JPH1053698A - Biodegradable resin composition - Google Patents

Biodegradable resin composition

Info

Publication number
JPH1053698A
JPH1053698A JP22613496A JP22613496A JPH1053698A JP H1053698 A JPH1053698 A JP H1053698A JP 22613496 A JP22613496 A JP 22613496A JP 22613496 A JP22613496 A JP 22613496A JP H1053698 A JPH1053698 A JP H1053698A
Authority
JP
Japan
Prior art keywords
kgf
poly
melt
hydroxybutyric acid
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22613496A
Other languages
Japanese (ja)
Other versions
JP3623053B2 (en
Inventor
Hiroyuki Matsushita
浩幸 松下
Masahiro Harada
正広 原田
Hidekazu Koseki
英一 小関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Mitsubishi Gas Chemical Co Inc
Original Assignee
Shimadzu Corp
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Mitsubishi Gas Chemical Co Inc filed Critical Shimadzu Corp
Priority to JP22613496A priority Critical patent/JP3623053B2/en
Publication of JPH1053698A publication Critical patent/JPH1053698A/en
Application granted granted Critical
Publication of JP3623053B2 publication Critical patent/JP3623053B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a resin composition exhibiting excellent mechanical performance such as high extensbility as well as excellent heat resistance, moldility and biodegradability, and useful for films, fibers, etc., by melt kneading a poly-3- hydroxybutyric acid with polylactic acid under specified conditions. SOLUTION: This biodegradable resin composition is obtained by melt kneading of (A) a poly-3-hydroxybutyiric acid (e.g. with a weight-average molecular weight Mw of >=100,000) with (B) a polylactic acid (e.g. with a weight-average molecular weight of >=100,000, esp. 100,000-300,000) at 180-230 deg.C for 3-25min. It is preferable that the content of the component A in this composition is 5-60wt.% based on the total weight of the components A and B; thus, this composition can exhibit high extensbility while maintaining its tensile strength and elastic modulus at high levels.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、優れた成形性、機
械的性能を有し、薬品、化粧品、食品および産業資材・
機械類の包装部材、機械部品、繊維、モノフィラメント
および衣料などとして好適に使用される生分解性に優れ
る樹脂組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has excellent moldability and mechanical performance, and is used for medicines, cosmetics, foods and industrial materials.
The present invention relates to a resin composition having excellent biodegradability, which is suitably used as a packaging member for machinery, a machine part, a fiber, a monofilament, clothing, and the like.

【0002】[0002]

【従来の技術】従来、数多くのプラスチックスが包装材
料、衣料、繊維、モノフィラメントおよび工業機械部品
用の成形材料として各種の産業分野において利用されて
いる。同時に、環境保護の立場から、プラスチックの再
利用が叫ばれるとともに、再利用が不可能な利用分野に
おいて、微生物の働きおよび加水分解などにより速やか
に分解する生分解性樹脂の利用が社会的に強く要請され
てきている。
2. Description of the Related Art Conventionally, many plastics have been used in various industrial fields as molding materials for packaging materials, clothing, fibers, monofilaments, and industrial machine parts. At the same time, from the standpoint of environmental protection, the recycling of plastic is called for, and in fields where recycling is not possible, the use of biodegradable resins, which degrade quickly due to the action of microorganisms and hydrolysis, etc., is strongly socialized. It has been requested.

【0003】ポリ−3−ヒドロキシ酪酸は、化学合成や
微生物による発酵法により製造される。ポリ−3−ヒド
ロキシ酪酸は、自然界に広く分布している微生物の働き
により完全に分解する生分解性を有し、かつ、熱可塑性
であることから、既存の成形法による各種用途への利用
が積極的に検討されつつある。しかしながら、ポリ−3
−ヒドロキシ酪酸は、融点が約175℃と現在知られて
いる生分解性樹脂の中では高い値を有しているものの、
溶融状態での熱安定性が不足するため成形が困難であっ
た。ポリ−3−ヒドロキシ酪酸の酸素透過率は未延伸ポ
リエチレンテレフタレートと同程度の値を示し、低密度
ポリエチレンと比べて、可成り低い値を示すものの、得
られた成型品は硬くて脆い性質があり、特に伸び率は1
〜3%と小さい。そのため従来からトリアセチンなどの
可塑剤を添加することにより改質を行うことが試みられ
ているが、添加した成型物の伸び率は2〜4%に止ま
り、その効果は僅かである。
[0003] Poly-3-hydroxybutyric acid is produced by chemical synthesis or fermentation using microorganisms. Poly-3-hydroxybutyric acid has biodegradability that is completely degraded by the action of microorganisms widely distributed in nature and is thermoplastic, so that it can be used for various applications by existing molding methods. It is being actively considered. However, poly-3
-Hydroxybutyric acid has a high melting point of about 175 [deg.] C. among the currently known biodegradable resins,
Molding was difficult because of insufficient thermal stability in the molten state. The oxygen permeability of poly-3-hydroxybutyric acid shows a value similar to that of undrawn polyethylene terephthalate, and shows a considerably lower value than that of low-density polyethylene, but the obtained molded product is hard and brittle. , Especially the elongation is 1
It is as small as ~ 3%. For this reason, modification has been conventionally attempted by adding a plasticizer such as triacetin, but the elongation of the added molded product is limited to 2 to 4%, and the effect is slight.

【0004】一方、ポリ乳酸は、加水分解に引続いて微
生物の代謝により分解される生分解性樹脂である。ポリ
乳酸の2軸延伸フィルムは、透明性が高く、2軸延伸ポ
リプロピレンや2軸延伸ポリエチレンテレフタレートフ
ィルムに似た機械物性を示し、包装材料など各種用途に
展開が図られている。しかしながら、未延伸シート・フ
ィルムや射出成型品は、ポリ−3−ヒドロキシ酪酸と同
様、硬くて脆い性質のため、得られた成型品の伸び率は
小さい。特開平4−335060号公報に、D−または
DL−ラクチドやヒドロキシカルボン酸を共重合させる
ことなどにより改質を行う方法が開示されているが、そ
のために弾性率が低下する。また、ポリ乳酸の酸素透過
率は、ポリエチレンテレフタレートに比べて3倍程度の
大きさであり、そのために、用途によって、その使用が
制限される場合もある。
[0004] On the other hand, polylactic acid is a biodegradable resin that is decomposed by metabolism of microorganisms following hydrolysis. Polylactic acid biaxially stretched films have high transparency and exhibit mechanical properties similar to biaxially stretched polypropylene and biaxially stretched polyethylene terephthalate films, and are being developed for various uses such as packaging materials. However, the unstretched sheet / film and the injection molded product are hard and brittle similarly to poly-3-hydroxybutyric acid, and thus the obtained molded product has a small elongation. Japanese Patent Application Laid-Open No. 4-335060 discloses a method of modifying by copolymerizing D- or DL-lactide or hydroxycarboxylic acid, but the elastic modulus is lowered. In addition, the oxygen permeability of polylactic acid is about three times as large as that of polyethylene terephthalate, and therefore its use may be restricted depending on the application.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、従来
技術に見られる前記問題を解決し、機械的性能、耐熱性
および成形性に優れ、高い実用性を有する生分解性樹脂
組成物ならびにこの生分解性樹脂組成物から成形された
成形体およびその成形加工法を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems in the prior art, and to provide a biodegradable resin composition having excellent mechanical performance, heat resistance and moldability, and having high practicability. It is an object of the present invention to provide a molded article molded from the biodegradable resin composition and a molding method thereof.

