JP2003073872A - Water electrolysis facilities - Google Patents

Water electrolysis facilities

Info

Publication number
JP2003073872A
JP2003073872A JP2001271175A JP2001271175A JP2003073872A JP 2003073872 A JP2003073872 A JP 2003073872A JP 2001271175 A JP2001271175 A JP 2001271175A JP 2001271175 A JP2001271175 A JP 2001271175A JP 2003073872 A JP2003073872 A JP 2003073872A
Authority
JP
Japan
Prior art keywords
water
hydrogen
gas
oxygen
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001271175A
Other languages
Japanese (ja)
Inventor
Yasutada Takagi
康匡 高木
Shunichi Okaya
俊一 岡屋
Noboru Shinozaki
昇 篠崎
Yusaku Yanai
雄作 谷内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Aerospace Co Ltd
Original Assignee
IHI Aerospace Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Aerospace Co Ltd filed Critical IHI Aerospace Co Ltd
Priority to JP2001271175A priority Critical patent/JP2003073872A/en
Publication of JP2003073872A publication Critical patent/JP2003073872A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Abstract

PROBLEM TO BE SOLVED: To provide water electrolysis facilities, which electrolyze water into hydrogen and oxygen, can store them, have little danger for contacting electrolyzed hydrogen and oxygen each other at the same place and causing their reaction, have a low frequency of starting and stopping each component of the facilities, to reduce the failure rate, and can reduce a necessary capacity for the each component. SOLUTION: The electrolysis facilities comprise a hydrogen removal unit 12 for removing gas included in water by depressurizing it, which contains hydrogen gas in the inside of a hydrogen/water separator 4, a forcibly feeding booster pump 14 for pressurizing the depressurized and hydrogen-removed water and for forcibly feeding it to a water vessel 1, and a water circulation pump 16 for circulating the water including oxygen gas in the inside of an oxygen/ water separator 5 to water pressurized by a water pump 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、水を水素と酸素に
電気分解し貯蔵するための水電解設備に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water electrolysis facility for electrolyzing water into hydrogen and oxygen for storage.

【0002】[0002]

【従来の技術】図3は、固体高分子型燃料電池(Pol
ymer ElectrolyteFuel Cel
l:PEFC)の原理図である。この燃料電池は、電解
質にプロトン(H+)導電性を有する高分子膜Tを用
い、この膜の両側に薄い多孔質Pt触媒電極(アノード
AとカソードC)を付けた構造を有する。それぞれの電
極にH2およびO2を供給し、室温〜100℃前後で動作
させると、H2はH2極(アノードA)でH+に酸化さ
れ、H+は膜内を移動してO2極(カソードC)に到達す
る。一方e-は外部回路を通って電気的な仕事をしたの
ち、O2極に到達する。O2極ではO2が到達したH+およ
びe-と反応してH2Oに還元される。
2. Description of the Related Art FIG. 3 shows a polymer electrolyte fuel cell (Pol).
ymer Electrolyte Fuel Cell
1 is a principle diagram of (PEFC). This fuel cell has a structure in which a polymer membrane T having proton (H + ) conductivity is used as an electrolyte and thin porous Pt catalyst electrodes (anode A and cathode C) are attached to both sides of this membrane. Supplying H 2 and O 2 to the respective electrodes, operating at around room temperature to 100 ° C., H 2 is oxidized to H + with H 2-pole (anode A), H + is moved to the film O It reaches the two poles (cathode C). On the other hand, e reaches an O 2 pole after performing an electric work through an external circuit. At the O 2 electrode, O 2 reacts with the reached H + and e and is reduced to H 2 O.

【0003】上述した燃料電池は、全体としては水素と
酸素から水を生成する反応である。そのため、例えば宇
宙ステーション等で燃料電池を長期間利用するために、
太陽光が利用できない時間帯に燃料電池を利用し、逆に
太陽光が利用できる時間帯には、太陽電池等の電力で水
を水素と酸素に電気分解して貯蔵することが検討されて
いる。
The above-mentioned fuel cell is a reaction which produces water from hydrogen and oxygen as a whole. Therefore, for example, in order to use the fuel cell for a long time at the space station,
It is considered to use the fuel cell during the time when sunlight cannot be used, and conversely to store water by electrolyzing water into hydrogen and oxygen with the electric power of the solar cell during the time when sunlight can be used. .

【0004】[0004]

【発明が解決しようとする課題】図4は水を水素と酸素
に電気分解して貯蔵する従来の水電解設備の構成図であ
る。この図において、1は水容器、2は水供給ポンプ、
3は水電解スタック、4は水素/水分離器、5は酸素/
水分離器、6a,6bは逆止弁、7は水素貯蔵タンク、
8は酸素貯蔵タンク、9a,9bはリターンポンプであ
る。
FIG. 4 is a block diagram of a conventional water electrolysis facility for electrolyzing water into hydrogen and oxygen for storage. In this figure, 1 is a water container, 2 is a water supply pump,
3 is a water electrolysis stack, 4 is a hydrogen / water separator, 5 is oxygen /
Water separator, 6a and 6b are check valves, 7 is hydrogen storage tank,
Reference numeral 8 is an oxygen storage tank, and 9a and 9b are return pumps.

【0005】水電解スタック3は、図3に示した燃料電
池と同様の構成の水電解セルを複数積層した積層セルで
あり、図示しない電源を負荷することにより、内部を流
れる水を水素と酸素に電気分解する。すなわち、水はO
2極(カソードC)に供給され、ここでO2とH+および
-に分解され、O2はO2極で気泡を発生する。一方、
+はセル内の電位差により膜内を移動してH2極(アノ
ードA)に達し、ここでH2の気泡となる。従って、O2
極からは酸素ガスが未反応の水と共に流出し、H2極か
らは水素ガスが膜を通過した少量の水と共に流出する。
The water electrolysis stack 3 is a laminated cell in which a plurality of water electrolysis cells having the same structure as that of the fuel cell shown in FIG. 3 are laminated. Electrolyze into. That is, water is O
It is supplied to the two poles (cathode C), where it is decomposed into O 2 , H + and e , and O 2 generates bubbles at the O 2 pole. on the other hand,
H + moves in the film due to the potential difference in the cell and reaches the H 2 pole (anode A), where it becomes a bubble of H 2 . Therefore, O 2
Oxygen gas flows out from the electrode together with unreacted water, and hydrogen gas flows out from the H 2 electrode together with a small amount of water that has passed through the membrane.

