JPH1055789A - Sealant for organic electrolyte battery, composition containing the same, and battery using the same - Google Patents

Sealant for organic electrolyte battery, composition containing the same, and battery using the same

Info

Publication number
JPH1055789A
JPH1055789A JP8210079A JP21007996A JPH1055789A JP H1055789 A JPH1055789 A JP H1055789A JP 8210079 A JP8210079 A JP 8210079A JP 21007996 A JP21007996 A JP 21007996A JP H1055789 A JPH1055789 A JP H1055789A
Authority
JP
Japan
Prior art keywords
sealant
battery
organic electrolyte
metal container
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8210079A
Other languages
Japanese (ja)
Other versions
JP3574276B2 (en
Inventor
Koichiro Maeda
耕一郎 前田
Akihisa Yamamoto
陽久 山本
Hiroyuki Hasebe
裕之 長谷部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Zeon Corp
Original Assignee
Toshiba Corp
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Zeon Co Ltd filed Critical Toshiba Corp
Priority to JP21007996A priority Critical patent/JP3574276B2/en
Publication of JPH1055789A publication Critical patent/JPH1055789A/en
Application granted granted Critical
Publication of JP3574276B2 publication Critical patent/JP3574276B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a battery with its superior sealing property at high temperature and superior operability by employing a sealant for organic electrolyte mainly containing dien rubber of which average molecule weight is a value with a specific range. SOLUTION: A specified amount of sealant composition is fed and applied onto a metal container surface and/or insulation material gasket surface by a metering pump such as fixed quantity dispenser air-driven, roller pump, and gear pump. Then, these applied materials are naturally dried so that the sealing compound is maintained to be horizontal without being one-sided, an organic solvent is removed, and dien rubber film is formed. It is possible to apply a small amount of this composition by employing a brush without limitation to a method using the metering pump. the thickness of the sealant layer can be arbitrarily selected according to size of the metal container and insulation gasket, and the size is usually 0.1 to 1,000 micrometers. Thus, a sealant for organic electrolyte battery with its superior sealing property at high temperature can be obtained in particular.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、有機電解液電池に用い
られる高温時の密閉性に特に優れたシール剤に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealant which is used in an organic electrolyte battery and has a particularly excellent sealing property at a high temperature.

【0002】[0002]

【従来の技術】これまで二次電池として広く用いられて
いた酸・鉛電池やニッケル・カドミウム電池は、電化製
品が小型化されている現在、その大きさや重量に限界が
来ている。近年、二次電池として、小型で軽量な上、高
出力、高エネルギー密度化が可能な有機電解液電池を用
いることが提案され、現在はリチウム二次電池またはリ
チウムイオン二次電池がその主流となっている。この有
機電解液電池は、その発電要素が金属容器に収納され密
閉されたものである。発電要素とは、支持電解質と有機
系電解液溶媒とからなる電解液、正極用および負極用の
活物質、セパレーターなどである。電解液を構成する支
持電解質は、例えば、LiPF6 、LiBF4 、LiC
lO4 などのリチウム系化合物などのような水と反応し
て加水分解しやすい化合物が用いられている。また有機
電解液溶媒としては、例えば、プロピレンカーボネー
ト、エチレンカーボネート、ジエチルカーボネート等の
可燃性有機化合物が用いられている。このような電池の
中に水が入ると、サイクル特性等の電池性能が大幅に劣
化される。このため、水の電池内部への侵入を防止し、
かつ電解液の液漏れを防止する必要があり、これらの電
池には高い密閉性が要求されている。ところで、有機電
解液電池は、その発電要素を密閉のために金属容器に収
納して成るが、正極と負極の短絡を防止するために、正
極端子と負極端子の間を絶縁する必要がある。通常、正
−負極間の絶縁及び密閉のため、発電要素を収納した金
属容器の開口部に絶縁材料からなるガスケットが使用さ
れている。絶縁材料としては、樹脂製絶縁ガスケットを
使用することが知られており(特公昭57−45028
号公報など)、その樹脂材料としてはポリエチレン(特
開昭59−205153号公報など)、フッ素樹脂(特
開昭59−205152号公報など)、弾性率が12,
000〜18,000Kg/cm2 のポリオレフィン樹
脂(特開平7−130341号公報など)などが知られ
ている。
2. Description of the Related Art The size and weight of acid / lead batteries and nickel / cadmium batteries which have been widely used as secondary batteries until now have become smaller as electric appliances have been miniaturized. In recent years, it has been proposed to use an organic electrolyte battery that is small, lightweight, capable of high output and high energy density as a secondary battery, and lithium secondary batteries or lithium ion secondary batteries are currently the mainstream. Has become. In this organic electrolyte battery, the power generating element is housed in a metal container and sealed. The power generating element is an electrolytic solution composed of a supporting electrolyte and an organic electrolytic solution solvent, active materials for a positive electrode and a negative electrode, a separator, and the like. The supporting electrolyte constituting the electrolytic solution is, for example, LiPF 6 , LiBF 4 , LiC
Water reacts with hydrolysable compounds such as lithium compounds such as lO 4 is used. As the organic electrolyte solvent, for example, flammable organic compounds such as propylene carbonate, ethylene carbonate, and diethyl carbonate are used. When water enters such a battery, battery performance such as cycle characteristics is significantly deteriorated. This prevents water from entering the battery,
In addition, it is necessary to prevent electrolyte leakage, and these batteries are required to have high hermeticity. By the way, an organic electrolyte battery has its power generating element housed in a metal container for hermetic sealing, but it is necessary to insulate between a positive electrode terminal and a negative electrode terminal in order to prevent a short circuit between the positive electrode and the negative electrode. Usually, a gasket made of an insulating material is used in an opening of a metal container containing a power generation element for insulation and sealing between the positive and negative electrodes. It is known that a resin insulating gasket is used as an insulating material (Japanese Patent Publication No. 57-45028).
JP, JP-A-59-205153, and the like. As resin materials, polyethylene (JP-A-59-205153, etc.), fluororesin (JP-A-59-205152, etc.), an elastic modulus of 12,
Polyolefin resins of 000 to 18,000 Kg / cm 2 (JP-A-7-130341 and the like) are known.

