力を7kg
/cm2G 以上に高めるときは水電解装置4の固体高分子膜
41が破損するために上述の圧力以上の水素を貯蔵する
ことができないという問題があった。
However, when the above-described conventional pure water supply mechanism is used, two reasons are that the fluid pressures at the anode 43 and the cathode 42 of the water electrolysis device 4 are different and that the pressure resistance of the solid polymer membrane 41 is small. For example, the pressure of hydrogen in the recovery tank 33 of hydrogen and pure water is set to 7 kg.
When the pressure is increased to / cm 2 G or more, there is a problem that the solid polymer film 41 of the water electrolysis device 4 is damaged, so that hydrogen having a pressure higher than the above-mentioned pressure cannot be stored.

【0007】また水素と純水の回収タンク33に回収さ
れた純水は循環して再利用されることがないために純水
の消費量が多くなるという問題があった。この発明は上
述の点に鑑みてなされその目的は、水電解装置のアノー
ドとカソードの流体圧力を等しくすること、および純水
を循環して利用することにより、水素の高圧貯蔵が可能
である上に純水の消費量も少なく、効率と経済性に優れ
る水素貯蔵発電システムを提供することにある。
There is another problem that the pure water recovered in the hydrogen and pure water recovery tank 33 is not circulated and reused, so that the consumption of pure water increases. The present invention has been made in view of the above points, and an object of the present invention is to make it possible to equalize the fluid pressures of the anode and the cathode of a water electrolysis device and to circulate and use pure water to store hydrogen at a high pressure. Another object of the present invention is to provide a hydrogen storage and power generation system that consumes less pure water and is highly efficient and economical.

【0008】[0008]

【課題を解決するための手段】上述の目的はこの発明に
よれば一次電源と、一次電源から給電して水素を発生さ
せる水電解装置と、水電解装置で生成した水素を除湿す
るガス乾燥装置と、水素吸蔵合金を用いて前記水素を吸
蔵.放出する水素貯蔵装置と、水素貯蔵装置から放出し
た水素を燃料とする発電装置を組み合わせてなる水素貯
蔵発電システムであって、水電解装置に用いられる水素
と純水の貯蔵タンクと、前記貯蔵タンクに接続される圧
力制御バルブと、気液分離器を有し、水素と純水の貯蔵
タンクは水電解装置のカソードから導入される水素と純
水を気液分離して高圧の水素と純水を貯蔵するもので、
高圧の純水は水電解装置のアノードに供給され、圧力制
御バルブは水素と純水の貯蔵タンクに貯蔵される水素の
圧力を制御し、気液分離器は水電解装置のアノードから
導き出される酸素と純水を気液分離して高圧の酸素と純
水を貯留するもので、純水中のフロートの浮遊動により
駆動されるフロートバルブを介して貯留された高圧酸素
を放出し、気液分離された高圧の純水を前記貯蔵タンク
の純水とともに水電解装置のアノードに供給するもので
あり、アノードに供給された純水の一部は水電解装置の
電解質を介してカソードに送られるものであるとするこ
とにより達成される。
According to the present invention, there is provided a primary power supply, a water electrolysis apparatus for generating hydrogen by supplying power from the primary power supply, and a gas drying apparatus for dehumidifying hydrogen generated by the water electrolysis apparatus. And storing the hydrogen using a hydrogen storage alloy. A hydrogen storage and power generation system comprising a combination of a hydrogen storage device for releasing hydrogen and a power generation device using hydrogen released from the hydrogen storage device as a fuel, wherein a storage tank for hydrogen and pure water used in a water electrolysis device is provided, And a gas-liquid separator, and a storage tank for hydrogen and pure water separates hydrogen and pure water from the cathode of the water electrolyzer by gas-liquid separation of high-pressure hydrogen and pure water. Which stores
The high-pressure pure water is supplied to the anode of the water electrolyzer, the pressure control valve controls the pressure of hydrogen and hydrogen stored in the storage tank of pure water, and the gas-liquid separator is the oxygen derived from the anode of the water electrolyzer. And high-pressure oxygen and pure water are stored by separating the high-pressure oxygen and pure water, and the high-pressure oxygen stored is released through a float valve driven by the floating movement of the float in the pure water. Supplied high-pressure pure water to the anode of the water electrolysis device together with the pure water in the storage tank, and a part of the pure water supplied to the anode is sent to the cathode via the electrolyte of the water electrolysis device. Is achieved.