【0006】図4において、水容器1の水は、水供給ポ
ンプ2により規定の圧力で水電解スタック3へ供給され
る。水電解スタック3は、外部からの電気エネルギーに
より、水をH2とO2に分解する。分解したH2とO2は、
各々H2,O2極ポートより取出される。各々のガスには
未消費の水が多量に混入するため水素/水分離器4及び
酸素/水分離器5によりガスと水を分離させ、各々のガ
スは各々の貯蔵タンク7,8に圧送され蓄圧する。また
分離器4,5内の水は分離器内に溜まるが液面レベルセ
ンサによりその量を検知し、規定量以上になると水リタ
ーンポンプ9a,9bを駆動し、水容器1に戻し再使用
する。なお水電解スタック3は電気エネルギーの損失及
び水分解反応による発熱を伴なう。そのため、冷却のた
め水分解に要する水量の十数倍が水電解スタック3に供
給され、それが未消費の水として水容器1に戻るように
なっている。
In FIG. 4, the water in the water container 1 is supplied to the water electrolysis stack 3 at a prescribed pressure by the water supply pump 2. The water electrolysis stack 3 decomposes water into H 2 and O 2 by electric energy from the outside. The decomposed H 2 and O 2 are
They are taken out from the H 2 and O 2 pole ports, respectively. Since a large amount of unconsumed water is mixed in each gas, the gas and water are separated by the hydrogen / water separator 4 and the oxygen / water separator 5, and each gas is pumped to each storage tank 7, 8. Accumulate pressure. Further, the water in the separators 4 and 5 collects in the separators, the amount of which is detected by a liquid level sensor, and when the amount exceeds a specified amount, the water return pumps 9a and 9b are driven and returned to the water container 1 for reuse. . The water electrolysis stack 3 is accompanied by loss of electric energy and heat generation due to a water splitting reaction. Therefore, more than ten times the amount of water required for water decomposition for cooling is supplied to the water electrolysis stack 3, and the water is returned to the water container 1 as unconsumed water.

【0007】上述した従来の水電解設備では、以下の問
題点があった。 (1)分離器4,5内においてガス(水素又は酸素)と
水は分離されるが、少量のガスは水に溶融又は微細な気
泡として混入し、水容器1に戻される。そのため水容器
1内において水素と酸素の両方のガス濃度が徐々に高く
なり、反応して発熱するおそれがある。 (2)分離器4,5に多量の未消費水が流入するため、
液面レベルセンサ、リターンポンプの起動・停止(ON
・OFF)の頻度が多く、耐久性が低下し、故障率が増
加するおそれがある。 (3)水供給系及びリターン系とも多量の水を対象とす
るため各機器の容量が大きくなる。
The above-mentioned conventional water electrolysis equipment has the following problems. (1) Gas (hydrogen or oxygen) and water are separated in the separators 4 and 5, but a small amount of gas is mixed with water or mixed as fine bubbles and returned to the water container 1. Therefore, the gas concentrations of both hydrogen and oxygen in the water container 1 gradually increase, and there is a risk of reaction and heat generation. (2) Since a large amount of unconsumed water flows into the separators 4 and 5,
Start / stop of liquid level sensor and return pump (ON
・ OFF) is frequent, durability may decrease, and failure rate may increase. (3) Since a large amount of water is targeted for both the water supply system and the return system, the capacity of each device becomes large.

【0008】本発明はかかる問題点を解決するために創
案されたものである。すなわち、本発明の目的は、水を
水素と酸素に電気分解し貯蔵することができ、電気分解
した水素と酸素が同一箇所で互いに接触して反応するお
それがほとんどなく、各構成機器の起動・停止の頻度が
低く故障率を低減でき、かつ各構成機器の必要容量を小
さくできる水電解設備を提供することにある。
The present invention was devised to solve such problems. That is, the object of the present invention is that water can be electrolyzed into hydrogen and oxygen and stored, and there is almost no possibility that electrolyzed hydrogen and oxygen will contact and react with each other at the same location, and start-up of each component An object of the present invention is to provide a water electrolysis facility in which the frequency of stoppages is low, the failure rate can be reduced, and the required capacity of each component is reduced.

【0009】[0009]

【課題を解決するための手段】本発明によれば、水容器
(1)内の水を水供給ポンプ(2)で加圧して水電解ス
タック(3)へ供給し、該水電解スタックで水の一部を
水素ガスと酸素ガスに分解し、水素ガス又は酸素ガスを
含む水を水素/水分離器(4)と酸素/水分離器(5)
でそれぞれのガスと水に分離し、それぞれのガスをそれ
ぞれの貯蔵タンク(7,8)に圧送し蓄圧する水電解設
備において、前記水素/水分離器内の水素ガスを含む水
を減圧して内部に含有するガスを減圧除去する水素減圧
除去装置(12)と、減圧除去した水を加圧して前記水
容器に圧送する加圧圧送ポンプ(14)と、前記酸素/
水分離器内の酸素ガスを含む水を前記水ポンプで加圧し
た圧力水中に循環させる水循環ポンプ(16)と、を備
えたことを特徴とする水電解設備が提供される。
According to the present invention, the water in the water container (1) is pressurized by the water supply pump (2) and supplied to the water electrolysis stack (3), and the water electrolysis stack (3) Part of water is decomposed into hydrogen gas and oxygen gas, and hydrogen gas or water containing oxygen gas is separated into hydrogen / water separator (4) and oxygen / water separator (5).
In a water electrolysis facility in which each gas and water are separated by, and each gas is sent under pressure to each storage tank (7, 8), the water containing hydrogen gas in the hydrogen / water separator is depressurized. A hydrogen decompression device (12) for decompressing the gas contained therein, a pressurization pressure pump (14) for pressurizing and depressurizing the water removed under pressure, and the oxygen /
There is provided a water electrolysis facility comprising: a water circulation pump (16) for circulating water containing oxygen gas in a water separator into pressurized water pressurized by the water pump.