【0003】このような絶縁ガスケットによる密閉をさ
らに強化するため、絶縁ガスケットとシール剤とを併用
することも提案されている(特開昭55−030148
号公報、特開昭55−016352号公報、特開昭59
−112565公報など)。このシール剤を絶縁ガスケ
ットまたは金属容器に塗布し、絶縁ガスケットを金属容
器に装着することで、絶縁ガスケットと金属容器との間
の密閉性を高めている。このようなシール剤としては、
コールタール、アスファルト等のピッチ系材料、ピッチ
系材料にポリマーを改質剤として添加した材料(特開昭
56−032671号公報、特開昭58−010365
号公報、特開昭59−091660号公報、特開平6−
124694号公報、特開平6−005270号公報等
など)があり、このほかピッチ系材料以外に、ブチルゴ
ム(特開昭55−030148号公報など)、ポリオレ
フィン系接着剤(特開昭56−032672号公報な
ど)、ポリフッ化ビニリデン樹脂(特開平1−0404
69号公報など)などが提案されている。しかしなが
ら、これらのシール剤は高温条件下で劣化しやすく、今
後さらに広く電化製品等に搭載される電池には、より高
温での安定性が求められている。
In order to further enhance the sealing by such an insulating gasket, it has been proposed to use an insulating gasket and a sealant together (Japanese Patent Application Laid-Open No. 55-030148).
JP, JP-A-55-016352, JP-A-59-016352
-11565 publication). The sealing agent is applied to an insulating gasket or a metal container, and the insulating gasket is mounted on the metal container, thereby enhancing the sealing between the insulating gasket and the metal container. As such a sealant,
Pitch-based materials such as coal tar and asphalt, and materials obtained by adding a polymer to a pitch-based material as a modifier (JP-A-56-032671, JP-A-58-010365)
JP, JP-A-59-091660, JP-A-6-09660
No. 124694, JP-A-6-005270 and the like. In addition to pitch-based materials, butyl rubber (JP-A-55-03148) and polyolefin-based adhesives (JP-A-56-032672). Publication), polyvinylidene fluoride resin (Japanese Patent Laid-Open No. 1404/1990)
No. 69, etc.) have been proposed. However, these sealants are apt to deteriorate under high temperature conditions, and batteries that are to be mounted more widely in electric appliances and the like are required to have higher temperature stability.

【0004】[0004]

【発明が解決しようとする課題】かかる従来技術のも
と、発明者らは、高温でも安定な有機電解液電池用シー
ル剤を得るべく鋭意検討した結果、ある種のジエン系ゴ
ムが高温での密閉性に優れ、かつ操作性に優れているこ
とを見い出し、本発明を完成するに到った。
Based on such prior art, the present inventors have conducted intensive studies to obtain a sealant for an organic electrolyte battery which is stable even at high temperatures. The inventors have found that the present invention has excellent sealing properties and excellent operability, and has completed the present invention.

【0005】[0005]

【発明を解決するための手段】かくして本発明によれ
ば、重量平均分子量が10,000〜1,500,00
0のジエン系ゴムを主成分とする有機電解液電池用シー
ル剤が提供され、また、当該シール剤を炭素数5〜15
の有機溶媒に溶解させてなるシール剤組成物が提供さ
れ、さらに当該シール剤が発電要素を収納した金属容器
(以下、単に金属容器という)の開口部に装着された絶
縁ガスケットと金属容器との間、および/又は絶縁ガス
ケットと封口体との間に用いられている有機電解液電池
が提供される。
According to the present invention, the weight average molecular weight is from 10,000 to 1,500,000.
The present invention provides a sealant for an organic electrolyte battery containing a diene rubber of 0 as a main component, and the sealant has 5 to 15 carbon atoms.
And a sealing agent composition dissolved in an organic solvent of (a), wherein the sealing agent is provided between an insulating gasket and a metal container attached to an opening of a metal container (hereinafter, simply referred to as a metal container) housing a power generation element. The present invention provides an organic electrolyte battery used between the insulating gasket and the sealing body.

【0006】以下に本発明を詳述する。 (シール剤)本発明のシール剤は、重量平均分子量1
0,000〜1,500,000、好ましくは20,0
00〜800,000、より好ましくは50,000〜
700,000のジエン系ゴムを主成分とするものであ
る。重量平均分子量が1,500,000を超えると、
ジエン系ゴムを有機溶媒に溶解させ、シール剤組成物と
したとき、粘度が高くなりすぎて、絶縁ガスケットに塗
布する際のシール剤層の厚さの制御が困難となり、逆に
重量平均分子量が10,000未満になると、シール剤
としての強度が弱く、絶縁ガスケットを装着する際、シ
ール剤層に亀裂が入り、シール効果が悪くなる。シス体
含量が30%未満になると、反発弾性が低下し、絶縁ガ
スケット装着時に変形し、亀裂が入る場合があるので注
意を要する。本発明のシール剤の主成分となるジエン系
ゴムは、ジエン系モノマーの単独重合体、二種以上のジ
エン系モノマーの共重合体、またはジエン系モノマーと
非極性重合性モノマーとの共重合体の何れであっても構
わないが、ジエン系モノマーと非極性重合性モノマーと
の共重合体では、非極性重合性モノマーの割合は、通常
ジエン系モノマー全量に対して300重量%以下、好ま
しくは100重量%以下で使用する。ジエン系ゴムの原
料となるジエン系モノマーとしては、ブタジエン、イソ
プレン、ピペリレン、1,3−ペンタジエンなどが挙げ
られ、非極性重合性モノマーの具体例としてはスチレ
ン、エチレン、プロピレン、イソブチレンなどが例示さ
れる。これらのモノマーを常法、例えば溶液重合、配位
重合、乳化重合などにより反応させて、本発明でシール
剤の主成分となるジエン系ゴムを得ることができる。但
し、乳化重合で乳化剤として石鹸等を用いて得たゴムに
ついては、これらを洗浄により除去されたものである方
が好ましい。このようなジエン系ゴムとしては、ブタジ
エンゴム、イソプレンゴム、ピペリレンゴム、1,3−
ペンタジエンゴム、ブタジエン−イソプレンゴム、スチ
レン−ブタジエンゴム、イソブチレン−イソプレンゴ
ム、エチレン−プロピレン−ジエンモノマー(ブタジエ
ンなど)ゴムなどが挙げられる。またジエン系ゴムのシ
ス体含量が好ましくは30%以上、より好ましくは50
%以上、更に好ましくは80%以上のものを主成分とす
るものである。シス体含量が高い方がシール性の良いシ
ール剤が得られる傾向があるので好ましい。また、本発
明のシール剤は電解液と接触している場合が多いため、
シール剤の性質として電解液に不溶・不活性、かつ膨潤
しない耐性が必要である。さらに本発明のシール剤は、
絶縁ガスケットの性能を劣化させず、電解液と反応およ
び溶解しない老化防止剤・紫外線吸収剤・着色剤等、通
常ゴムに使用される添加剤を添加することができる。
Hereinafter, the present invention will be described in detail. (Sealant) The sealant of the present invention has a weight average molecular weight of 1
000 to 1,500,000, preferably 20,000
00 to 800,000, more preferably 50,000 to
It has 700,000 diene rubber as a main component. When the weight average molecular weight exceeds 1,500,000,
When a diene rubber is dissolved in an organic solvent to form a sealant composition, the viscosity becomes too high, and it becomes difficult to control the thickness of the sealant layer when applied to an insulating gasket. If it is less than 10,000, the strength as a sealant is weak, and when the insulating gasket is mounted, a crack is formed in the sealant layer, and the sealing effect is deteriorated. If the content of the cis body is less than 30%, it is necessary to pay attention to the fact that the rebound resilience is reduced, and the insulating gasket may be deformed and cracked when the gasket is attached. The diene rubber as a main component of the sealant of the present invention is a homopolymer of a diene monomer, a copolymer of two or more diene monomers, or a copolymer of a diene monomer and a non-polar polymerizable monomer. However, in a copolymer of a diene monomer and a non-polar polymerizable monomer, the proportion of the non-polar polymerizable monomer is usually 300% by weight or less, preferably not more than 300% by weight based on the total amount of the diene monomer. Used at 100% by weight or less. Examples of the diene monomer which is a raw material of the diene rubber include butadiene, isoprene, piperylene, and 1,3-pentadiene, and specific examples of the nonpolar polymerizable monomer include styrene, ethylene, propylene, and isobutylene. You. These monomers are reacted by a conventional method, for example, solution polymerization, coordination polymerization, emulsion polymerization, or the like, to obtain a diene rubber which is a main component of the sealant in the present invention. However, with respect to rubber obtained by using soap or the like as an emulsifier in emulsion polymerization, it is preferable that these are removed by washing. Such diene rubbers include butadiene rubber, isoprene rubber, piperylene rubber, 1,3-
Examples include pentadiene rubber, butadiene-isoprene rubber, styrene-butadiene rubber, isobutylene-isoprene rubber, and ethylene-propylene-diene monomer (such as butadiene) rubber. The cis-form content of the diene rubber is preferably 30% or more, more preferably 50% or more.
% Or more, more preferably 80% or more. A higher cis content is preferred because a sealant having good sealing properties tends to be obtained. Also, since the sealant of the present invention is often in contact with the electrolyte,
As a property of the sealant, resistance to insolubility / inactivity in the electrolyte and swelling is required. Further, the sealant of the present invention
Additives commonly used in rubber, such as an antioxidant, an ultraviolet absorber, and a coloring agent, which do not deteriorate the performance of the insulating gasket and do not react with or dissolve in the electrolytic solution, can be added.