【0006】[0006]

【課題を解決するための手段】本発明者らは、前記問題
を解決すべく鋭意検討を重ねた結果、ポリ−3−ヒドロ
キシ酪酸とポリ乳酸は、ともに伸び率が小さいにもかか
わらず、両者を溶融混練したところ、以外にも、引張強
度、弾性率ともに高い値を保持したまま、伸び率の大き
い成型物を得ることができることを新たに見いだし、本
発明を完成するに至った。
The present inventors have conducted intensive studies to solve the above-mentioned problems. As a result, poly-3-hydroxybutyric acid and polylactic acid have a low elongation rate, but both have low elongation. Was melt-kneaded, and it was newly found that a molded product having a high elongation could be obtained while maintaining high values of both tensile strength and elastic modulus, and completed the present invention.

【0007】通常、2種類の樹脂を溶融混練した場合、
その機械的な物性値は、両者の混合比から算出される幾
何平均値または算術平均値に近似した値を示す。しかし
ながら、本発明によると、ポリ−3−ヒドロキシ酪酸お
よびポリ乳酸は、それぞれをフィルムあるいはシートに
成形した際、破断までの伸びがわずか数%であるのにも
拘わらず、両者の溶融混練により得られた樹脂組成物に
おいては、伸びは、数十%となり、混合比から算出され
る幾何平均値あるいは算術平均値より大幅に大きくな
る。
Usually, when two types of resins are melt-kneaded,
The mechanical property value indicates a value approximate to a geometric mean value or an arithmetic mean value calculated from a mixture ratio of the two. However, according to the present invention, poly-3-hydroxybutyric acid and polylactic acid can be obtained by melting and kneading both, when formed into a film or sheet, despite the fact that the elongation to break is only a few percent. In the obtained resin composition, the elongation is several tens%, which is much larger than the geometric average value or the arithmetic average value calculated from the mixture ratio.

【0008】また、伸び率が改善されることにより、引
張強度、弾性率の低下が一般的に考えられるが、本発明
では、引張強度、弾性率は、ともに低下しないで算術平
均値に近似した値を保持する。すなわち、D−、DL−
ラクチドやヒドロキシカルボン酸とを共重合させるなど
の煩雑な手法を用いなくとも、ポリ−3−ヒドロキシ酪
酸とポリ乳酸とを単に溶融混練するだけで、大きな伸び
率を有する生分解性樹脂を容易に得ることができる。
Further, it is generally considered that the tensile strength and the elastic modulus are reduced by improving the elongation. However, in the present invention, both the tensile strength and the elastic modulus are approximated to the arithmetic average without decreasing. Hold the value. That is, D-, DL-
Without using a complicated method such as copolymerizing lactide or hydroxycarboxylic acid, simply melt-kneading poly-3-hydroxybutyric acid and polylactic acid can easily produce a biodegradable resin having a large elongation. Obtainable.

【0009】さらには、ポリ−3−ヒドロキシ酪酸とポ
リ乳酸との混合物を成形して得られたフィルムまたはシ
ートは、ポリ−3−ヒドロキシ酪酸の混合比に見合った
酸素透過率を示す。また、ポリ−3−ヒドロキシ酪酸の
混合比が大きくなるになるに従い透明性は減少するが、
ポリ−3−ヒドロキシ酪酸の混合比が20重量%程度ま
でならば、実用上、何等支障のないような充分に高い透
明性を維持させることができる。
Further, a film or a sheet obtained by molding a mixture of poly-3-hydroxybutyric acid and polylactic acid exhibits an oxygen permeability corresponding to the mixing ratio of poly-3-hydroxybutyric acid. Further, the transparency decreases as the mixing ratio of poly-3-hydroxybutyric acid increases,
If the mixing ratio of poly-3-hydroxybutyric acid is up to about 20% by weight, it is possible to maintain sufficiently high transparency without any practical problems.

【0010】本発明の要旨は、 (1) ポリ−3−ヒドロキシ酪酸とポリ乳酸とを溶融
混練温度180〜230℃、溶融混練時間3〜25分の
条件で溶融混練して得られる生分解性樹脂組成物。 (2) Tダイ・冷却法で得た未延伸フィルムまたはシ
ートの伸び率X(%)、引張強度Y(kgf/mm2)および
弾性率Z(kgf/mm2)のそれぞれが、下記の式(1)〜
式(3)を満足することができる機械的性能に優れた前
記(1)記載の生分解性樹脂組成物。
The gist of the present invention is as follows: (1) Biodegradability obtained by melt-kneading poly-3-hydroxybutyric acid and polylactic acid at a melt-kneading temperature of 180 to 230 ° C. and a melt-kneading time of 3 to 25 minutes. Resin composition. (2) Each of the elongation X (%), tensile strength Y (kgf / mm 2 ) and elastic modulus Z (kgf / mm 2 ) of the unstretched film or sheet obtained by the T-die / cooling method are represented by the following formulas: (1)-
The biodegradable resin composition according to the above (1), which is excellent in mechanical performance capable of satisfying the formula (3).