【0010】上記本発明の構成によれば、水素減圧除去
装置(12)により水素/水分離器(4)内の水素ガス
を含む水を減圧して内部に含有するガスを減圧除去する
ので、高圧水中に溶存する水素も減圧により気泡化して
除去できる。また、その減圧除去した水を加圧圧送ポン
プ(14)により加圧して水容器(1)に圧送するの
で、水容器(1)に戻る水の水素含有量を大幅に低減す
ることができる。
According to the above-mentioned constitution of the present invention, the hydrogen depressurization removal device (12) depressurizes the water containing hydrogen gas in the hydrogen / water separator (4) to remove the gas contained therein under reduced pressure. Hydrogen dissolved in high-pressure water can also be bubbled and removed by decompression. Further, since the water removed under reduced pressure is pressurized by the pressurizing and pressure-feeding pump (14) and pressure-fed to the water container (1), the hydrogen content of the water returned to the water container (1) can be significantly reduced.

【0011】更に、水循環ポンプ(16)により酸素/
水分離器(5)内の酸素ガスを含む水を、水容器(1)
には戻さず、その下流に位置する水ポンプ(2)で加圧
した圧力水中に循環させるので、酸素ガスを含む水は、
水電解スタック(3)と酸素/水分離器(5)の間を循
環し、水容器(1)の水とは水電解スタック(3)の上
流側の配管ライン内でしか合流しない。従って、電気分
解した水素と酸素が同一箇所で互いに接触して反応する
おそれがほとんどなく、また仮に水中で反応しても、水
中で水に戻る穏やかな反応にすぎず、安全性を大幅に高
めることができる。
Further, the water circulation pump (16) supplies oxygen /
Water containing oxygen gas in the water separator (5) is stored in the water container (1).
Since it is circulated in the pressure water pressurized by the water pump (2) located downstream of the water, the water containing oxygen gas is
It circulates between the water electrolysis stack (3) and the oxygen / water separator (5) and joins the water in the water container (1) only in the upstream pipeline of the water electrolysis stack (3). Therefore, there is little risk that electrolyzed hydrogen and oxygen will react by contacting each other at the same place, and even if they react in water, they are only mild reactions that return to water in water, greatly improving safety. be able to.

【0012】本発明の好ましい実施形態によれば、前記
水素減圧除去装置(12)は、上部が大気開放された大
気開放タンク(12a)と、前記水素/水分離器(4)
内の水素ガスを含む水を大気開放タンク内に供給する水
排出弁(11)と、大気開放タンク内で分離したガスを
外部に排出するガス排気ライン(13)とからなる。こ
の構成により、水排出弁(11)により大気開放タンク
(12a)内に水素ガスを含む水を供給し、大気開放タ
ンクで大気開放して、高圧水中に溶存する水素を減圧に
より気泡化し、ガス排気ライン(13)により分離した
ガスを外部に排出することができる。
According to a preferred embodiment of the present invention, the hydrogen decompression device (12) comprises an atmosphere open tank (12a) whose upper part is open to the atmosphere, and the hydrogen / water separator (4).
It comprises a water discharge valve (11) for supplying water containing hydrogen gas into the atmosphere open tank, and a gas exhaust line (13) for discharging the gas separated in the atmosphere open tank to the outside. With this configuration, water containing hydrogen gas is supplied into the atmosphere open tank (12a) by the water discharge valve (11), and the atmosphere is opened in the atmosphere open tank, and hydrogen dissolved in high pressure water is bubbled by decompression. The gas separated by the exhaust line (13) can be discharged to the outside.

【0013】また、前記水素/水分離器(4)は、内部
の水位を検出する液面センサ(4a)を有し、該液面セ
ンサの検出水位に応じて、前記水排出弁(11)を制御
して、水素/水分離器内の水位を調節し、前記水素減圧
除去装置(12)は、大気開放タンク(12a)内の水
位を検出する液面センサ(12b)を有し、該液面セン
サの検出水位に応じて、前記加圧圧送ポンプ(14)を
制御して、大気開放タンク内の水位を調節する、ことが
好ましい。この構成により、水排出弁(11)と加圧圧
送ポンプ(14)の起動・停止の頻度を低減して故障率
を下げ、かつ各構成機器の必要容量を小さくできる。
The hydrogen / water separator (4) has a liquid level sensor (4a) for detecting the internal water level, and the water discharge valve (11) is responsive to the detected water level of the liquid level sensor. To control the water level in the hydrogen / water separator, and the hydrogen decompression removal device (12) has a liquid level sensor (12b) for detecting the water level in the atmosphere open tank (12a), It is preferable to control the pressurizing and pressure-feeding pump (14) according to the water level detected by the liquid level sensor to adjust the water level in the atmosphere open tank. With this configuration, it is possible to reduce the frequency of starting and stopping the water discharge valve (11) and the pressurizing and pressure feeding pump (14) to reduce the failure rate, and to reduce the required capacity of each component device.

【0014】また、前記酸素/水分離器(5)は、内部
の水位を検出する液面センサ(5a)を有し、該液面セ
ンサの検出水位に応じて、前記水供給ポンプ(2)を制
御し、酸素/水分離器内の水位を調節する、ことが好ま
しい。この構成により、水供給ポンプ(2)の起動・停
止の頻度を低減して故障率を下げ、かつ各構成機器の必
要容量を小さくできる。
The oxygen / water separator (5) has a liquid level sensor (5a) for detecting the internal water level, and the water supply pump (2) is responsive to the detected water level of the liquid level sensor. Is preferably controlled to regulate the water level in the oxygen / water separator. With this configuration, it is possible to reduce the frequency of starting and stopping the water supply pump (2), reduce the failure rate, and reduce the required capacity of each component device.