【0007】(シール剤組成物)本発明のシール剤組成
物は、上述したジエン系ゴムを有機溶媒に溶解したもの
であり、この組成物を金属容器や絶縁ガスケットに塗布
乾燥し、絶縁ガスケットと金属容器との密閉性を高める
シールとなる。ここで用いられる有機溶媒としては、上
述のジエン系ゴムが溶解可能な通常炭素数5〜15の有
機溶媒が好ましく、更に好ましくは炭素数6〜12の炭
化水素溶媒・含窒素系有機溶媒・含酸素系有機溶媒など
であり、特にベンゼン、トルエン、キシレン等の芳香族
炭化水素系溶媒やn−ヘキサン、シクロヘキサン、メチ
ルシクロヘキサン、エチルシクロヘキサンなどの飽和炭
化水素系溶媒が好ましい例である。炭素数5以下、特に
炭素数1〜2の有機溶媒例えば四塩化炭素等は好ましく
ない。本発明のシール剤組成物中のジエン系ゴムの割合
は、有機溶媒に対して、1重量%〜50重量%、好まし
くは2重量%〜40重量%、より好ましくは5重量%〜
30重量%である。ジエン系ゴムの濃度が50重量%を
超える量では、組成物の粘度が高くなり、塗布性が低下
する傾向がある。逆に1重量%未満の濃度では、組成物
の溶媒量が多すぎ、シール成形性に劣る傾向がある。さ
らに本発明のシール剤組成物には、必要に応じて着色剤
などの添加剤を添加することも可能である。添加可能な
着色剤としては、電解液と反応せず、また電解液に溶解
しないものであるのが望ましく、各種の有機系・無機系
の顔料が挙げられる。なかでもカーボンブラック、特に
ファーネスブラック、チャンネルブラック等の粒径0.
1μm以下のカーボンブラックが好ましい。このような
着色剤を添加する場合、組成物中で十分均一に溶解また
は分散させる必要があり、造粒されているものや凝集構
造を持ったものを用いる場合は、ボールミル、サンドミ
ルや超音波などで分散させるのがよい。このような着色
剤などの添加剤の添加量は、必要に応じ任意の量でよい
が、ジエン系ゴムに対して通常0.01重量%〜20重
量%、好ましくは0.01重量%〜5重量%、より好ま
しくは0.02重量%〜3重量%である。添加剤の添加
量が20重量%を超えるとシール剤の柔軟性が小さくな
り、ひび割れの原因となることがある。
(Sealant composition) The sealant composition of the present invention is obtained by dissolving the above-mentioned diene rubber in an organic solvent. This composition is applied to a metal container or an insulating gasket and dried. It becomes a seal that enhances the sealing performance with the metal container. The organic solvent used here is preferably an organic solvent having usually 5 to 15 carbon atoms, in which the above-mentioned diene rubber can be dissolved, and more preferably a hydrocarbon solvent having 6 to 12 carbon atoms, a nitrogen-containing organic solvent, or a nitrogen-containing organic solvent. Preferred examples thereof include an oxygen-based organic solvent, particularly an aromatic hydrocarbon-based solvent such as benzene, toluene, and xylene, and a saturated hydrocarbon-based solvent such as n-hexane, cyclohexane, methylcyclohexane, and ethylcyclohexane. Organic solvents having 5 or less carbon atoms, particularly 1 to 2 carbon atoms, such as carbon tetrachloride, are not preferred. The ratio of the diene rubber in the sealant composition of the present invention is from 1% by weight to 50% by weight, preferably from 2% by weight to 40% by weight, more preferably from 5% by weight to the organic solvent.
30% by weight. If the concentration of the diene rubber exceeds 50% by weight, the viscosity of the composition tends to be high, and the applicability tends to decrease. Conversely, when the concentration is less than 1% by weight, the amount of the solvent in the composition is too large, and the sealability tends to be poor. Further, an additive such as a coloring agent can be added to the sealant composition of the present invention as needed. It is desirable that the colorant that can be added does not react with the electrolytic solution and does not dissolve in the electrolytic solution, and examples thereof include various organic and inorganic pigments. Among them, carbon black, especially furnace black, channel black, etc.
Carbon black of 1 μm or less is preferred. When such a coloring agent is added, it is necessary to dissolve or disperse it sufficiently uniformly in the composition, and when using a granulated or aggregated one, a ball mill, sand mill, ultrasonic wave, etc. It is good to disperse with. The amount of such an additive such as a coloring agent may be any amount as necessary, but is usually 0.01 to 20% by weight, preferably 0.01 to 5% by weight based on the diene rubber. %, More preferably from 0.02% to 3% by weight. If the amount of the additive exceeds 20% by weight, the flexibility of the sealant is reduced, which may cause cracking.