【0011】 X(%)≧2.5×〔A(X)×c+B(X)×(100−c)〕/100 式(1) Y(kgf/mm2)≧0.9×〔A(Y)×c+B(Y)×(100−c)〕/100 式(2) Z(kgf/mm2)≧0.9×〔A(Z)×c+B(Z)×(100−c)〕/100 式(3) [但し、ここでA(X)、A(Y)およびA(Z)はそ
れぞれポリ−3−ヒドロキシ酪酸の伸び率(%)、引張
強度(kgf/mm2)および弾性率(kgf/mm2)を、また、B
(X)、B(Y)およびB(Z)はそれぞれポリ乳酸の
伸び率(%)、引張強度(kgf/mm2)および弾性率(kgf
/mm2)を示す。また、cは、ポリ−3−ヒドロキシ酪酸
の混合比(重量%)を示す。]
X (%) ≧ 2.5 × [A (X) × c + B (X) × (100−c)] / 100 Formula (1) Y (kgf / mm 2 ) ≧ 0.9 × [A ( Y) × c + B (Y) × (100−c)] / 100 Equation (2) Z (kgf / mm 2 ) ≧ 0.9 × [A (Z) × c + B (Z) × (100−c)] / 100 where (A (X), A (Y) and A (Z) are the elongation (%), tensile strength (kgf / mm 2 ) and elastic modulus of poly-3-hydroxybutyric acid, respectively. (Kgf / mm 2 ) and B
(X), B (Y) and B (Z) are the elongation percentage (%), tensile strength (kgf / mm 2 ) and elastic modulus (kgf) of polylactic acid, respectively.
/ mm 2 ). C indicates the mixing ratio (% by weight) of poly-3-hydroxybutyric acid. ]

【0012】(3) ポリ−3−ヒドロキシ酪酸の混合
比が5〜60重量%である前記(1)または(2)記載
の生分解性樹脂組成物。 (4) ポリ−3−ヒドロキシ酪酸とポリ乳酸とを溶融
混練温度180〜230℃、溶融混練時間3〜25分の
条件で溶融混練して得られた生分解性樹脂組成物から成
形された成形体。
(3) The biodegradable resin composition according to (1) or (2), wherein the mixing ratio of poly-3-hydroxybutyric acid is 5 to 60% by weight. (4) Molding formed from a biodegradable resin composition obtained by melt-kneading poly-3-hydroxybutyric acid and polylactic acid at a melt-kneading temperature of 180 to 230 ° C. and a melt-kneading time of 3 to 25 minutes. body.

【0013】(5) Tダイ・冷却法で得た未延伸フィ
ルムまたはシートの伸び率X(%)、引張強度Y(kgf/
mm2)および弾性率Z(kgf/mm2)のそれぞれが、下記の
式(1)〜式(3)を満足することができる機械的性能
に優れた生分解性樹脂組成物から成形された前記(4)
記載の成形体。 X(%)≧2.5×〔A(X)×c+B(X)×(100−c)〕/100 式(1) Y(kgf/mm2)≧0.9×〔A(Y)×c+B(Y)×(100−c)〕/100 式(2) Z(kgf/mm2)≧0.9×〔A(Z)×c+B(Z)×(100−c)〕/100 式(3) [但し、ここでA(X)、A(Y)およびA(Z)はそ
れぞれポリ−3−ヒドロキシ酪酸の伸び率(%)、引張
強度(kgf/mm2)および弾性率(kgf/mm2)を、また、B
(X)、B(Y)およびB(Z)はそれぞれポリ乳酸の
伸び率(%)、引張強度(kgf/mm2)および弾性率(kgf
/mm2)を示す。また、cは、ポリ−3−ヒドロキシ酪酸
の混合比(重量%)を示す。]
(5) Elongation X (%) and tensile strength Y (kgf / kg) of the unstretched film or sheet obtained by the T-die cooling method
mm 2 ) and the elastic modulus Z (kgf / mm 2 ) were each formed from a biodegradable resin composition having excellent mechanical performance capable of satisfying the following formulas (1) to (3). The above (4)
The molded article according to the above. X (%) ≧ 2.5 × [A (X) × c + B (X) × (100−c)] / 100 Formula (1) Y (kgf / mm 2 ) ≧ 0.9 × [A (Y) × c + B (Y) × (100−c)] / 100 Formula (2) Z (kgf / mm 2 ) ≧ 0.9 × [A (Z) × c + B (Z) × (100−c)] / 100 Formula ( 3) [where A (X), A (Y) and A (Z) are the elongation percentage (%), tensile strength (kgf / mm 2 ) and elastic modulus (kgf / mm 2 ) and B
(X), B (Y) and B (Z) are the elongation percentage (%), tensile strength (kgf / mm 2 ) and elastic modulus (kgf) of polylactic acid, respectively.
/ mm 2 ). C indicates the mixing ratio (% by weight) of poly-3-hydroxybutyric acid. ]

【0014】(6) ポリ−3−ヒドロキシ酪酸の混合
比が5〜60重量%である前記(4)または(5)記載
の生分解性樹脂組成物から成形された成形体。 (7) ポリ−3−ヒドロキシ酪酸とポリ乳酸とを溶融
混練温度180〜230℃、溶融混練時間3〜25分の
条件で溶融混練して得られた生分解性樹脂組成物の熔融
物を0〜90℃にて冷却することを特徴とする成形加工
法。である。
(6) A molded article molded from the biodegradable resin composition according to (4) or (5), wherein the mixing ratio of poly-3-hydroxybutyric acid is 5 to 60% by weight. (7) A melt of the biodegradable resin composition obtained by melt-kneading poly-3-hydroxybutyric acid and polylactic acid at a melt-kneading temperature of 180 to 230 ° C. and a melt-kneading time of 3 to 25 minutes is defined as 0 A molding method characterized by cooling at ~ 90 ° C. It is.

【0015】本発明におけるポリ−3−ヒドロキシ酪酸
およびポリ乳酸のそれぞれの混合比とは、両者の混合物
のポリ−3−ヒドロキシ酪酸の、および、ポリ乳酸のそ
れぞれの含有率(重量%)を意味し、ポリ−3−ヒドロ
キシ酪酸とポリ乳酸との混合物100重量部中のポリ−
3−ヒドロキシ酪酸の重量部およびポリ乳酸の重量部の
それぞれとして表示される。
The respective mixing ratio of poly-3-hydroxybutyric acid and polylactic acid in the present invention means the respective contents (% by weight) of poly-3-hydroxybutyric acid and polylactic acid in the mixture of both. And a poly-3-hydroxybutyric acid and a polylactic acid in 100 parts by weight of a poly-lactic acid.
Expressed as parts by weight of 3-hydroxybutyric acid and parts by weight of polylactic acid.

【0016】また、本発明における成形物の代表例とし
て、フィルム、シート、繊維、ブローボトルおよび射出
成形体などを挙げることができる。なお、式(1)〜式
(3)における右辺は、それぞれ、混合比から算出され
る算術平均値の2.5倍の 伸び率(%)、0.9倍の引
張強度(kgf/mm2)および0.9倍の弾性率(kgf/mm2
をそれぞれ示している。また、本発明における溶融混練
時間とは、空のスクリュー型連続押し出し機にポリ−3
−ヒドロキシ酪酸およびポリ乳酸を投入してから、溶融
した樹脂が最初に吐出されるまでの時間とする。
Further, typical examples of the molded product in the present invention include films, sheets, fibers, blow bottles and injection molded products. In addition, the right sides in the formulas (1) to (3) are respectively an elongation (%) of 2.5 times the arithmetic average value calculated from the mixture ratio and a tensile strength (kgf / mm 2 ) of 0.9 times. ) And 0.9 times the elastic modulus (kgf / mm 2 )
Are respectively shown. Further, the melt-kneading time in the present invention means that an empty screw type continuous extruder is
-The time from the introduction of hydroxybutyric acid and polylactic acid to the first discharge of the molten resin.