【0015】[0015]

【発明の実施の形態】以下、本発明の好ましい実施形態
を図面を参照して説明する。なお、各図において共通す
る部分には同一の符号を付し、重複した説明を省略す
る。図1は、本発明の水電解設備の全体構成図である。
この図に示すように、本発明の水電解設備10は、水容
器1内の水を水供給ポンプ2で加圧して水電解スタック
3へ供給し、水電解スタック3で水の一部を水素ガスと
酸素ガスに分解し、水素ガス又は酸素ガスを含む水を水
素/水分離器4と酸素/水分離器5でそれぞれのガスと
水に分離し、それぞれのガスをそれぞれの貯蔵タンク
7,8に圧送し蓄圧するようになっている。この実施形
態において、水電解スタック3は、加圧式であり、高圧
(例えば10気圧前後)で作動し、貯蔵タンク7,8に
最大10気圧前後のガスを貯蔵するようになっている。
なお、本発明は、かかる圧力に限定されず、少なくとも
常圧以上で運転できればよい。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the present invention will be described below with reference to the drawings. In addition, in each figure, the common part is denoted by the same reference numeral, and the duplicated description will be omitted. FIG. 1 is an overall configuration diagram of the water electrolysis equipment of the present invention.
As shown in this figure, in the water electrolysis facility 10 of the present invention, the water in the water container 1 is pressurized by the water supply pump 2 and supplied to the water electrolysis stack 3, and the water electrolysis stack 3 partially hydrogenates the water. Gas and oxygen gas are decomposed, and hydrogen gas or water containing oxygen gas is separated into respective gas and water by hydrogen / water separator 4 and oxygen / water separator 5, and each gas is stored in each storage tank 7, It is designed to be pressure-fed to 8 for pressure accumulation. In this embodiment, the water electrolysis stack 3 is of a pressurized type, operates at a high pressure (for example, around 10 atm), and stores gas at a maximum of around 10 atm in the storage tanks 7 and 8.
Note that the present invention is not limited to such pressure, and it is sufficient that the present invention can be operated at least at atmospheric pressure or higher.

【0016】図2は、本発明の水電解設備を構成する水
電解スタック3の模式図である。この図に示すように、
水電解スタック3は、水素透過膜3aの両側に1対の電
極(アノードAとカソードC)を付けた、燃料電池と同
様の構成の水電解セルを複数積層した積層セルである。
このアノードAとカソードCの間に外部電源から電圧を
印加し、水をO2極(カソードC)に供給することによ
り、カソードCで水がO2とH+およびe-に電気分解さ
れ、O2はO2極でそのまま気泡となって未反応の水と共
に流出する。一方、H+はセル内の電位差により膜内を
移動してH2極(アノードA)に達し、ここでH2の気
泡となり、膜を通過した少量の水と共に流出する。従っ
て、全体として内部を流れる水の一部が水素と酸素に電
気分解される。
FIG. 2 is a schematic view of the water electrolysis stack 3 which constitutes the water electrolysis equipment of the present invention. As shown in this figure,
The water electrolysis stack 3 is a laminated cell in which a plurality of water electrolysis cells having the same configuration as the fuel cell, in which a pair of electrodes (anode A and cathode C) are attached to both sides of the hydrogen permeable membrane 3a, are laminated.
By applying a voltage from an external power source between the anode A and the cathode C and supplying water to the O 2 electrode (cathode C), the water is electrolyzed into O 2 and H + and e at the cathode C, O 2 becomes bubbles as it is at the O 2 electrode and flows out together with unreacted water. On the other hand, H + moves in the membrane due to the potential difference in the cell and reaches the H2 pole (anode A), where it becomes H 2 bubbles and flows out together with a small amount of water that has passed through the membrane. Therefore, a part of the water flowing inside is electrolyzed into hydrogen and oxygen.

【0017】図1において、本発明の水電解設備10
は、更に、水素減圧除去装置12、加圧圧送ポンプ14
及び水循環ポンプ16を備える。
In FIG. 1, the water electrolysis equipment 10 of the present invention is shown.
Further, the hydrogen decompression removal device 12 and the pressurization pressure pump 14
And a water circulation pump 16.

【0018】水素減圧除去装置12は、上部が大気開放
された大気開放タンク12aと、水素/水分離器4内の
水素ガスを含む水を大気開放タンク内に供給する水排出
弁11と、大気開放タンク12a内で分離したガスを外
部に排出するガス排気ライン13とからなる。水素/水
分離器4は、内部の水位を検出する液面センサ4aを有
し、この液面センサの検出水位に応じて、ドライバ11
aにより水排出弁11を制御して、水素/水分離器内の
水位を調節するようになっている。水排出弁11は、こ
の例ではパイロット式の開閉弁であるが、水素/水分離
器4内の圧力を保持する機能を備えているのがよい。ま
た、ガス排気ライン13には、フィルタ13aが設けら
れ、加圧圧送ポンプ14が作動したとき、大気開放タン
ク12aの水位が下がり、ガス排気ライン13より大気
を吸い込むが、このフィルタで異物を除去し、大気開放
タンク内部の清浄度を保つようになっている。
The decompression device 12 for decompressing hydrogen has an atmosphere open tank 12a whose upper part is open to the atmosphere, a water discharge valve 11 for supplying water containing hydrogen gas in the hydrogen / water separator 4 to the atmosphere open tank, and an atmosphere. It comprises a gas exhaust line 13 for discharging the gas separated in the open tank 12a to the outside. The hydrogen / water separator 4 has a liquid level sensor 4a for detecting the internal water level, and the driver 11 is responsive to the detected water level of the liquid level sensor.
The water discharge valve 11 is controlled by a to adjust the water level in the hydrogen / water separator. Although the water discharge valve 11 is a pilot type on-off valve in this example, it is preferable that the water discharge valve 11 has a function of holding the pressure in the hydrogen / water separator 4. Further, the gas exhaust line 13 is provided with a filter 13a, and when the pressurizing and pressure-feeding pump 14 is operated, the water level in the atmosphere release tank 12a is lowered and the atmosphere is sucked in from the gas exhaust line 13, but this filter removes foreign matters. However, the inside of the atmosphere open tank is kept clean.

【0019】加圧圧送ポンプ14は、大気開放タンク1
2a内で水素ガスを減圧除去した水を加圧して水容器1
に水リターンライン18を介して圧送する。また、水素
減圧除去装置12は、更に、大気開放タンク12a内の
水位を検出する液面センサ12bを有し、液面センサ1
2の検出水位に応じて、ドライバ14aを介して加圧圧
送ポンプ14を起動・停止(ON/OFF制御)して、
大気開放タンク12内の水位を調節するようになってい
る。
The pressurizing and pressure-feeding pump 14 is a tank open to the atmosphere 1.
Water container 1 which is pressurized by removing hydrogen gas under reduced pressure in 2a
Is pumped through a water return line 18. Further, the hydrogen decompression removal device 12 further includes a liquid level sensor 12b for detecting the water level in the atmosphere open tank 12a, and the liquid level sensor 1
In accordance with the detected water level of 2, the pressurizing and pressure-feeding pump 14 is started / stopped (ON / OFF control) via the driver 14a,
The water level in the atmosphere open tank 12 is adjusted.