【0008】(有機電解液電池)本発明の有機電解液電
池は、金属容器と絶縁ガスケットとの間に上述してきた
本発明のシール剤層が設けられた有機電解液電池であれ
ばよく、その金属容器の素材、発電要素、絶縁ガスケッ
トは、一般に使用されているものでよい。この有機電解
液電池は、その発電要素を金属容器に収納され密閉され
たものである。発電要素とは、支持電解質と有機系電解
液溶媒とからなる電解液、正極用および負極用の活物
質、セパレーターなどである。電解液を構成する支持電
解質は、例えば、LiPF6 、LiBF4 、LiClO
4 などのリチウム系化合物などのような水と反応して加
水分解しやすい化合物が用いられている。また有機電解
液溶媒としては、例えば、プロピレンカーボネート、エ
チレンカーボネート、ジエチルカーボネート等の可燃性
有機化合物が用いられている。絶縁ガスケットとして
は、一般に耐電解液性が高いと言われるポリエチレン、
ポリプロピレン、エチレン共重合ポリプロピレン等のポ
リオレフィン樹脂、特にその強度と弾性率のバランスの
良さからエチレン共重合ポリプロピレンを用いるのが好
ましい。さらに、ポリオレフィン樹脂は、JIS K7
207により測定される熱変形温度が90〜200℃、
好ましくは90〜150℃、より好ましくは95〜13
0℃であるものを用いるのがよい。200℃より高いと
常温での曲げ弾性率が高すぎて絶縁ガスケット装着時の
変形が起こり、亀裂や割れの原因となることがあり、9
0℃に満たない温度では、高温での絶縁ガスケットの耐
性が劣り、密閉性が低下する。本発明の有機電解液電池
のシール剤層は、例えば次の手順で形成すればよい。即
ち、本発明のシール剤組成物を、金属容器表面および/
または絶縁ガスケット表面に、エアー駆動の定量ディス
ペンサー、ローラーポンプ、ギアポンプ等の定量ポンプ
で所定量を送液し塗布する。塗布後、これらの塗布物を
前記シール剤組成物が片寄らないよう水平を維持した状
態で自然乾燥をおこない、有機溶剤を除去しジエン系ゴ
ムの薄層を形成する。ただし、塗布に際しては、定量ポ
ンプを用いる方法に限定されることはなく、少量であれ
ば刷毛を用いて人手で行うことも可能である。また、乾
燥も加熱装置により強制乾燥を行うことによりより短時
間での乾燥が可能となり、工業的にはより適した工程と
することができることは説明するまでもない。このよう
な方法で設けられたシール剤層の厚さは、金属容器と絶
縁ガスケットの大きさにより任意に選択すれば良く、通
常0.1μm〜1000μmである。層の厚さが不足す
ると電解液の液漏れや水分の侵入の問題が生じたり、層
が切断されてしまう可能性があり、逆に厚いと層形成が
困難となることがある。
(Organic Electrolyte Battery) The organic electrolyte battery of the present invention may be any organic electrolyte battery provided with the above-described sealant layer of the present invention between a metal container and an insulating gasket. The material of the metal container, the power generation element, and the insulating gasket may be those commonly used. In this organic electrolyte battery, the power generating element is housed in a metal container and sealed. The power generating element is an electrolytic solution composed of a supporting electrolyte and an organic electrolytic solution solvent, active materials for a positive electrode and a negative electrode, a separator, and the like. The supporting electrolyte constituting the electrolytic solution is, for example, LiPF 6 , LiBF 4 , LiClO
Compounds that readily react with water and hydrolyze, such as lithium compounds such as 4 , are used. As the organic electrolyte solvent, for example, flammable organic compounds such as propylene carbonate, ethylene carbonate, and diethyl carbonate are used. As an insulating gasket, polyethylene, which is generally said to have high electrolyte resistance,
It is preferable to use polyolefin resins such as polypropylene and ethylene copolymerized polypropylene, and particularly ethylene copolymerized polypropylene because of its good balance between strength and elastic modulus. Furthermore, polyolefin resin is JIS K7
The heat distortion temperature measured by 207 is 90-200 ° C.,
Preferably 90 to 150 ° C, more preferably 95 to 13
It is good to use what is 0 degreeC. If the temperature is higher than 200 ° C., the flexural modulus at room temperature is too high, and deformation at the time of mounting the insulating gasket occurs, which may cause a crack or a crack.
At a temperature lower than 0 ° C., the resistance of the insulating gasket at a high temperature is inferior, and the sealing performance is reduced. The sealant layer of the organic electrolyte battery of the present invention may be formed, for example, by the following procedure. That is, the sealant composition of the present invention is applied to the surface of a metal container and / or
Alternatively, a predetermined amount of liquid is fed to the surface of the insulating gasket by a fixed amount pump such as an air-driven fixed amount dispenser, a roller pump, and a gear pump, and applied. After the application, the applied material is naturally dried while keeping the sealing agent composition horizontal so that the organic solvent is removed to form a thin layer of diene rubber. However, the application is not limited to a method using a metering pump, and a small amount can be manually applied using a brush. Also, it is needless to say that the drying can be performed in a shorter time by forcibly drying by the heating device, and the process can be a more industrially suitable process. The thickness of the sealant layer provided by such a method may be arbitrarily selected depending on the size of the metal container and the insulating gasket, and is usually 0.1 μm to 1000 μm. If the thickness of the layer is insufficient, problems such as leakage of electrolyte solution and intrusion of moisture may occur, or the layer may be cut off. Conversely, if the layer is too thick, layer formation may be difficult.

【0009】[0009]

【発明の効果】本発明は、高温時の密閉性に特に優れた
有機電解液電池用シール剤が得られ、また同シール剤を
用いた電池は幅広い環境で使用可能な電池として有用で
ある。
According to the present invention, a sealant for an organic electrolyte battery having particularly excellent sealing properties at high temperatures can be obtained, and a battery using the sealant is useful as a battery that can be used in a wide range of environments.

【0010】[0010]

【実施例】以下に、実施例を挙げて本発明をさらに具体
的に説明する。なお、各例中の部及び%は、特に断りな
い限り重量基準である。また、重量平均分子量(以下、
Mwという)は、テトラヒドロフランを溶媒としたゲル
パーミエーションクロマトグラフィーにより測定された
値である。 (実施例1)10リットルの攪拌機付きオートクレーブ
にトルエン5000g、ブタジエン810gを加え、十
分攪拌した後、ジエチルアルミニウムクロライド0.2
7mol、塩化クロム・ピリジン錯体0.6mmolを
加え、60℃で3時間攪拌しながら重合した。その後、
メタノール100mlを加えて重合を停止した。重合停
止後、室温まで冷却した後、重合液を取り出した。得ら
れた重合液を水蒸気凝固した後、60℃で48時間真空
乾燥して固体状のポリマー780gを得た。得られたポ
リマーのMwは390,000であった。また、13C−
NMRスペクトルの結果からこのポリマーのシス体含量
は94%であった。このポリマーをエチルシクロヘキサ
ンに溶解させ、濃度10重量%のシール剤組成物を調製
した。その後、ポリプロピレン製の絶縁ガスケット表面
に定量ディスペンサーを使用して乾燥後のシール剤層厚
が15μmとなるように塗布、乾燥を行い、シール剤層
を形成した。
The present invention will be described more specifically below with reference to examples. Parts and% in each example are based on weight unless otherwise specified. In addition, the weight average molecular weight (hereinafter, referred to as
Mw) is a value measured by gel permeation chromatography using tetrahydrofuran as a solvent. Example 1 5000 g of toluene and 810 g of butadiene were added to a 10-liter autoclave equipped with a stirrer, and the mixture was sufficiently stirred.
7 mol and 0.6 mmol of chromium chloride / pyridine complex were added, and polymerization was carried out at 60 ° C. with stirring for 3 hours. afterwards,
The polymerization was terminated by adding 100 ml of methanol. After termination of the polymerization, the mixture was cooled to room temperature, and then the polymerization liquid was taken out. After the obtained polymerization liquid was subjected to steam coagulation, it was vacuum-dried at 60 ° C. for 48 hours to obtain 780 g of a solid polymer. The Mw of the obtained polymer was 390,000. In addition, 13 C-
From the result of NMR spectrum, the cis-form content of this polymer was 94%. This polymer was dissolved in ethylcyclohexane to prepare a sealing composition having a concentration of 10% by weight. Thereafter, using a fixed amount dispenser, a coating material was applied to the surface of the insulating gasket made of polypropylene using a constant-rate dispenser so that the thickness of the sealing material layer after drying became 15 μm, followed by drying to form a sealing material layer.