【0017】[0017]

【発明の実施の形態】本発明において使用されるポリ−
3−ヒドロキシ酪酸は、化学合成法で製造されたもので
も、微生物による発酵法により製造されたものでもよ
い。しかしながら、化学合成法は現在のところ工業的に
困難であり、発酵法、たとえば、プロトモナス エクス
トルクエンス(Protomonas extorquens)K(微工研菌
寄第3548号)、ハイホミクロビウム メチロボラム(Hy
phomicrobium methylovorum)IFO 14180、ハイホミ
クロビウム ホウランディカム(Hyphomicrobium holla
ndicum)ATCC 27498、メチロバクテリウム フジサ
ワエンス(Methylobacterium fujisawaense)NCIB
12417、パラコッカス デニトリフィカンス(Paracoccu
s denitrificans)ATCC 17441、アルカリゲネス
ユートロファス(Alcaligenes eutrophus)ATCC 17
697およびシュードモナス レモニエリ(Pseudomonas l
emonnieri)ATCC 17989などの細菌を用いて容易に
製造することができる。これらの製造法の詳細は、たと
えば、特開平7−75590号公報などに記載されてい
る。
BEST MODE FOR CARRYING OUT THE INVENTION
3-Hydroxybutyric acid may be one produced by a chemical synthesis method or one produced by a fermentation method using a microorganism. However, chemical synthesis methods are currently industrially difficult, and fermentation methods such as, for example, Protomonas extorquens K (No. 3548 from Microtechnical Research Laboratories) and Hyphomicrobium methyloboram (Hy
phomicrobium methylovorum IFO 14180, Hyphomicrobium holla
ndicum) ATCC 27498, Methylobacterium fujisawaense NCIB
12417, Paracoccus denitrificans
s denitrificans) ATCC 17441, Alcaligenes
Eutrophus (Alcaligenes eutrophus) ATCC 17
697 and Pseudomonas l.
emonnieri) ATCC 17989. Details of these production methods are described in, for example, JP-A-7-75590.

【0018】この場合に、ポリ−3−ヒドロキシ酪酸を
これらポリ−3−ヒドロキシ酪酸を含有する細菌から分
離精製することが好ましい。これらポリ−3−ヒドロキ
シ酪酸を含有する細菌からポリ−3−ヒドロキシ酪酸を
分離精製する方法に関しては、たとえば、アメリカ特許
第3036959号明細書、同第4101533号明細
書、同第3275610号明細書およびヨーロッパ特許
第15123号明細書に示されているようなピリジン、
塩化メチレン、1,2ープロピレンカーボネート、クロ
ロホルム、1,2ージクロロエタンなどの溶剤による抽
出や次亜塩素酸や酵素を用いてポリ−3−ヒドロキシ酪
酸以外の菌体成分を可溶化し取り除く方法、また、特開
平7−177894号公報に示されている高圧ホモジナ
イザーで菌体を破砕し、引き続いて酵素、過酸化水素処
理などで精製する方法などが知られている。
In this case, it is preferable to separate and purify poly-3-hydroxybutyric acid from bacteria containing these poly-3-hydroxybutyric acids. Regarding the method for separating and purifying poly-3-hydroxybutyric acid from these bacteria containing poly-3-hydroxybutyric acid, for example, US Pat. Nos. 3,036,959, 4,015,533, 3,275,610, and Pyridine as shown in EP 15123,
A method of solubilizing and removing bacterial components other than poly-3-hydroxybutyric acid using a solvent such as methylene chloride, 1,2-propylene carbonate, chloroform, and 1,2-dichloroethane, or using hypochlorous acid or an enzyme; Also, a method is known in which cells are crushed with a high-pressure homogenizer disclosed in JP-A-7-177894, followed by purification with an enzyme, hydrogen peroxide treatment or the like.

【0019】本発明において使用されるポリ−3−ヒド
ロキシ酪酸は、重量平均分子量で100,000以上が
好ましい。ポリ−3−ヒドロキシ酪酸の重量平均分子量
が100,000未満の場合には、ポリ−3−ヒドロキ
シ酪酸の熱安定性が劣るため、また、100,000未
満の分子量のポリ−3−ヒドロキシ酪酸を使用すると溶
融混練時に溶融粘度が低くなり過ぎ、いずれの場合も、
満足な成形品が得られないか、あるいは成形品の機械的
性能が充分でないなどの不都合が生じる場合がある。
The poly-3-hydroxybutyric acid used in the present invention preferably has a weight average molecular weight of 100,000 or more. When the weight average molecular weight of poly-3-hydroxybutyric acid is less than 100,000, the thermal stability of poly-3-hydroxybutyric acid is inferior, and poly-3-hydroxybutyric acid having a molecular weight of less than 100,000 cannot be used. When used, the melt viscosity becomes too low during melt kneading, and in any case,
In some cases, a satisfactory molded product cannot be obtained, or the mechanical performance of the molded product is not sufficient.

【0020】また、本発明の組成物のもう一つの構成成
分であるポリ乳酸は、化学合成法、あるいは発酵法によ
り得られるL−乳酸を原料とし、たとえば、ラクチドと
した後、開環重合させる方法や、L−乳酸を直接重合さ
せる方法により製造することができる。ポリ乳酸の製造
法の詳細は、特開平6−287278号公報および特開
平6−65360号公報などに記載されている。本発明
で使用されるポリ乳酸は、ポリ−3−ヒドロキシ酪酸の
場合と同様に溶融粘度などの点から、重量平均分子量で
100,000以上が好ましく、さらには100,00
0から300,000が特に好ましい。
The polylactic acid, which is another component of the composition of the present invention, is obtained by using L-lactic acid obtained by a chemical synthesis method or a fermentation method as a raw material, for example, lactide, and then subjecting it to ring-opening polymerization. It can be produced by a method or a method of directly polymerizing L-lactic acid. Details of the method for producing polylactic acid are described in JP-A-6-287278 and JP-A-6-65360. The polylactic acid used in the present invention preferably has a weight average molecular weight of 100,000 or more, more preferably 100,000, from the viewpoint of melt viscosity and the like as in the case of poly-3-hydroxybutyric acid.
0 to 300,000 is particularly preferred.