【0020】水循環ポンプ16は、酸素/水分離器5内
の酸素ガスを含む水を水循環ライン19を介して水ポン
プ2で加圧した圧力水中に循環させるようになってい
る。この水循環ポンプ16は、水電解スタック3を冷却
するために連続運転される。また、その合流点に逆流を
防止する逆止弁17a,17bが設けられ、水ポンプ2
への逆流と水循環ポンプ16への逆流を防止している。
The water circulation pump 16 circulates the water containing oxygen gas in the oxygen / water separator 5 through the water circulation line 19 into the pressurized water pressurized by the water pump 2. The water circulation pump 16 is continuously operated to cool the water electrolysis stack 3. Further, check valves 17a and 17b for preventing backflow are provided at the confluence of the water pump 2
Backflow to the water circulation pump 16 is prevented.

【0021】図1において、酸素/水分離器5は、更
に、内部の水位を検出する液面センサ5aを有し、この
液面センサの検出水位に応じて、ドライバ2aを介して
水供給ポンプ2を起動・停止(ON/OFF制御)し
て、酸素/水分離器5内の水位を調節するようになって
いる。
In FIG. 1, the oxygen / water separator 5 further has a liquid level sensor 5a for detecting the internal water level, and a water supply pump via a driver 2a according to the detected water level of the liquid level sensor. 2 is started and stopped (ON / OFF control) to adjust the water level in the oxygen / water separator 5.

【0022】以下、本発明の水電解設備10の作用を説
明する。図1において、水容器1内の水は、水供給ポン
プ2により規定の圧力以下で水電解スタック3へ供給さ
れる。水電解スタック3は、外部からの直流電源による
電気エネルギーが供給されると、水をH2とO2に分解す
る。このとき、電気エネルギーの損失分、水分解反応に
より発熱する。従って、水電解スタック3には、水分解
に要する水以外に冷却のために充分な水の供給が必要と
なる。水分解したH2,O2は水電解スタック3のH2
2極ポートより取出すが、各々のガスには未消費の水
が多量に混入するため、水素/水分離器4及び酸素/水
分離器5でガスと水に分離して、ガスは各々逆止弁6
a,6bを通り水素貯蔵タンク7、酸素貯蔵タンク8に
蓄圧される。水素/水分離器4にて分離した水は液面セ
ンサー4aの上水位信号によりバルブ11が開き大気開
放タンク12aに圧送され大気圧下で混入しているH2
を大気に放出したのち水容器1に加圧圧送ポンプ14に
て戻す。
The operation of the water electrolysis equipment 10 of the present invention will be described below. In FIG. 1, the water in the water container 1 is supplied to the water electrolysis stack 3 by the water supply pump 2 at a prescribed pressure or less. The water electrolysis stack 3 decomposes water into H 2 and O 2 when supplied with electric energy from a DC power source from the outside. At this time, the loss of electric energy causes heat generation due to the water splitting reaction. Therefore, in addition to the water required for water decomposition, the water electrolysis stack 3 needs to be supplied with sufficient water for cooling. Water decomposed H 2, O 2 is of H 2 water electrolysis stack 3,
Although it is taken out from the O 2 pole port, a large amount of unconsumed water is mixed in each gas, so it is separated into gas and water by the hydrogen / water separator 4 and the oxygen / water separator 5, and the gases are reversed. Stop valve 6
Pressure is accumulated in the hydrogen storage tank 7 and the oxygen storage tank 8 through a and 6b. The water separated by the hydrogen / water separator 4 is pressure-fed to the atmosphere open tank 12a by the valve 11 by the upper water level signal of the liquid level sensor 4a, and is mixed under atmospheric pressure.
Is released to the atmosphere and then returned to the water container 1 by the pressurizing and pressure-feeding pump 14.

【0023】酸素/水分離器5にて分離した水は液面セ
ンサ5aの水位信号により、水供給ポンプ2を停止させ
る。水循環ポンプ16は常時作動しており、水は水電解
スタック3と酸素/水分離器5を循環する。水分解によ
り水が消費し、酸素/水分離器5の液面が下がると液面
センサ5aの下水位信号により水供給ポンプ2が作動
し、水容器1より新たな水が水電解スタック3に補給さ
れる。そして未消費の水により分離器5の液面が上昇し
液面センサ14の逆水位信号が出力し水供給ポンプ2が
停止する。
The water separated by the oxygen / water separator 5 stops the water supply pump 2 by the water level signal of the liquid level sensor 5a. The water circulation pump 16 is constantly operating and water circulates through the water electrolysis stack 3 and the oxygen / water separator 5. When water is consumed by water decomposition and the liquid level of the oxygen / water separator 5 drops, the water supply pump 2 is activated by the lower water level signal of the liquid level sensor 5a, and new water from the water container 1 is transferred to the water electrolysis stack 3. Will be replenished. Then, the liquid level of the separator 5 rises due to unconsumed water, the reverse water level signal of the liquid level sensor 14 is output, and the water supply pump 2 is stopped.

【0024】上述した本発明の構成によれば、水素減圧
除去装置12により水素/水分離器4内の水素ガスを含
む水を減圧して内部に含有するガスを減圧除去するの
で、高圧水中に溶存する水素も減圧により気泡化して除
去できる。また、その減圧除去した水を加圧圧送ポンプ
14により加圧して水容器1に圧送するので、水容器1
に戻る水の水素含有量を大幅に低減することができる。
According to the above-described structure of the present invention, the depressurized hydrogen removing device 12 depressurizes the water containing hydrogen gas in the hydrogen / water separator 4 to depressurize the gas contained therein. Dissolved hydrogen can also be bubbled and removed by decompression. Further, since the water removed under reduced pressure is pressurized by the pressure pump 14 and pressure-fed to the water container 1, the water container 1
The hydrogen content of water returned to can be significantly reduced.