【0011】これとは別に、繊維状グラファイトである
MCFをバインダーとともに水を溶剤として混練し、ペ
ーストとしたものを銅箔へ塗布し、乾燥・プレスを行う
ことにより負極を作成した。また正極はLiCoO2
バインダーとともに混練ペースト化したものを、アルミ
箔へ塗布し、乾燥・プレスを行って作成した。これら
を、ポリエチレン製の多孔質セパレータとともに、捲回
して電極群を構成した。ついで前記電極群を、内径16
mm、高さ50mm(17500型)のニッケルメッキ
を施した鉄缶へ挿入し、開口部近傍に封口部固定のた
め、ビードを形成した。このビード部の絶縁ガスケット
と接触する部分へ、前記シール剤を定量ディスペンサー
を使用して乾燥後のシール剤層厚が15ミクロンとなる
ように塗布、乾燥を行い、シール剤層を形成した。その
後、真空乾燥器に投入し電極群に吸着している水分を完
全に乾燥させ、エチレンカーボネートとメチルエチルカ
ーボネートの混合溶媒へLiPF6 を1M溶解させたも
のを電解液として注入後、封口して電池とした。電池構
成図を図1に示す。これらの電池を電解液注液、封口後
2日間静置した後、電池電圧が4.2Vになるまでは1
Cの定電流で、4.2Vに達してからは4.2Vの定電
圧で合計5時間充電することにより初充電を行った。こ
の4.2Vに充電されている電池5個を95℃の恒温槽
で48時間加熱し、加熱前後の重量変化を求めた。ま
た、同じく4.2Vに充電されている電池5個を1.9
mの高さから任意方向に10回落下させて、落下前後の
重量変化を求めた。その結果、恒温放置試験、落下試験
のいずれにおいても、有意な重量変化は観察されず、十
分に電池内容物を密閉していることが確認された。
Separately, a negative electrode was prepared by kneading MCF, which is a fibrous graphite, with a binder using water as a solvent, applying a paste to a copper foil, followed by drying and pressing. The positive electrode was prepared by kneading a paste of LiCoO 2 together with a binder, applying it to an aluminum foil, drying and pressing. These were wound together with a polyethylene porous separator to form an electrode group. Next, the electrode group was set to an inner diameter of 16
It was inserted into a nickel-plated iron can having a height of 50 mm and a height of 50 mm (17500 type), and a bead was formed in the vicinity of the opening for fixing the sealing portion. The sealant was applied to a portion of the bead portion that was in contact with the insulating gasket using a quantitative dispenser so that the thickness of the sealant layer after drying was 15 microns, followed by drying to form a sealant layer. Then, the mixture was put into a vacuum dryer to completely dry the water adsorbed on the electrode group, and a 1 M solution of LiPF 6 dissolved in a mixed solvent of ethylene carbonate and methyl ethyl carbonate was injected as an electrolytic solution, and then sealed. Battery. FIG. 1 shows a battery configuration diagram. After these batteries were allowed to stand for 2 days after the electrolyte injection and sealing, the battery was kept at 1 V until the battery voltage reached 4.2 V.
After reaching 4.2 V at a constant current of C, the battery was charged at a constant voltage of 4.2 V for a total of 5 hours to perform an initial charge. Five batteries charged at 4.2 V were heated in a thermostat at 95 ° C. for 48 hours, and the weight change before and after heating was determined. In addition, five batteries also charged to 4.2 V
The sample was dropped 10 times from a height of m in an arbitrary direction, and the change in weight before and after the drop was determined. As a result, no significant weight change was observed in any of the incubation test and the drop test, and it was confirmed that the battery contents were sufficiently sealed.

【0012】(実施例2)10リットルの攪拌機付きオ
ートクレーブに、トルエン5000g、ブタジエン71
0g、スチレン100gを加え、十分攪拌した後、N,
N,N’,N’−テトラメチルエチレンジアミンのトル
エン溶液(濃度は0.05mol/リットル)を10m
l、チーグラー触媒(0.2mmol)を加え、60℃
で4時間攪拌しながら重合した。その後、メタノール1
00mlを加えて重合を停止した。重合停止後、室温ま
で冷却した後、重合液を取り出す。得られた重合液を水
蒸気凝固した後、60℃で48時間真空乾燥して固体状
のポリマー750gを得た。得られたポリマーのMwは
280,000であった。また、13C−NMRスペクト
ルの結果からこのポリマーのシス体含量は93%であっ
た。次いで、このポリマーをトルエンに溶解させ、濃度
15重量%のシール剤組成物を調製した。実施例1と同
様の方法により円筒形の絶縁ガスケット表面にシール剤
層を形成した。この層の厚さは17μmであった。この
シール剤層の塗布された絶縁ガスケットを用いて、実施
例1と同様の試験を行った結果、10個の電池は、いず
れも有為な重量変化が検知されず、十分に内容物を密閉
していることが確認された。
Example 2 5000 g of toluene and 71 of butadiene were placed in a 10-liter autoclave equipped with a stirrer.
0 g and styrene 100 g, and after sufficiently stirring, N,
A solution of N, N ', N'-tetramethylethylenediamine in toluene (concentration: 0.05 mol / L) is 10 m
l, add Ziegler catalyst (0.2 mmol),
For 4 hours with stirring. Then, methanol 1
The polymerization was stopped by adding 00 ml. After stopping the polymerization, the mixture is cooled to room temperature, and then the polymerization liquid is taken out. After the obtained polymerization liquid was subjected to steam coagulation, it was vacuum-dried at 60 ° C. for 48 hours to obtain 750 g of a solid polymer. The Mw of the obtained polymer was 280,000. From the results of the 13 C-NMR spectrum, the cis-form content of this polymer was 93%. Next, this polymer was dissolved in toluene to prepare a sealant composition having a concentration of 15% by weight. A sealant layer was formed on the surface of a cylindrical insulating gasket in the same manner as in Example 1. The thickness of this layer was 17 μm. The same test as in Example 1 was performed using the insulating gasket to which the sealing agent layer was applied. As a result, no significant change in weight was detected in any of the ten batteries, and the contents were sufficiently sealed. It was confirmed that.