【0021】本発明の生分解性樹脂組成物において、無
機充填剤や顔料、酸化防止剤、結晶核剤、可塑剤などの
慣用の補助添加物を配合することもできる。また、本発
明における溶融混練には、ポリ−3−ヒドロキシ酪酸と
ポリ乳酸との共重合体など相溶化剤の添加は必要としな
い。本発明の場合は、このような相溶化剤を用いること
なしに、生分解性、成形性および機械的性能が共に優れ
た生分解性樹脂を得ることができる。
In the biodegradable resin composition of the present invention, conventional auxiliary additives such as inorganic fillers and pigments, antioxidants, nucleating agents, plasticizers and the like can be blended. The melt-kneading in the present invention does not require the addition of a compatibilizer such as a copolymer of poly-3-hydroxybutyric acid and polylactic acid. In the case of the present invention, a biodegradable resin having excellent biodegradability, moldability and mechanical performance can be obtained without using such a compatibilizer.

【0022】本発明において、ポリ−3−ヒドロキシ酪
酸とポリ乳酸とを溶融混練する際、熔融混練温度は18
0〜230℃とされる。180℃より低い温度では、ポ
リ−3−ヒドロキシ酪酸およびポリ乳酸が充分に溶融せ
ず、そのために充分な混練が行われない危険性がある。
また、230℃より高い温度ではポリ−3−ヒドロキシ
酪酸およびポリ乳酸が熱分解され、満足し得るような機
械的性能が得られないおそれがある。
In the present invention, when melt-kneading poly-3-hydroxybutyric acid and polylactic acid, the melt-kneading temperature is 18
0-230 ° C. If the temperature is lower than 180 ° C., there is a risk that the poly-3-hydroxybutyric acid and the polylactic acid do not melt sufficiently, so that sufficient kneading is not performed.
At a temperature higher than 230 ° C., poly-3-hydroxybutyric acid and polylactic acid may be thermally decomposed, and satisfactory mechanical performance may not be obtained.

【0023】溶融混練時間は、3〜25分とされる。3
分より短いと両原料が充分に溶融しない危険性があり、
25分より長いとポリ−3−ヒドロキシ酪酸およびポリ
乳酸が熱分解され、充分な機械的性能が得られなくなる
危険性がある。
The melt-kneading time is 3 to 25 minutes. 3
If it is shorter than the minute, there is a risk that both raw materials will not melt enough,
If the time is longer than 25 minutes, there is a risk that poly-3-hydroxybutyric acid and polylactic acid are thermally decomposed and sufficient mechanical performance cannot be obtained.

【0024】本発明における大きな伸び率の獲得は、主
にポリ乳酸の結晶化速度がポリ−3−ヒドロキシ酪酸と
の溶融混練により低下し、結果としてポリ乳酸の結晶化
度が低くなることに起因すると推測され、DSC測定に
よるポリ乳酸のガラス転移点が、約50〜70℃である
ことから、たとえば、冷却温度を100℃などとした場
合、ポリ乳酸は結晶化が進む方向となり、得られる伸び
率が小さくなるだけでなく、冷却に必要な時間が長くな
るため生産性の面から見ても好ましくない。従って、フ
ィルムおよびシートに成形する場合の冷却チルロール温
度および射出成形品などの成形体を得る場合の金型温度
などの冷却温度は、0〜90℃とする必要性があり、好
ましくは0〜70℃とされる。
The high elongation in the present invention is mainly attributable to the fact that the crystallization rate of polylactic acid is reduced by melt-kneading with poly-3-hydroxybutyric acid, and as a result, the crystallinity of polylactic acid is reduced. It is presumed that the glass transition point of polylactic acid by DSC measurement is about 50 to 70 ° C. Therefore, for example, when the cooling temperature is set to 100 ° C., for example, polylactic acid becomes in the direction of crystallization, and the obtained elongation is Not only is the rate reduced, but the time required for cooling is prolonged, which is not preferable in terms of productivity. Therefore, the cooling temperature such as the cooling chill roll temperature when forming into a film or a sheet and the mold temperature when obtaining a molded body such as an injection molded product need to be 0 to 90 ° C., preferably 0 to 70 ° C. ° C.

【0025】本発明において溶融混練する際のポリ−3
−ヒドロキシ酪酸とポリ乳酸の具体的な混合比は、溶融
混練の温度、滞留時間および混練状態などによって異な
り、一概に特定し得ないが、通常は、ポリ−3−ヒドロ
キシ酪酸5〜60重量%、すなわちポリ乳酸95〜40
重量%が好ましい。ポリ−3−ヒドロキシ酪酸の混合比
が60重量%よりも大きくなるとポリ−3−ヒドロキシ
酪酸の、また、ポリ−3−ヒドロキシ酪酸の混合比が5
重量%未満になるとポリ乳酸の、それぞれの脆い性質が
現れるため、引張強度、弾性率は算術平均値に近似した
値を保持することはできるが、伸び率が小さくなる。
In the present invention, poly-3 at the time of melt-kneading is used.
-The specific mixing ratio of hydroxybutyric acid and polylactic acid depends on the temperature of melt-kneading, residence time, kneading state and the like, and cannot be specified unconditionally, but is usually 5 to 60% by weight of poly-3-hydroxybutyric acid. That is, polylactic acid 95-40
% By weight is preferred. When the mixing ratio of poly-3-hydroxybutyric acid is more than 60% by weight, the mixing ratio of poly-3-hydroxybutyric acid and poly-3-hydroxybutyric acid is 5%.
When the content is less than% by weight, the respective fragile properties of polylactic acid appear, so that the tensile strength and the elastic modulus can maintain values close to the arithmetic average value, but the elongation becomes small.

【0026】[0026]

【実施例】以下の実施例により本発明をさらに詳しく説
明するが、本発明はこれらの実施例に限定されるもので
はない。なお、以下の実施例および比較例における引張
特性および酸素透過率はそれぞれ次のようにして測定し
た。 引張特性 装置:ストログラフV1ーC(東洋精機製作所社製) 試験片形状:短冊型 長さ100mm、幅10mm、チャッ
ク間隔50mm 引張速度:50mm/min. 測定条件:温度23℃、相対湿度50%
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. The tensile properties and oxygen permeability in the following examples and comparative examples were measured as follows. Tensile properties Apparatus: Strograph V1-C (manufactured by Toyo Seiki Seisaku-sho, Ltd.) Specimen shape: strip type, length 100 mm, width 10 mm, chuck interval 50 mm Peeling speed: 50 mm / min. Measurement conditions: temperature 23 ° C., relative humidity 50%

【0027】酸素透過率 装置:OX−TRAN 10/50A(モダン コント
ロール社 Modern controls, Inc. 製) 測定条件:温度 23℃,相対湿度 60% また、以下の実施例および比較例において、「PHB」
および「PLA」は、ポリ−3−ヒドロキシ酪酸および
ラクティー(L−純度98%のポリ乳酸の商品名 株式
会社島津製作所製)をそれぞれ示す。
Oxygen permeability: OX-TRAN 10 / 50A (manufactured by Modern Controls, Inc.) Measurement conditions: temperature 23 ° C., relative humidity 60% In the following Examples and Comparative Examples, “PHB” was used.
And "PLA" indicate poly-3-hydroxybutyric acid and lacty (trade name of polylactic acid having an L-purity of 98%, manufactured by Shimadzu Corporation).