【0025】更に、水循環ポンプ16により酸素/水分
離器5内の酸素ガスを含む水を、水容器1には戻さず、
その下流に位置する水ポンプ2で加圧した圧力水中に循
環させるので、酸素ガスを含む水は、水電解スタック3
と酸素/水分離器5の間を循環し、水容器1の水とは水
電解スタック3の上流側の配管ライン内でしか合流しな
い。従って、電気分解した水素と酸素が同一箇所で互い
に接触して反応するおそれがほとんどなく、また仮に水
中で反応しても、水中で水に戻る穏やかな反応にすぎ
ず、安全性を大幅に高めることができる。
Further, the water containing oxygen gas in the oxygen / water separator 5 is not returned to the water container 1 by the water circulation pump 16,
Since the water containing oxygen gas is circulated in the pressurized water pressurized by the water pump 2 located downstream of the water pump 2,
And the oxygen / water separator 5 are circulated, and the water in the water container 1 joins only in the piping line on the upstream side of the water electrolysis stack 3. Therefore, there is little risk that electrolyzed hydrogen and oxygen will react by contacting each other at the same place, and even if they react in water, they are only mild reactions that return to water in water, greatly improving safety. be able to.

【0026】また、液面センサ4a,5a,12bの検
出水位に応じて、水供給ポンプ2,水排出弁11,加圧
圧送ポンプ14を制御し、水位を調節するので、水供給
ポンプ2,水排出弁11,加圧圧送ポンプ14の起動・
停止の頻度を低減して故障率を下げ、かつ各構成機器の
必要容量を小さくできる。
Further, the water supply pump 2, the water discharge valve 11 and the pressurization pressure pump 14 are controlled in accordance with the water levels detected by the liquid level sensors 4a, 5a, 12b to adjust the water level. Start-up of the water discharge valve 11 and the pressurizing pressure pump 14.
It is possible to reduce the frequency of stoppages, reduce the failure rate, and reduce the required capacity of each component.

【0027】なお、本発明は上述した実施例及び実施形
態に限定されず、本発明の要旨を逸脱しない範囲で種々
変更できることは勿論である。上述した例では、燃料電
池に空気を供給する場合を示したが、酸素を供給する場
合にも同様に適用することができる。
The present invention is not limited to the examples and embodiments described above, and it goes without saying that various modifications can be made without departing from the gist of the present invention. In the example described above, the case where air is supplied to the fuel cell has been shown, but the same can be applied to the case where oxygen is supplied.

【0028】[0028]

【発明の効果】上述したように、本発明は、(1)酸素
/水分離器の水を、水電解スタックの水供給ポートに戻
し、酸素/水分離器の液面センサの上水位信号により水
供給ポンプを停止し、下水位信号にて作動させ、循環ポ
ンプは常に運転するようにし、かつ(2)水素/水分離
器の水を、水素/水分離器の液面センサの上水位信号に
より大気開放された容器に圧送し、水に混入したH2と
完全に放出したのち、水容器に戻すようにしたものであ
る。
As described above, according to the present invention, (1) the water of the oxygen / water separator is returned to the water supply port of the water electrolysis stack, and the upper level signal of the liquid level sensor of the oxygen / water separator is used. Stop the water supply pump, operate it with the sewage level signal, keep the circulation pump running all the time, and (2) send the water of the hydrogen / water separator to the upper level signal of the liquid level sensor of the hydrogen / water separator. In this way, it is sent under pressure to a container opened to the atmosphere, and after H2 mixed in water is completely released, it is returned to the water container.

【0029】この構成により、本発明は以下の効果を有
する。 (1)引火性の強い水素は、水の中にppmオーダの濃
度で含まれるが、大気圧下容器内で大気に放出している
ため蓄積することはなく安全性が確保できる。 (2)酸素/水分離器の水を常時循環させるため分離器
の液面は、水分解で消費される分低下する。このため液
面センサ、水供給ポンプのON−OFF頻度は減少し耐
久性が向上する。 (3)水供給は、水分解消費分のみとなり、水供給ライ
ンの容量の小型化が可能となる。
With this configuration, the present invention has the following effects. (1) Hydrogen, which is highly flammable, is contained in water at a concentration on the order of ppm, but since it is released to the atmosphere in a container under atmospheric pressure, it does not accumulate and safety can be secured. (2) Since the water in the oxygen / water separator is constantly circulated, the liquid level in the separator is reduced by the amount consumed by water decomposition. Therefore, the ON-OFF frequency of the liquid level sensor and the water supply pump is reduced, and the durability is improved. (3) Water is supplied only by water decomposition consumption, and the capacity of the water supply line can be reduced.

【0030】従って、本発明の水電解設備は、水を水素
と酸素に電気分解し貯蔵することができ、電気分解した
水素と酸素が同一箇所で互いに接触して反応するおそれ
がほとんどなく、各構成機器の起動・停止の頻度が低く
故障率を低減でき、かつ各構成機器の必要容量を小さく
できる、等の優れた効果を有する。
Therefore, in the water electrolysis equipment of the present invention, water can be electrolyzed into hydrogen and oxygen and stored, and there is almost no possibility that electrolyzed hydrogen and oxygen will come into contact with each other at the same location and react with each other. It has excellent effects such that the frequency of starting and stopping the constituent devices is low, the failure rate can be reduced, and the required capacity of each constituent device can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の水電解設備の全体構成図である。FIG. 1 is an overall configuration diagram of a water electrolysis facility of the present invention.

【図2】本発明を構成する水電解スタックの模式図であ
る。
FIG. 2 is a schematic diagram of a water electrolysis stack that constitutes the present invention.

【図3】固体高分子型燃料電池の原理図である。FIG. 3 is a principle diagram of a polymer electrolyte fuel cell.

【図4】従来の水電解設備の構成図である。FIG. 4 is a configuration diagram of a conventional water electrolysis facility.