【0013】(実施例3)10リットルの攪拌機付きオ
ートクレーブに、トルエン5000g、ブタジエン71
0gを加え、十分に攪拌した後、n−ブチルリチウムの
トルエン溶液(濃度は0.01mol/リットル)を2
0ml加え、重合を停止した。重合停止後、室温まで放
冷した後、重合液を取り出した。得られた重合液を水蒸
気凝固した後、60℃で48時間真空乾燥して固体状の
ポリマー650gを得た。得られたポリマーのMwは2
30,000であった。また、13C−NMRスペクトル
の結果からこのポリマーのシス体含量は35%であっ
た。次いで、このポリマーをメチルシクロヘキサンに溶
解させ、濃度10重量%のシール剤組成物を調製した。
実施例1と同様の方法により円筒形の絶縁ガスケット表
面にシール剤層を形成した。この層の厚さは10μmで
あった。このシール剤層の塗布された絶縁ガスケットを
用いて、実施例1と同様の試験を行った結果、恒温放置
試験、落下試験のいずれにおいても有為な重量変化は観
察されず、十分に電池内容物を密閉していることが確認
された。
Example 3 In a 10-liter autoclave equipped with a stirrer, 5000 g of toluene and 71 of butadiene were added.
After adding 0 g and stirring sufficiently, a toluene solution of n-butyllithium (concentration: 0.01 mol / L) was added to 2 g.
0 ml was added to terminate the polymerization. After termination of the polymerization, the mixture was allowed to cool to room temperature, and then the polymerization liquid was taken out. After the obtained polymerization liquid was subjected to steam coagulation, it was vacuum-dried at 60 ° C. for 48 hours to obtain 650 g of a solid polymer. Mw of the obtained polymer is 2
30,000. From the result of the 13 C-NMR spectrum, the cis content of this polymer was 35%. Next, this polymer was dissolved in methylcyclohexane to prepare a sealant composition having a concentration of 10% by weight.
A sealant layer was formed on the surface of a cylindrical insulating gasket in the same manner as in Example 1. The thickness of this layer was 10 μm. As a result of performing the same test as in Example 1 using the insulating gasket to which the sealing agent layer was applied, no significant change in weight was observed in any of the constant temperature storage test and the drop test, and the battery content was sufficient. It was confirmed that the thing was sealed.

【0014】なお、本願実施例においては、負極活物質
として繊維状グラファイトであるMCFを、正極活物質
としてLiCoO2 を、また電解液としてエチレンカー
ボネートとメチルエチルカーボネートの混合溶媒へLi
PF6 を1M溶解させたものを使用したが、それ以外に
下記のような物が使用可能である。負極活物質として
は、リチウムを吸蔵、放出可能な物であれば良く、熱分
解炭素類、コークス類(ピッチコークス、ニードルコー
クス、石油コークス等)、グラファイト類(天然グラフ
ァイト、人造グラファイト、繊維状グラファイト、球状
グラファイト等)、ガラス状炭素類、有機高分子化合物
体(フェノール樹脂、フラン樹脂等を適当な温度で焼成
したもの)、あるいは、金属リチウム、リチウム合金、
金属含有化合物、金属酸化物、あるいはポリアセチレ
ン、ポリピロール等のポリマーも使用可能である。正極
活物質としては、Lix MO2 (ただし、Mは1種以上
の遷移金属、好ましくは、CoまたはNiの少なくとも
一種を表し、0.05<x<1.10である)または、
Lix 2 4 (ただし、Mは1種以上の遷移金属、好
ましくは、Mnを表し、0.05<x<1.10であ
る)を含んだ活物質が使用される。かかる活物質として
は、LiCoO2 以外に、LiNiO2 、LiNiy
(1-y ) 2 (ただし、0.05<x<1.10、0<
y<1)、LiMn2 4 で表される複合酸化物があげ
られる。上記複合酸化物は、たとえばリチウム、コバル
ト、ニッケルの炭酸塩を出発原料として、これら炭酸塩
を組成に応じて混合し、酸素存在雰囲気下で600〜1
000℃で焼成することにより得られる。また出発原料
は炭酸塩に限定されず、水酸化物、酸化物からも同様に
合成可能である。電解液としては、プロピレンカーボネ
ート、エチレンカーボネート、メチルエチルカーボネー
ト、ジメチルカーボネート、ジエチルカーボネート、γ
−ブチルラクトン、テトラヒドロフラン等の単独もしく
は、混合溶媒をベースとして、LiClO4 、LiAs
6 、LiPF6 、LiBF4 等を適宜混合した物が使
用可能である。
In the embodiment of the present invention, MCF, which is a fibrous graphite, is used as a negative electrode active material, LiCoO 2 is used as a positive electrode active material, and a mixed solvent of ethylene carbonate and methyl ethyl carbonate is used as an electrolyte.
A solution prepared by dissolving 1 M of PF 6 was used, but the following materials can also be used. The negative electrode active material may be any substance capable of occluding and releasing lithium, such as pyrolytic carbons, cokes (pitch coke, needle coke, petroleum coke, etc.), graphites (natural graphite, artificial graphite, fibrous graphite). , Spherical graphite, etc.), glassy carbons, organic polymer compounds (baked phenolic resin, furan resin, etc. at an appropriate temperature), or metallic lithium, lithium alloy,
Metal-containing compounds, metal oxides, or polymers such as polyacetylene and polypyrrole can also be used. Li x MO 2 (where M represents at least one transition metal, preferably at least one of Co and Ni, and 0.05 <x <1.10.) Or a positive electrode active material;
An active material containing Li x M 2 O 4 (where M represents one or more transition metals, preferably Mn and 0.05 <x <1.10.) Is used. Such active materials include, in addition to LiCoO 2 , LiNiO 2 , LiNi y C
o (1-y ) O 2 (provided that 0.05 <x <1.10, 0 <
y <1), and a composite oxide represented by LiMn 2 O 4 . For example, the composite oxide is prepared by mixing carbonates of lithium, cobalt, and nickel as starting materials in accordance with the composition, and mixing them in an oxygen-containing atmosphere at 600 to 1%.
It is obtained by firing at 000 ° C. The starting materials are not limited to carbonates, but can be synthesized from hydroxides and oxides. Examples of the electrolyte include propylene carbonate, ethylene carbonate, methyl ethyl carbonate, dimethyl carbonate, diethyl carbonate, γ
LiClO 4 , LiAs based on a single solvent such as butyl lactone, tetrahydrofuran,
An appropriate mixture of F 6 , LiPF 6 , LiBF 4 and the like can be used.