【0028】実施例1〜6 プロトモナス エクストルクエンス(Protomonas extor
quens)K(微工研菌寄第3548号)を好気的に培養し、
菌体内にPHBを蓄積させた後、高圧ホモジナイザーで
菌体を破壊し、引続き蛋白質分解酵素、過酸化水素によ
る処理で精製して高純度のPHBを得た。このPHBを
スクリュー型押出機を用いてペレット化した。こうして
得られたPHBペレットとPLAとを、PHB混合比が
5重量%、10重量%、20重量%、30重量%、40
重量%および60重量%となるようにそれぞれ秤取し、
両者を混合した。これを単軸押出機(株式会社東洋精機
製、ラボプラストミル、スクリュー直径:20mm)を使
用し、溶融混練時間5〜6分、シリンダー温度180〜
190℃の条件で溶融混練を行い、Tダイ・冷却ロール
法により、厚さ約150μmのフィルムを作製した。冷
却チルロールは60℃に温調した。その結果、いずれの
混合比においても容易にフィルムを得ることができた。
Examples 1 to 6 Protomonas extorcens
quens) K (Microtechnical Laboratory No. 3548) is cultured aerobically,
After accumulating PHB in the cells, the cells were destroyed with a high-pressure homogenizer and subsequently purified by treatment with a protease and hydrogen peroxide to obtain high-purity PHB. This PHB was pelletized using a screw type extruder. The PHB pellets thus obtained and PLA were mixed at a PHB mixing ratio of 5% by weight, 10% by weight, 20% by weight, 30% by weight and 40% by weight.
Weight and 60% by weight, respectively.
Both were mixed. Using a single screw extruder (manufactured by Toyo Seiki Co., Ltd., Labo Plastomill, screw diameter: 20 mm), melt kneading time is 5-6 minutes, cylinder temperature is 180-
Melt kneading was performed at 190 ° C., and a film having a thickness of about 150 μm was produced by a T-die / cooling roll method. The temperature of the cooling chill roll was adjusted to 60 ° C. As a result, films could be easily obtained at any mixing ratio.

【0029】得られたフィルムから、長さ100mm、幅
10mmの短冊型試験片を切り出し、この試験片について
23℃での引張試験を行い、また、酸素透過率を測定し
た。これらの結果を表1に示す。
From the obtained film, a rectangular test piece having a length of 100 mm and a width of 10 mm was cut out, a tensile test was performed on the test piece at 23 ° C., and the oxygen permeability was measured. Table 1 shows the results.

【0030】[0030]

【表1】 [Table 1]

【0031】比較例1 実施例1〜6で用いたPHBペレットのみを実施例1〜
6と同様にして成形し、厚さ約150μmのフィルムを
作製した。その結果、フィルムを容易に得ることができ
た。得られたフィルムから、長さ100mm、幅10mmの
短冊型試験片を切り出し、この試験片について23℃で
の引張試験を行い、また、酸素透過率を測定した。これ
らの結果を表1に示す。
Comparative Example 1 Only the PHB pellets used in Examples 1 to 6 were used.
6, and a film having a thickness of about 150 μm was produced. As a result, a film could be easily obtained. From the obtained film, a strip-shaped test piece having a length of 100 mm and a width of 10 mm was cut out, a tensile test was performed on the test piece at 23 ° C., and the oxygen permeability was measured. Table 1 shows the results.

【0032】比較例2 PLAのみを実施例1〜6と同様にして成形し、厚さ約
150μmのフィルムを作製した。但し、冷却チルロー
ル温度は28℃、60℃および90℃とした。その結
果、いずれの冷却温度においても容易にフィルムを得る
ことができた。冷却温度60℃のとき得られたフィルム
から、長さ100mm、幅10mmの短冊型試験片を切り出
し、この試験片について23℃での引張試験を行い、ま
た、酸素透過率を測定した。これらの結果を表1に示
す。なお、冷却チルロール温度を28℃および90℃の
それぞれとして得られたフィルムについても、これと同
様な結果が得られた。
Comparative Example 2 Only PLA was molded in the same manner as in Examples 1 to 6, to produce a film having a thickness of about 150 μm. However, the cooling chill roll temperatures were 28 ° C, 60 ° C and 90 ° C. As a result, a film could be easily obtained at any cooling temperature. A rectangular test piece having a length of 100 mm and a width of 10 mm was cut out from the film obtained at a cooling temperature of 60 ° C., a tensile test was performed on the test piece at 23 ° C., and the oxygen permeability was measured. Table 1 shows the results. The same results were obtained for the films obtained with the cooling chill roll temperatures of 28 ° C. and 90 ° C., respectively.

【0033】比較例3 実施例1〜6で示したPHBペレットおよびPLAを用
い、両者をPHB混合比が60重量%となるように秤取
し、混合した。この混合物を実施例1〜6と同様に成形
して、フィルムの作製を試みた。但し、溶融混練温度を
250℃とした。その結果、冷却チルロールに溶融した
樹脂が粘着し、フィルムを作製できなかった。
Comparative Example 3 Using the PHB pellets and PLA shown in Examples 1 to 6, both were weighed and mixed so that the PHB mixing ratio became 60% by weight. This mixture was molded in the same manner as in Examples 1 to 6, and an attempt was made to produce a film. However, the melting and kneading temperature was 250 ° C. As a result, the molten resin adhered to the cooling chill roll, and a film could not be produced.

【0034】比較例4 実施例1〜6で示したPHBペレットおよびPLAを用
い、両者をPHB混合比が60重量%となるように秤取
し、混合した。この混合物を実施例1〜6と同様にして
成形し、厚さ約150μmのフィルムを作製した。但
し、溶融混練時間2〜2.5分で容易にフィルムを得る
ことができた。得られたフィルムから、長さ100mm、
幅10mmの短冊型試験片を切り出し、この試験片につい
て23℃での引張試験を行った。その結果を表1に示し
たが、引張強度および弾性率は、混合比より算出される
算術平均値の0.9倍を越える高い値を保持したが、伸
び率は、2.5倍を下回り、満足する結果を得られなか
った。
Comparative Example 4 The PHB pellets and PLA shown in Examples 1 to 6 were weighed and mixed so that the PHB mixing ratio became 60% by weight. This mixture was molded in the same manner as in Examples 1 to 6, to produce a film having a thickness of about 150 μm. However, a film could be easily obtained in a melt-kneading time of 2 to 2.5 minutes. From the obtained film, length 100mm,
A rectangular test piece having a width of 10 mm was cut out, and a tensile test at 23 ° C. was performed on the test piece. The results are shown in Table 1. The tensile strength and elastic modulus maintained a high value exceeding 0.9 times the arithmetic average value calculated from the mixing ratio, but the elongation was less than 2.5 times. , Did not give satisfactory results.