【符号の説明】[Explanation of symbols]

1 水容器、2 水供給ポンプ、2a ドライバ、3
水電解スタック、4 水素/水分離器、4a 液面セン
サ、5 酸素/水分離器、5a 液面センサ、6a,6
b 逆止弁、7 水素貯蔵タンク、8 酸素貯蔵タン
ク、9a,9b リターンポンプ、10 水電解設備、
11 水排出弁、11a ドライバ、12 水素減圧除
去装置、12a 大気開放タンク、12b 液面セン
サ、13 ガス排気ライン、14 加圧圧送ポンプ、1
4a ドライバ、16 水循環ポンプ、17a,17b
逆止弁、18 水リターンライン、19 水循環ライ
1 water container, 2 water supply pump, 2a driver, 3
Water electrolysis stack, 4 Hydrogen / water separator, 4a Liquid level sensor, 5 Oxygen / water separator, 5a Liquid level sensor, 6a, 6
b check valve, 7 hydrogen storage tank, 8 oxygen storage tank, 9a, 9b return pump, 10 water electrolysis equipment,
11 water discharge valve, 11a driver, 12 hydrogen decompression removal device, 12a atmosphere open tank, 12b liquid level sensor, 13 gas exhaust line, 14 pressurizing pressure pump, 1
4a driver, 16 water circulation pump, 17a, 17b
Check valve, 18 water return line, 19 water circulation line

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡屋 俊一 東京都千代田区大手町二丁目2番1号 株 式会社アイ・エイチ・アイ・エアロスペー ス内 (72)発明者 篠崎 昇 東京都千代田区大手町二丁目2番1号 株 式会社アイ・エイチ・アイ・エアロスペー ス内 (72)発明者 谷内 雄作 東京都千代田区大手町二丁目2番1号 株 式会社アイ・エイチ・アイ・エアロスペー ス内 Fターム(参考) 4D011 AA16 AC03 4D037 AA01 AB18 BA23 BB01 CA04 4K021 AA01 BA02 BB04 CA10 CA11 DB02 DC01 DC03    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shunichi Okaya             2-2-1 Otemachi, Chiyoda-ku, Tokyo Stock             Ceremony Company IHI Aerospace             Within (72) Inventor Noboru Shinozaki             2-2-1 Otemachi, Chiyoda-ku, Tokyo Stock             Ceremony Company IHI Aerospace             Within (72) Inventor Yusaku Taniuchi             2-2-1 Otemachi, Chiyoda-ku, Tokyo Stock             Ceremony Company IHI Aerospace             Within F-term (reference) 4D011 AA16 AC03                 4D037 AA01 AB18 BA23 BB01 CA04                 4K021 AA01 BA02 BB04 CA10 CA11                       DB02 DC01 DC03

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 水容器(1)内の水を水供給ポンプ
(2)で加圧して水電解スタック(3)へ供給し、該水
電解スタックで水の一部を水素ガスと酸素ガスに分解
し、水素ガス又は酸素ガスを含む水を水素/水分離器
(4)と酸素/水分離器(5)でそれぞれのガスと水に
分離し、それぞれのガスをそれぞれの貯蔵タンク(7,
8)に圧送し蓄圧する水電解設備において、前記水素/
水分離器内の水素ガスを含む水を減圧して内部に含有す
るガスを減圧除去する水素減圧除去装置(12)と、減
圧除去した水を加圧して前記水容器に圧送する加圧圧送
ポンプ(14)と、前記酸素/水分離器内の酸素ガスを
含む水を前記水ポンプで加圧した圧力水中に循環させる
水循環ポンプ(16)と、を備えたことを特徴とする水
電解設備。
1. Water in a water container (1) is pressurized by a water supply pump (2) and supplied to a water electrolysis stack (3), and a part of the water is converted into hydrogen gas and oxygen gas by the water electrolysis stack. Water which is decomposed and contains hydrogen gas or oxygen gas is separated into each gas and water by the hydrogen / water separator (4) and the oxygen / water separator (5), and each gas is stored in each storage tank (7,
8) In a water electrolysis facility for sending pressure to and accumulating pressure,
A hydrogen decompression removal device (12) for decompressing water containing hydrogen gas in a water separator to remove gas contained therein under reduced pressure, and a pressurizing and pressure pump for pressurizing the water removed under decompression and sending it under pressure to the water container. (14), and a water circulation pump (16) for circulating water containing oxygen gas in the oxygen / water separator into pressurized water pressurized by the water pump (16).
【請求項2】 前記水素減圧除去装置(12)は、上部
が大気開放された大気開放タンク(12a)と、前記水
素/水分離器(4)内の水素ガスを含む水を大気開放タ
ンク内に供給する水排出弁(11)と、大気開放タンク
内で分離したガスを外部に排出するガス排気ライン(1
3)とからなる、ことを特徴とする請求項1に記載の水
電解設備。
2. The hydrogen decompression removal device (12) comprises an atmosphere open tank (12a) whose upper part is open to the atmosphere, and water containing hydrogen gas in the hydrogen / water separator (4) inside the atmosphere open tank. Water discharge valve (11) for supplying to the gas and a gas exhaust line (1) for discharging the gas separated in the atmosphere open tank to the outside.
3) The water electrolysis facility according to claim 1, characterized in that
【請求項3】 前記水素/水分離器(4)は、内部の水
位を検出する液面センサ(4a)を有し、該液面センサ
の検出水位に応じて、前記水排出弁(11)を制御し
て、水素/水分離器内の水位を調節し、前記水素減圧除
去装置(12)は、大気開放タンク(12a)内の水位
を検出する液面センサ(12b)を有し、該液面センサ
の検出水位に応じて、前記加圧圧送ポンプ(14)を制
御して、大気開放タンク内の水位を調節する、ことを特
徴とする請求項2に記載の水電解設備。
3. The hydrogen / water separator (4) has a liquid level sensor (4a) for detecting an internal water level, and the water discharge valve (11) is responsive to the detected water level of the liquid level sensor. To control the water level in the hydrogen / water separator, and the hydrogen decompression removal device (12) has a liquid level sensor (12b) for detecting the water level in the atmosphere open tank (12a), The water electrolysis facility according to claim 2, wherein the pressurized pressure pump (14) is controlled according to the water level detected by the liquid level sensor to adjust the water level in the atmosphere open tank.
【請求項4】 前記酸素/水分離器(5)は、内部の水
位を検出する液面センサ(5a)を有し、該液面センサ
の検出水位に応じて、前記水供給ポンプ(2)を制御
し、酸素/水分離器内の水位を調節する、ことを特徴と
する請求項1に記載の水電解設備。
4. The oxygen / water separator (5) has a liquid level sensor (5a) for detecting an internal water level, and the water supply pump (2) is responsive to the detected water level of the liquid level sensor. And controlling the water level in the oxygen / water separator.
JP2001271175A 2001-09-07 2001-09-07 Water electrolysis facilities Pending JP2003073872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001271175A JP2003073872A (en) 2001-09-07 2001-09-07 Water electrolysis facilities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001271175A JP2003073872A (en) 2001-09-07 2001-09-07 Water electrolysis facilities