【0015】(比較例1)10リットルの攪拌機付きオ
ートクレーブに、シクロヘキサン5000g、ブタジエ
ン800gを加え、十分に攪拌した後、n−ブチルリチ
ウムのトルエン溶液(濃度は1.65mol/リット
ル)を100ml加え、60℃で1時間重合した後、メ
タノールで重合を停止した。重合停止後、室温まで放冷
した後、重合液を取り出した。得られた重合液をBHT
/メタノール/アセトン溶液で凝固した。凝固後、60
℃で48時間真空乾燥して粘稠状のポリマー800gを
得た。得られたポリマーのMwは9,000であった。
また、13C−NMRスペクトルの結果からこのポリマー
のシス体含量は35%であった。このポリマーをトルエ
ンに溶解させ、濃度10重量%のシール剤組成物を調製
した。実施例1と同様の方法により円筒形の絶縁ガスケ
ット表面にシール剤層を形成した。この層の厚さは10
μmであった。このシール剤層の塗布された絶縁ガスケ
ットを用いて、実施例1と同様の試験を行った。その結
果、5個の電池の重量減少の最大値と最小値はそれぞ
れ、2.04%と1.01%であり、電池内容物の密閉
が不十分であることが確認された。
Comparative Example 1 In a 10-liter autoclave equipped with a stirrer, 5000 g of cyclohexane and 800 g of butadiene were added. After sufficiently stirring, 100 ml of a toluene solution of n-butyllithium (concentration: 1.65 mol / l) was added. After polymerization at 60 ° C. for 1 hour, the polymerization was stopped with methanol. After termination of the polymerization, the mixture was allowed to cool to room temperature, and then the polymerization liquid was taken out. The obtained polymerization solution is subjected to BHT
Coagulation with a / methanol / acetone solution. After coagulation, 60
Vacuum drying at 48 ° C. for 48 hours gave 800 g of a viscous polymer. Mw of the obtained polymer was 9,000.
From the result of the 13 C-NMR spectrum, the cis content of this polymer was 35%. This polymer was dissolved in toluene to prepare a sealant composition having a concentration of 10% by weight. A sealant layer was formed on the surface of a cylindrical insulating gasket in the same manner as in Example 1. The thickness of this layer is 10
μm. Using the insulating gasket to which the sealant layer was applied, the same test as in Example 1 was performed. As a result, the maximum value and the minimum value of the weight loss of the five batteries were 2.04% and 1.01%, respectively, confirming that the battery contents were not sufficiently sealed.

【0016】(比較例2)シール剤組成物として、針入
れ深度20〜40のブローンアスファルト100部とト
ルエン400部とを混合した組成物を用い、実施例と同
様の厚さにシール剤層を形成し、実施例1と同様の試験
を行った。その結果、高温保存液を行った電池のうち2
本、落下試験を行った電池1本から電解液由来の臭気が
発生していることが確認されるとともに、それぞれ、2
0〜40mgの重量減少が認められた。また、これらの
電池を室温で10日間保管後、電解液中の水分量をカー
ルフィシャー法により測定したところ、数100ppm
の水分が観察され、電池の密閉性が低下していることが
確認された。
Comparative Example 2 A composition obtained by mixing 100 parts of blown asphalt with a penetration depth of 20 to 40 and 400 parts of toluene was used as a sealant composition. Then, the same test as in Example 1 was performed. As a result, two of the batteries that underwent the high-temperature storage solution
It was confirmed that odor derived from the electrolytic solution was generated from one of the batteries subjected to the drop test and the one subjected to the drop test.
A weight loss of 0-40 mg was observed. After storing these batteries at room temperature for 10 days, the amount of water in the electrolyte was measured by the Karl Fischer method.
Was observed, and it was confirmed that the hermeticity of the battery was reduced.

【0017】以上の実施例および比較例の結果から、重
量平均分子量が10,000未満のジエン系ゴムを主成
分とするシール剤や従来のシール剤と比較して、本発明
のシール剤は優れた密閉性を示すことが判った。
From the results of the above Examples and Comparative Examples, the sealant of the present invention is superior to a sealant containing diene rubber having a weight average molecular weight of less than 10,000 as a main component or a conventional sealant. It was found to exhibit a tight seal.

【図面の簡単な説明】[Brief description of the drawings]

【図1】有機電解液電池の一部を展開した電池構成図を
示す。
FIG. 1 shows a battery configuration diagram in which a part of an organic electrolyte battery is developed.

【符号の説明】[Explanation of symbols]

1 負極 2 セパレータ 3 正極 4 缶 5 封口体 6 安全弁 DESCRIPTION OF SYMBOLS 1 Negative electrode 2 Separator 3 Positive electrode 4 Can 5 Sealing body 6 Safety valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長谷部 裕之 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Hiroyuki Hasebe 1 Toshiba, Komukai Toshiba-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Inside R & D Center of Toshiba Corporation

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 重量平均分子量が10,000〜1,5
00,000のジエン系ゴムを主成分とする有機電解液
電池用シール剤。
(1) a weight average molecular weight of 10,000 to 1.5;
000, a diene rubber-based sealant for organic electrolyte batteries.
【請求項2】 ジエン系モノマー単独重合体、二種以上
のジエン系モノマーの共重合体、またはジエン系モノマ
ーと非極性重合性モノマーとの共重合体であって、かつ
重量平均分子量が20,000〜800,000のジエ
ン系ゴムを主成分とする有機電解液電池用シール剤。
2. A diene monomer homopolymer, a copolymer of two or more diene monomers, or a copolymer of a diene monomer and a non-polar polymerizable monomer, having a weight average molecular weight of 20, 2,000 to 800,000 diene rubber-based sealing agents for organic electrolyte batteries.
【請求項3】 ジエン系ゴムのシス体含有量が30%以
上である請求項1又は2記載の有機電解液電池用のシー
ル剤。
3. The sealant for an organic electrolyte battery according to claim 1, wherein the cis content of the diene rubber is 30% or more.
【請求項4】 ジエン系ゴムがブタジエンの重合体また
は共重合体である請求項1〜3記載のシール剤。
4. The sealant according to claim 1, wherein the diene rubber is a polymer or copolymer of butadiene.
【請求項5】 請求項1〜4記載のシール剤を炭素数5
〜15の有機溶媒に溶解させてなるシール剤組成物。
5. The sealant according to claim 1, wherein the sealant has 5 carbon atoms.
A sealant composition obtained by dissolving the composition in an organic solvent of (1) to (15).
【請求項6】 発電要素を収納した金属容器の開口部に
装着された絶縁ガスケットと金属容器との間、および/
又は絶縁ガスケットと封口体との間に請求項1〜5記載
のシール剤層が設けられている有機電解液電池。
6. A space between an insulating gasket mounted on an opening of a metal container containing a power generating element and the metal container, and / or
Or an organic electrolyte battery provided with the sealant layer according to claim 1 between an insulating gasket and a sealing body.
【請求項7】 有機電解液電池がリチウム二次電池また
はリチウムイオン二次電池である請求項6記載の電池。
7. The battery according to claim 6, wherein the organic electrolyte battery is a lithium secondary battery or a lithium ion secondary battery.
JP21007996A 1996-08-08 1996-08-08 Sealant for organic electrolyte battery, composition containing the same, and battery using the same Expired - Lifetime JP3574276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21007996A JP3574276B2 (en) 1996-08-08 1996-08-08 Sealant for organic electrolyte battery, composition containing the same, and battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21007996A JP3574276B2 (en) 1996-08-08 1996-08-08 Sealant for organic electrolyte battery, composition containing the same, and battery using the same