【0035】比較例5 実施例1〜6で示したPHBペレットおよびPLAを用
い、両者をPHB混合比が60重量%となるように秤取
し、混合した。この混合物を実施例1〜6と同様にして
成形し、厚さ約150μmのフィルムを作製した。但
し、混練時間を30分とした。その結果、容易にフィル
ムを作製することができた。得られたフィルムから、長
さ100mm、幅10mmの短冊型試験片を切り出し、この
試験片について23℃での引張試験を行った。その結果
を表1に示したが、伸び率は、混合比より算出される算
術平均値の2.5倍を越えたが、引張強度および弾性率
は、0.9倍を下回り、満足できる結果を得られなかっ
た。
Comparative Example 5 Using the PHB pellets and PLA shown in Examples 1 to 6, both were weighed and mixed so that the PHB mixing ratio became 60% by weight. This mixture was molded in the same manner as in Examples 1 to 6, to produce a film having a thickness of about 150 μm. However, the kneading time was 30 minutes. As a result, a film could be easily produced. A rectangular test piece having a length of 100 mm and a width of 10 mm was cut out from the obtained film, and a tensile test at 23 ° C. was performed on the test piece. The results are shown in Table 1. The elongation exceeded 2.5 times the arithmetic average value calculated from the mixing ratio, but the tensile strength and elastic modulus were below 0.9 times, which was satisfactory. Could not be obtained.

【0036】[0036]

【発明の効果】本発明により、従来のポリ−3−ヒドロ
キシ酪酸およびポリ乳酸の低い伸び率を改善することが
でき、また、機械的性能、耐熱性、および生分解性に優
れたフィルム、シート、繊維、ブローボトル、射出成形
体およびその他の成形物が容易に得られる。
According to the present invention, films and sheets which can improve the low elongation of conventional poly-3-hydroxybutyric acid and polylactic acid, and are excellent in mechanical performance, heat resistance and biodegradability. , Fibers, blow bottles, injection molded articles and other molded products are easily obtained.

フロントページの続き (72)発明者 小関 英一 京都府京都市中京区西ノ京桑原町1番地 株式会社島津製作所三条工場内Continuation of the front page (72) Eiichi Koseki, Inventor 1 Shiwazu Works, Sanjo Factory, 1 Nishinokyo Kuwaharacho, Nakagyo-ku, Kyoto-shi, Kyoto

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 ポリ−3−ヒドロキシ酪酸とポリ乳酸
とを溶融混練温度180〜230℃、溶融混練時間3〜
25分の条件で溶融混練して得られる生分解性樹脂組成
物。
1. A method of melting and kneading poly-3-hydroxybutyric acid and polylactic acid at a temperature of 180 to 230.degree.
A biodegradable resin composition obtained by melt-kneading under the conditions of 25 minutes.
【請求項2】 Tダイ・冷却法で得た未延伸フィルムま
たはシートの伸び率X(%)、引張強度Y(kgf/mm2
および弾性率Z(kgf/mm2)のそれぞれが、下記の式
(1)〜式(3)を満足することができる機械的性能に
優れた請求項1記載の生分解性樹脂組成物。 X(%)≧2.5×〔A(X)×c+B(X)×(100−c)〕/100 式(1) Y(kgf/mm2)≧0.9×〔A(Y)×c+B(Y)×(100−c)〕/100 式(2) Z(kgf/mm2)≧0.9×〔A(Z)×c+B(Z)×(100−c)〕/100 式(3) [但し、ここでA(X)、A(Y)およびA(Z)はそ
れぞれポリ−3−ヒドロキシ酪酸の伸び率(%)、引張
強度(kgf/mm2)および弾性率(kgf/mm2)を、また、B
(X)、B(Y)およびB(Z)はそれぞれポリ乳酸の
伸び率(%)、引張強度(kgf/mm2)および弾性率(kgf
/mm2)を示す。また、cは、ポリ−3−ヒドロキシ酪酸
の混合比(重量%)を示す。]
2. An elongation percentage X (%) and a tensile strength Y (kgf / mm 2 ) of an unstretched film or sheet obtained by a T-die cooling method.
2. The biodegradable resin composition according to claim 1, wherein each of the elastic modulus Z (kgf / mm 2 ) and the mechanical properties satisfying the following formulas (1) to (3) are excellent. X (%) ≧ 2.5 × [A (X) × c + B (X) × (100−c)] / 100 Formula (1) Y (kgf / mm 2 ) ≧ 0.9 × [A (Y) × c + B (Y) × (100−c)] / 100 Formula (2) Z (kgf / mm 2 ) ≧ 0.9 × [A (Z) × c + B (Z) × (100−c)] / 100 Formula ( 3) [where A (X), A (Y) and A (Z) are the elongation percentage (%), tensile strength (kgf / mm 2 ) and elastic modulus (kgf / mm 2 ) and B
(X), B (Y) and B (Z) are the elongation percentage (%), tensile strength (kgf / mm 2 ) and elastic modulus (kgf) of polylactic acid, respectively.
/ mm 2 ). C indicates the mixing ratio (% by weight) of poly-3-hydroxybutyric acid. ]
【請求項3】 ポリ−3−ヒドロキシ酪酸の混合比が5
〜60重量%である請求項1または2記載の生分解性樹
脂組成物。
3. The mixing ratio of poly-3-hydroxybutyric acid is 5
The biodegradable resin composition according to claim 1, wherein the content is from 60 to 60% by weight.
【請求項4】 ポリ−3−ヒドロキシ酪酸とポリ乳酸と
を溶融混練温度180〜230℃、溶融混練時間3〜2
5分の条件で溶融混練して得られた生分解性樹脂組成物
から成形された成形体。
4. A melt-kneading temperature of poly-3-hydroxybutyric acid and polylactic acid of 180 to 230 ° C. and a melt-kneading time of 3 to 2
A molded article molded from the biodegradable resin composition obtained by melt-kneading under the conditions of 5 minutes.
【請求項5】 Tダイ・冷却法で得た未延伸フィルムま
たはシートの伸び率X(%)、引張強度Y(kgf/mm2
および弾性率Z(kgf/mm2)のそれぞれが、下記の式
(1)〜式(3)を満足することができる機械的性能に
優れた生分解性樹脂組成物から成形された請求4記載の
成形体。 X(%)≧2.5×〔A(X)×c+B(X)×(100−c)〕/100 式(1) Y(kgf/mm2)≧0.9×〔A(Y)×c+B(Y)×(100−c)〕/100 式(2) Z(kgf/mm2)≧0.9×〔A(Z)×c+B(Z)×(100−c)〕/100 式(3) [但し、ここでA(X)、A(Y)およびA(Z)はそ
れぞれポリ−3−ヒドロキシ酪酸の伸び率(%)、引張
強度(kgf/mm2)および弾性率(kgf/mm2)を、また、B
(X)、B(Y)およびB(Z)はそれぞれポリ乳酸の
伸び率(%)、引張強度(kgf/mm2)および弾性率(kgf
/mm2)を示す。また、cは、ポリ−3−ヒドロキシ酪酸
の混合比(重量%)を示す。]
5. An elongation percentage X (%) and a tensile strength Y (kgf / mm 2 ) of an unstretched film or sheet obtained by a T-die cooling method.
And a modulus of elasticity Z (kgf / mm 2 ) formed from a biodegradable resin composition having excellent mechanical performance and capable of satisfying the following formulas (1) to (3). Molded body. X (%) ≧ 2.5 × [A (X) × c + B (X) × (100−c)] / 100 Formula (1) Y (kgf / mm 2 ) ≧ 0.9 × [A (Y) × c + B (Y) × (100−c)] / 100 Formula (2) Z (kgf / mm 2 ) ≧ 0.9 × [A (Z) × c + B (Z) × (100−c)] / 100 Formula ( 3) [where A (X), A (Y) and A (Z) are the elongation percentage (%), tensile strength (kgf / mm 2 ) and elastic modulus (kgf / mm 2 ) and B
(X), B (Y) and B (Z) are the elongation percentage (%), tensile strength (kgf / mm 2 ) and elastic modulus (kgf) of polylactic acid, respectively.
/ mm 2 ). C indicates the mixing ratio (% by weight) of poly-3-hydroxybutyric acid. ]
【請求項6】 ポリ−3−ヒドロキシ酪酸の混合比が5
〜60重量%である請求項4または5記載の生分解性樹
脂組成物から成形された成形体。
6. The mixture ratio of poly-3-hydroxybutyric acid is 5
A molded article molded from the biodegradable resin composition according to claim 4 or 5 to 60% by weight.
【請求項7】 ポリ−3−ヒドロキシ酪酸とポリ乳酸と
を溶融混練温度180〜230℃、溶融混練時間3〜2
5分の条件で溶融混練して得られた生分解性樹脂組成物
の熔融物を0〜90℃にて冷却することを特徴とする成
形加工法。
7. A melt-kneading temperature of 180 to 230 ° C. and a melt-kneading time of 3 to 2 for poly-3-hydroxybutyric acid and polylactic acid.
A molding method comprising cooling a melt of the biodegradable resin composition obtained by melt-kneading under the conditions of 5 minutes at 0 to 90 ° C.
JP22613496A 1996-08-09 1996-08-09   Biodegradable resin molding Expired - Lifetime JP3623053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22613496A JP3623053B2 (en) 1996-08-09 1996-08-09   Biodegradable resin molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22613496A JP3623053B2 (en) 1996-08-09 1996-08-09   Biodegradable resin molding