【0009】上述の発明において気液分離器のフロート
バルブを介して放出される酸素を貯蔵して圧力制御バル
ブにより酸素圧力を制御する酸素貯蔵タンクを備えるこ
とが有効である。水素と純水の貯蔵タンク内の高圧の純
水が水電解装置のアノードを流れる。アノードを流れる
純水の圧力は水素と純水の貯蔵タンク内の高圧水素の圧
力にほぼ等しい。カソードには前記貯蔵タンク内の高圧
水素とほぼ等しい圧力の水素が発生するから水電解装置
のアノードとカソードにおける流体圧力はほぼバランス
する。
In the above invention, it is effective to provide an oxygen storage tank for storing oxygen released via a float valve of the gas-liquid separator and controlling the oxygen pressure by a pressure control valve. High-pressure pure water in a storage tank of hydrogen and pure water flows through the anode of the water electrolysis device. The pressure of the pure water flowing through the anode is approximately equal to the pressure of the high pressure hydrogen in the hydrogen and pure water storage tanks. Since hydrogen having a pressure substantially equal to the high-pressure hydrogen in the storage tank is generated at the cathode, the fluid pressures at the anode and the cathode of the water electrolysis device are substantially balanced.

【0010】気液分離器内の貯留酸素の圧力と、前記貯
蔵タンク内の高圧水素の圧力は等しくなるが、フロート
バルブを介して貯留された高圧酸素を放出する動作によ
り、気液分離器内には高圧の純水が常時保持され、酸素
混入のない高圧の純水が純水供給とガス貯蔵の機構を循
環する。酸素貯蔵タンクの圧力制御バルブは酸素貯蔵タ
ンクの酸素圧力を高圧に維持する。
Although the pressure of the stored oxygen in the gas-liquid separator and the pressure of the high-pressure hydrogen in the storage tank become equal, the operation of discharging the high-pressure oxygen stored through the float valve causes the inside of the gas-liquid separator to release. , High-pressure pure water is always held, and high-pressure pure water without oxygen contamination circulates through a pure water supply and gas storage mechanism. The pressure control valve of the oxygen storage tank keeps the oxygen pressure of the oxygen storage tank high.

【0011】[0011]

【発明の実施の形態】図1はこの発明の実施例に係る水
電解装置用の純水供給機構とガス貯蔵機構を示す系統図
てある。図2はこの発明の実施例に係る気液分離器を示
す階段断面図である。水素と純水の貯蔵タンク22の高
圧の純水がポンプ23を介して水電解装置24のアノー
ドに供給される。水電解装置24は固体高分子膜型水電
解装置である。アノードでは酸素が発生し純水とともに
気液分離器25に送られる。
FIG. 1 is a system diagram showing a pure water supply mechanism and a gas storage mechanism for a water electrolysis apparatus according to an embodiment of the present invention. FIG. 2 is a step sectional view showing the gas-liquid separator according to the embodiment of the present invention. High-pressure pure water in a hydrogen and pure water storage tank 22 is supplied to the anode of a water electrolysis device 24 via a pump 23. The water electrolysis device 24 is a solid polymer membrane type water electrolysis device. Oxygen is generated at the anode and sent to the gas-liquid separator 25 together with pure water.