Publications (2)

Publication Number Publication Date
JPH1055789A true JPH1055789A (en) 1998-02-24
JP3574276B2 JP3574276B2 (en) 2004-10-06

Family

ID=16583479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21007996A Expired - Lifetime JP3574276B2 (en) 1996-08-08 1996-08-08 Sealant for organic electrolyte battery, composition containing the same, and battery using the same

Country Status (1)

Country Link
JP (1) JP3574276B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001095412A1 (en) * 2000-06-09 2001-12-13 Matsushita Electric Industrial Co., Ltd. Electrochemical device
JP2007273480A (en) * 2000-06-09 2007-10-18 Matsushita Electric Ind Co Ltd Electrochemical element
JP2011210412A (en) * 2010-03-29 2011-10-20 Nippon Zeon Co Ltd Sealing agent composition for organic electrolyte battery, and organic electrolyte battery
KR20130073891A (en) 2010-05-17 2013-07-03 제온 코포레이션 Sealing material composition for secondary battery, method for producing same, and secondary battery using same
WO2014034825A1 (en) * 2012-08-30 2014-03-06 日本ゼオン株式会社 Secondary battery sealing material and secondary battery sealing material composition
WO2017119485A1 (en) * 2016-01-08 2017-07-13 日本ゼオン株式会社 Sealing agent for electrochemical device in which nonaqueous electrolytic solution is used, and sealing agent composition for electrochemical device
CN107534104A (en) * 2015-07-30 2018-01-02 日本瑞翁株式会社 Battery with nonaqueous electrolyte water system encapsulant composition
CN111052436A (en) * 2017-09-06 2020-04-21 三洋电机株式会社 Nonaqueous electrolyte secondary battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108886120B (en) 2016-04-15 2020-12-25 日本瑞翁株式会社 Aqueous sealant composition for nonaqueous electrolyte battery
EP3444863A4 (en) 2016-04-15 2019-10-09 Zeon Corporation Aqueous sealant composition for nonaqueous electrolyte battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7223496B2 (en) 2000-06-09 2007-05-29 Matsushita Electric Industrial Co., Ltd. Electrochemical element
JP2007273480A (en) * 2000-06-09 2007-10-18 Matsushita Electric Ind Co Ltd Electrochemical element
WO2001095412A1 (en) * 2000-06-09 2001-12-13 Matsushita Electric Industrial Co., Ltd. Electrochemical device
JP2011210412A (en) * 2010-03-29 2011-10-20 Nippon Zeon Co Ltd Sealing agent composition for organic electrolyte battery, and organic electrolyte battery
KR20130073891A (en) 2010-05-17 2013-07-03 제온 코포레이션 Sealing material composition for secondary battery, method for producing same, and secondary battery using same
WO2014034825A1 (en) * 2012-08-30 2014-03-06 日本ゼオン株式会社 Secondary battery sealing material and secondary battery sealing material composition
CN107534104B (en) * 2015-07-30 2021-03-30 日本瑞翁株式会社 Aqueous sealant composition for nonaqueous electrolyte battery
CN107534104A (en) * 2015-07-30 2018-01-02 日本瑞翁株式会社 Battery with nonaqueous electrolyte water system encapsulant composition
WO2017119485A1 (en) * 2016-01-08 2017-07-13 日本ゼオン株式会社 Sealing agent for electrochemical device in which nonaqueous electrolytic solution is used, and sealing agent composition for electrochemical device
JPWO2017119485A1 (en) * 2016-01-08 2018-11-08 日本ゼオン株式会社 SEALING AGENT FOR ELECTROCHEMICAL DEVICE USING NON-AQUEOUS ELECTROLYTE SOLUTION AND SEALING COMPOSITION FOR ELECTROCHEMICAL DEVICE
CN111052436A (en) * 2017-09-06 2020-04-21 三洋电机株式会社 Nonaqueous electrolyte secondary battery
JPWO2019049833A1 (en) * 2017-09-06 2020-10-22 三洋電機株式会社 Non-aqueous electrolyte secondary battery
CN111052436B (en) * 2017-09-06 2022-07-22 三洋电机株式会社 Non-aqueous electrolyte secondary battery
US11411274B2 (en) 2017-09-06 2022-08-09 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP3574276B2 (en) 2004-10-06

Similar Documents

Publication Publication Date Title
JP7300390B2 (en) Cathode active material layer and manufacturing method for lithium secondary battery
US5609975A (en) Positive electrode for non-aqueous electrolyte lithium secondary battery and method of manufacturing the same
JP2020517055A (en) Encapsulated cathode active material particles, lithium secondary battery containing the same, and manufacturing method
KR101638663B1 (en) Sealing material composition for secondary battery, method for producing same, and secondary battery using same
JP2971451B1 (en) Lithium secondary battery
CN103456910A (en) Separator for rechargeable lithium battery and rechargeable lithium battery including the same
US20180102542A1 (en) Binder for nonaqueous electrolyte secondary battery electrode, and use thereof
CN110061286B (en) High-energy-density lithium ion battery with pre-lithiation effect and preparation method thereof
TWI476976B (en) Polymerized gel electrolyte and polymer lithium battery
CN109891652A (en) Lithium-sulfur cell
EP3425707B1 (en) Binder composition for non-aqueous secondary battery electrode, conductive material paste composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP3574276B2 (en) Sealant for organic electrolyte battery, composition containing the same, and battery using the same
KR102184881B1 (en) Electrode binder for solid electrolyte-based all solid-state lithium secondary battery, cathode in all solid-state lithium secondary battery comprising the same, and solid electrolyte-based all solid-state lithium secondary battery comprising the same
KR100263153B1 (en) Electrode binder used in lithium lon secondary battery and method for manufacturing active material contained it
CN111864192A (en) Lithium battery positive electrode slurry, lithium battery positive electrode plate and lithium battery
JPH09306502A (en) Electrode mix for nonaqueous battery, and nonaqueous battery
CN111430779B (en) Electrolyte raw material composition, electrolyte, lithium ion secondary battery and preparation method thereof
JP2017157481A (en) Binder composition for nonaqueous secondary battery electrode and manufacturing method thereof, slurry composition for nonaqueous secondary battery electrode, nonaqueous secondary battery electrode, and nonaqueous secondary battery
JP3956523B2 (en) Sealing material for lithium secondary battery, sealing material composition and use thereof
JP2007173047A (en) Binder for secondary battery
US20120091403A1 (en) Lithium ion rechargeable batteries &amp; the additive for lithium ion rechargeable batteries which prevents increase of the viscosity
JP2017152122A (en) Negative electrode active material for lithium ion secondary batteries, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2001052757A (en) Adjustment method of battery
WO2022001429A1 (en) Positive electrode plate and secondary battery comprising same
JPH10321200A (en) Sealant for organic electrolyte secondary battery, composition containing it and battery using it

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040701

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term