Publications (2)

Publication Number Publication Date
JPH1053698A true JPH1053698A (en) 1998-02-24
JP3623053B2 JP3623053B2 (en) 2005-02-23

Family

ID=16840391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22613496A Expired - Lifetime JP3623053B2 (en) 1996-08-09 1996-08-09   Biodegradable resin molding

Country Status (1)

Country Link
JP (1) JP3623053B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11323115A (en) * 1998-05-11 1999-11-26 Riken Vinyl Industry Co Ltd Biodegradable polylactate composition
JP2006529001A (en) * 2003-06-13 2006-12-28 スリーエム イノベイティブ プロパティズ カンパニー Thermally activatable and removable adhesive tape
JP2018016720A (en) * 2016-07-28 2018-02-01 大阪瓦斯株式会社 Biodegradability promoting agent and biodegradable resin composition containing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11323115A (en) * 1998-05-11 1999-11-26 Riken Vinyl Industry Co Ltd Biodegradable polylactate composition
JP2006529001A (en) * 2003-06-13 2006-12-28 スリーエム イノベイティブ プロパティズ カンパニー Thermally activatable and removable adhesive tape
JP2018016720A (en) * 2016-07-28 2018-02-01 大阪瓦斯株式会社 Biodegradability promoting agent and biodegradable resin composition containing the same

Also Published As

Publication number Publication date
JP3623053B2 (en) 2005-02-23

Similar Documents

Publication Publication Date Title
EP0996670B1 (en) Pha compositions and methods for their use in the production of pha films
EP0683207B1 (en) L-lactic acid polymer composition, molded product and film
EP1449867B1 (en) Window of polylactic acid based resin films
WO1999025758A1 (en) Biodegradable film and process for producing the same
JP2006328117A (en) Impact-resistant environmental material, method for producing the same, and molded article
JPH11222528A (en) Biodegradable film and its production
JP3707240B2 (en)   Polylactic acid composition, molded product, film, fiber and molded product using the same
US6462105B1 (en) Aliphatic polyester composition for masterbatch and process for producing aliphatic polyester film with the composition
JP3328418B2 (en) Heat-shrinkable polylactic acid film
JP5145695B2 (en) Method for producing polylactic acid resin film
JP3182077B2 (en) Biodegradable film
JP3472644B2 (en) L-lactic acid polymer composition, molded product and film
KR101695926B1 (en) Polyester film and preparation method thereof
JP3623053B2 (en)   Biodegradable resin molding
JP3739311B2 (en) Biodegradable film
JP2002012674A (en) Aliphatic polyester composition for master batch and method for producing aliphatic polyester film using the composition
JP3459585B2 (en) Easy tear polylactic acid based biaxially stretched film
JP2530557B2 (en) Biodegradable resin composition
JPH1160917A (en) Biodegradable resin composition and its production
JP3490241B2 (en) Degradable films or sheets, molded articles made of these, and methods for decomposing them
JPH0977124A (en) Packing bag composed of polylactic acid polymer
JP4318440B2 (en) Biodegradable film and method for producing the same
JP2530556B2 (en) Biodegradable resin composition
JP2008200860A (en) Method for producing polylactic acid resin film
JPH11349706A (en) Biodegradable film and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 9

EXPY Cancellation because of completion of term