【0012】水電解装置24のアノードに供給された純
水の一部は水電解装置24の固体高分子膜内を拡散し、
カソードに到達する。カソードでは水素が発生する。水
素は純水とともに水素と純水の貯蔵タンク22に送られ
る。水素と純水は気液分離してそれぞれ貯蔵される。圧
力制御バルブ27は水素の圧力を所定の圧力以下に制御
する。バルブ21は高圧の水素を図示しない他の装置に
供給する。
Part of the pure water supplied to the anode of the water electrolyzer 24 diffuses in the solid polymer membrane of the water electrolyzer 24,
Reach the cathode. Hydrogen is generated at the cathode. The hydrogen is sent to the hydrogen and pure water storage tank 22 together with the pure water. Hydrogen and pure water are stored by gas-liquid separation. The pressure control valve 27 controls the pressure of hydrogen to a predetermined pressure or less. The valve 21 supplies high-pressure hydrogen to another device (not shown).

【0013】気液分離器25に送られた酸素と純水は気
液分離される。気液分離器25のフロート29は純水中
の浮遊動に際し、スプリング駆動により正常時閉じた状
態のバルブ28を梃により開閉する。バルブ28は気液
分離器25内の高圧の酸素を放出し、気液分離器内に高
圧の純水を常時保持する。気液分離器25内の高圧の純
水はポンプ23により水素と純水の貯蔵タンク22内の
高圧の純水とともに水電解装置24のアノードに送られ
て循環する。循環する純水の中には酸素は混入しない。
The oxygen and pure water sent to the gas-liquid separator 25 are separated into gas and liquid. When floating in the pure water, the float 29 of the gas-liquid separator 25 opens and closes the valve 28 which is normally closed by spring driving. The valve 28 releases high-pressure oxygen in the gas-liquid separator 25, and constantly holds high-pressure pure water in the gas-liquid separator. The high-pressure pure water in the gas-liquid separator 25 is sent to the anode of the water electrolysis device 24 along with the high-pressure pure water in the storage tank 22 of hydrogen and pure water by the pump 23 and circulated. Oxygen is not mixed into the circulating pure water.

【0014】気液分離器25の高圧の酸素は酸素貯蔵タ
ンク26に送られる。圧力制御バルブ27Aは酸素の圧
力を所定の圧力に制御する。バルブ21Aは高圧の酸素
を図示しない他の装置に送る。
The high-pressure oxygen of the gas-liquid separator 25 is sent to an oxygen storage tank 26. The pressure control valve 27A controls the pressure of oxygen to a predetermined pressure. The valve 21A sends high-pressure oxygen to another device (not shown).

【0015】[0015]

【発明の効果】この発明によれば水電解装置のアノード
とカソードの流体圧力が等しくなるとともに純水が循環
することとなり、水素の高圧貯蔵が可能である上に純水
の消費量が約1/9となる。また圧力制御バルブを備え
た酸素貯蔵タンクを気液分離器とともに用いることによ
り、酸素の高圧貯蔵も可能となり、効率と経済性に優れ
る水素貯蔵発電システムが得られる。
According to the present invention, pure water circulates while the fluid pressures of the anode and the cathode of the water electrolysis device become equal, so that hydrogen can be stored at a high pressure and the consumption of pure water is about 1%. / 9. In addition, by using an oxygen storage tank equipped with a pressure control valve together with a gas-liquid separator, high-pressure storage of oxygen is also possible, and a hydrogen storage and power generation system that is excellent in efficiency and economy can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例に係る水電解装置用の純水供
給機構とガス貯蔵機構を示す系統図
FIG. 1 is a system diagram showing a pure water supply mechanism and a gas storage mechanism for a water electrolysis apparatus according to an embodiment of the present invention.

【図2】この発明の実施例に係る気液分離器を示す階段
断面図
FIG. 2 is a step cross-sectional view showing a gas-liquid separator according to an embodiment of the present invention

【図3】従来の水電解装置を示す断面図FIG. 3 is a cross-sectional view showing a conventional water electrolysis device.

【図4】従来の水電解装置の純水供給機構を示す系統図FIG. 4 is a system diagram showing a pure water supply mechanism of a conventional water electrolysis apparatus.

【図5】従来の水素貯蔵発電システムを示す系統図FIG. 5 is a system diagram showing a conventional hydrogen storage and power generation system.