Publications (1)

Publication Number Publication Date
JP2003073872A true JP2003073872A (en) 2003-03-12

Family

ID=19096715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001271175A Pending JP2003073872A (en) 2001-09-07 2001-09-07 Water electrolysis facilities

Country Status (1)

Country Link
JP (1) JP2003073872A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006137961A (en) * 2004-10-14 2006-06-01 Honda Motor Co Ltd High pressure hydrogen production device
CN102828200A (en) * 2012-08-31 2012-12-19 苏州竞立制氢设备有限公司 Condensate recovery system of hydrogen production by water electrolysis and recovery method
CN111075612A (en) * 2019-12-31 2020-04-28 华南理工大学 Compact oxyhydrogen generator
JP2021070836A (en) * 2019-10-29 2021-05-06 日立造船株式会社 Water electrolysis apparatus
US11661663B2 (en) 2020-06-22 2023-05-30 Hyundai Motor Company Water electrolysis system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08170189A (en) * 1994-12-19 1996-07-02 Shinko Pantec Co Ltd Hydrogen and oxygen generator
JPH08311676A (en) * 1995-05-19 1996-11-26 Shinko Pantec Co Ltd Method for removing dissolved hydrogen of electrolyzer and device therefor
JPH09143779A (en) * 1995-11-20 1997-06-03 Shinko Pantec Co Ltd Hydrogen and oxygen generator
JPH1055816A (en) * 1996-08-08 1998-02-24 Fuji Electric Co Ltd Hydrogen storage power generation system
JP2000104191A (en) * 1998-09-28 2000-04-11 Shinko Pantec Co Ltd Hydrogen and oxygen generating device
JP2000239873A (en) * 1999-02-17 2000-09-05 Shinko Pantec Co Ltd Electrolytic device and electrolytic cell used for the same
JP2001152378A (en) * 1999-11-22 2001-06-05 Shinko Pantec Co Ltd Water electrolyzer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08170189A (en) * 1994-12-19 1996-07-02 Shinko Pantec Co Ltd Hydrogen and oxygen generator
JPH08311676A (en) * 1995-05-19 1996-11-26 Shinko Pantec Co Ltd Method for removing dissolved hydrogen of electrolyzer and device therefor
JPH09143779A (en) * 1995-11-20 1997-06-03 Shinko Pantec Co Ltd Hydrogen and oxygen generator
JPH1055816A (en) * 1996-08-08 1998-02-24 Fuji Electric Co Ltd Hydrogen storage power generation system
JP2000104191A (en) * 1998-09-28 2000-04-11 Shinko Pantec Co Ltd Hydrogen and oxygen generating device
JP2000239873A (en) * 1999-02-17 2000-09-05 Shinko Pantec Co Ltd Electrolytic device and electrolytic cell used for the same
JP2001152378A (en) * 1999-11-22 2001-06-05 Shinko Pantec Co Ltd Water electrolyzer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006137961A (en) * 2004-10-14 2006-06-01 Honda Motor Co Ltd High pressure hydrogen production device
JP4531522B2 (en) * 2004-10-14 2010-08-25 本田技研工業株式会社 High pressure hydrogen production equipment
CN102828200A (en) * 2012-08-31 2012-12-19 苏州竞立制氢设备有限公司 Condensate recovery system of hydrogen production by water electrolysis and recovery method
JP2021070836A (en) * 2019-10-29 2021-05-06 日立造船株式会社 Water electrolysis apparatus
JP7257933B2 (en) 2019-10-29 2023-04-14 日立造船株式会社 water electrolyzer
CN111075612A (en) * 2019-12-31 2020-04-28 华南理工大学 Compact oxyhydrogen generator
US11661663B2 (en) 2020-06-22 2023-05-30 Hyundai Motor Company Water electrolysis system

Similar Documents

Publication Publication Date Title
JP5192001B2 (en) Operation method of water electrolysis system
US6712951B2 (en) Integrated ozone generator process
US9534303B2 (en) High pressure electrolysis cell for hydrogen production from water
US8961748B2 (en) Water electrolysis system
US6984304B2 (en) Generation and delivery device for ozone gas and ozone dissolved in water
US7226529B2 (en) Electrolyzer system to produce gas at high pressure
US6835479B2 (en) System and method for shutting down a fuel cell power plant
RU2668287C1 (en) Method and device for fuel cell operation with artificial air
JP6450636B2 (en) Electrolysis method
US20050183948A1 (en) Apparatus and method for reducing instances of pump de-priming
US20100206740A1 (en) Water electrolysis system and method of shutting down water electrolysis system
WO2001038608A1 (en) Water electrolyzing device
JP2006131957A (en) Gaseous hydrogen-oxygen generator and method for operating the same
JP2022083098A (en) Control method of hydrogen/oxygen production system and hydrogen/oxygen production system
JP4425113B2 (en) Hydrogen supply system and hydrogen supply method
JP2003073872A (en) Water electrolysis facilities
US20170342579A1 (en) Pressure releasing method of high-pressure water electrolysis system and pressure releasing method in water electrolysis system
JP3228885B2 (en) Hydrogen and oxygen gas added water production equipment
JP5798166B2 (en) Differential pressure type high pressure water electrolysis system and its starting method
JP6370834B2 (en) Start-up method of high pressure water electrolysis system
CN113151853B (en) SO (SO) device 2 Depolarized electrolytic cell and method of operating same
JP2006124772A (en) Gaseous hydrogen generator and operation method therefor
JP2019073751A (en) Hydrogen production apparatus
JP2013053321A (en) Water electrolysis system
JPH0627654Y2 (en) Water electrolysis device for ozone gas generation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100714

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100812