【符号の説明】[Explanation of symbols]

1 一次電源 4 水電解装置 5 ガス乾燥装置 7 水素吸蔵合金 6 水素貯蔵装置 8 発電装置 21 バルブ 21A バルブ 22 水素と純水の貯蔵タンク 23 ポンプ 24 水電解装置 25 気液分離器 26 酸素貯蔵タンク 27 圧力制御バルブ 27A 圧力制御バルブ 28 バルブ 29 フロート 31 ガス逆止装置 32 酸素と純水のタンク 33 水素と純水の回収タンク 41 固体高分子膜 42 カソード 42A カソード室 43 アノード 43A アノード室 Reference Signs List 1 primary power supply 4 water electrolysis device 5 gas drying device 7 hydrogen storage alloy 6 hydrogen storage device 8 power generation device 21 valve 21A valve 22 storage tank for hydrogen and pure water 23 pump 24 water electrolysis device 25 gas-liquid separator 26 oxygen storage tank 27 Pressure control valve 27A Pressure control valve 28 Valve 29 Float 31 Gas check device 32 Tank for oxygen and pure water 33 Recovery tank for hydrogen and pure water 41 Solid polymer membrane 42 Cathode 42A Cathode chamber 43 Anode 43A Anode chamber

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】一次電源と、一次電源から給電して水素を
発生させる水電解装置と、水電解装置で生成した水素を
除湿するガス乾燥装置と、水素吸蔵合金を用いて前記水
素を吸蔵.放出する水素貯蔵装置と、水素貯蔵装置から
放出した水素を燃料とする発電装置を組み合わせてなる
水素貯蔵発電システムであって、水電解装置に用いられ
る水素と純水の貯蔵タンクと、前記貯蔵タンクに接続さ
れる圧力制御バルブと、気液分離器を有し、 水素と純水の貯蔵タンクは水電解装置のカソードから導
入される水素と純水を気液分離して高圧の水素と純水を
貯蔵するもので、高圧の純水は水電解装置のアノードに
供給され、 圧力制御バルブは水素と純水の貯蔵タンクに貯蔵される
水素の圧力を制御し、 気液分離器は水電解装置のアノードから導き出される酸
素と純水を気液分離して高圧の酸素と純水を貯留するも
ので、純水中のフロートの浮遊動により駆動されるフロ
ートバルブを介して貯留された高圧酸素を放出し、気液
分離された高圧の純水を前記貯蔵タンクの純水とともに
水電解装置のアノードに供給するものであり、アノード
に供給された純水の一部は水電解装置の電解質を介して
カソードに送られるものであることを特徴とする水素貯
蔵発電システム。
1. A primary power source, a water electrolysis device for generating hydrogen by supplying power from the primary power source, a gas drying device for dehumidifying hydrogen generated by the water electrolysis device, and storing the hydrogen using a hydrogen storage alloy. A hydrogen storage and power generation system comprising a combination of a hydrogen storage device for releasing hydrogen and a power generation device using hydrogen released from the hydrogen storage device as a fuel, wherein a storage tank for hydrogen and pure water used in a water electrolysis device is provided, And a gas-liquid separator, and a storage tank for hydrogen and pure water separates hydrogen and pure water from the cathode of the water electrolyzer by gas-liquid separation of high-pressure hydrogen and pure water. The high-pressure pure water is supplied to the anode of the water electrolyzer, the pressure control valve controls the pressure of hydrogen and hydrogen stored in the pure water storage tank, and the gas-liquid separator is the water electrolyzer. The high pressure oxygen and pure water are separated by gas-liquid separation of the oxygen and pure water derived from the anode, and the high pressure oxygen stored through the float valve driven by the floating movement of the float in the pure water. Release, gas-liquid separation Supplied to the anode of the water electrolysis apparatus together with the purified water in the storage tank, and a part of the pure water supplied to the anode is sent to the cathode via the electrolyte of the water electrolysis apparatus. A hydrogen storage and power generation system, characterized in that:
【請求項2】気液分離器のフロートバルブを介して放出
される酸素を貯蔵して圧力制御バルブにより酸素圧力を
制御する酸素貯蔵タンクを備えることを特徴とする請求
項1に記載の水素貯蔵発電システム。
2. The hydrogen storage according to claim 1, further comprising an oxygen storage tank for storing oxygen released through a float valve of the gas-liquid separator and controlling an oxygen pressure by a pressure control valve. Power generation system.
JP8208687A 1996-08-08 1996-08-08 Hydrogen storage power generation system Pending JPH1055816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8208687A JPH1055816A (en) 1996-08-08 1996-08-08 Hydrogen storage power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8208687A JPH1055816A (en) 1996-08-08 1996-08-08 Hydrogen storage power generation system

Publications (1)

Publication Number Publication Date
JPH1055816A true JPH1055816A (en) 1998-02-24

Family

ID=16560417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8208687A Pending JPH1055816A (en) 1996-08-08 1996-08-08 Hydrogen storage power generation system

Country Status (1)

Country Link
JP (1) JPH1055816A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1263072A1 (en) * 2001-05-30 2002-12-04 Casale Chemicals SA Method and apparatus for the storage and redistribution of electrical energy
JP2003073872A (en) * 2001-09-07 2003-03-12 Ihi Aerospace Co Ltd Water electrolysis facilities
WO2002027814A3 (en) * 2000-09-28 2003-09-25 Proton Energy Sys Inc Regenerative electrochemical cell system and method for use thereof
JP2005302449A (en) * 2004-04-09 2005-10-27 Ricoh Co Ltd Fuel cell system and image formation device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002027814A3 (en) * 2000-09-28 2003-09-25 Proton Energy Sys Inc Regenerative electrochemical cell system and method for use thereof
EP1263072A1 (en) * 2001-05-30 2002-12-04 Casale Chemicals SA Method and apparatus for the storage and redistribution of electrical energy
US7112380B2 (en) 2001-05-30 2006-09-26 Casale Chemicals S.A. Method and apparatus for the storage and redistribution of electrical energy
JP2003073872A (en) * 2001-09-07 2003-03-12 Ihi Aerospace Co Ltd Water electrolysis facilities
JP2005302449A (en) * 2004-04-09 2005-10-27 Ricoh Co Ltd Fuel cell system and image formation device

Similar Documents

Publication Publication Date Title
US5346778A (en) Electrochemical load management system for transportation applications
US7226529B2 (en) Electrolyzer system to produce gas at high pressure
US20070205111A1 (en) Apparatus And Method For Producing Hydrogen
JP2006221864A (en) Power generation system for vehicle
US6541139B1 (en) Septic battery
JP3522769B2 (en) Operating method of fuel cell plant and fuel cell plant
EP3800279A1 (en) Process water gas management of inert gas generation electrolyzer system with gas-activated valve
JPH09501256A (en) Method and apparatus for charging and discharging electrical energy
WO2018096713A1 (en) Regenerative fuel cell system and water electrolysis system
JPH09139217A (en) Closed type fuel cell system
JP4425113B2 (en) Hydrogen supply system and hydrogen supply method
JPH1055816A (en) Hydrogen storage power generation system
JP2001229951A (en) Fuel-cell system for moving object
Bacon et al. Review Lecture-The development and practical application of fuel cells
US20210101110A1 (en) Process water gas management of electrolyzer system with pressure differential
Kordesch et al. A comparison between the alkaline fuel cell (AFC) and the polymer electrolyte membrane (PEM) fuel cell
WO2023088749A2 (en) Electrolysis system and method for energy recycling
WO2023021075A2 (en) Method and apparatus for producing hydrogen from water
JPH10181685A (en) Operation system for fuel cell mounted type deep sea submargence research vehicle
US20210147264A1 (en) Water treatment device and water treatment method
CN209357838U (en) Hydrogen fuel cell electricity generation system and its vehicle
MXPA05010626A (en) Transportable fuel cell generator.
JP2002008698A (en) Fuel cell generating device
JPH1068095A (en) Hydrogen-storage power generating system
Schmal et al. Testing of a De Nora polymer electrolyte fuel cell stack of 1 kW for naval applications