JP2530556B2 - Biodegradable resin composition - Google Patents

Biodegradable resin composition

Info

Publication number
JP2530556B2
JP2530556B2 JP5111006A JP11100693A JP2530556B2 JP 2530556 B2 JP2530556 B2 JP 2530556B2 JP 5111006 A JP5111006 A JP 5111006A JP 11100693 A JP11100693 A JP 11100693A JP 2530556 B2 JP2530556 B2 JP 2530556B2
Authority
JP
Japan
Prior art keywords
phb
pcl
present
melt viscosity
bottle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5111006A
Other languages
Japanese (ja)
Other versions
JPH06192550A (en
Inventor
豊 常盤
晃 岩本
正広 原田
茂樹 今川
貞治 浦上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Mitsubishi Gas Chemical Co Inc filed Critical Agency of Industrial Science and Technology
Priority to JP5111006A priority Critical patent/JP2530556B2/en
Publication of JPH06192550A publication Critical patent/JPH06192550A/en
Application granted granted Critical
Publication of JP2530556B2 publication Critical patent/JP2530556B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、優れた成形性、機械的
性能を有し、薬品、化粧品、食品及び産業資材・機器類
の包装部材、機械部品、繊維、モノフィラメント及び衣
料等として使用される生分解性に優れる樹脂組成物に関
する。
INDUSTRIAL APPLICABILITY The present invention has excellent moldability and mechanical performance, and is used as a packaging member for chemicals, cosmetics, foods and industrial materials / equipment, machine parts, fibers, monofilaments, clothing and the like. The present invention relates to a resin composition having excellent biodegradability.

【0002】[0002]

【従来の技術】従来、数多くのプラスチックスが、包装
材料、衣料、繊維・モノフィラメント及び工業機械部品
用の成形材料として、各種の産業分野において利用され
ている。同時に、環境保護の立場から、プラスチックス
の再利用が叫ばれるとともに、自然環境条件で微生物の
働きにより完全に分解する生分解性の高分子材料の開発
が社会的に強く要請されている。これまでに知られてい
る生分解性の高分子材料の中で、ポリβ−ヒドロキシ酪
酸(以下PHBと略す)とポリカプロラクトン(以下P
CLと略す)は自然環境条件で完全に分解する生分解性
に優れ、かつ熱可塑性であることから既存の成形加工法
による各種用途への利用が積極的に検討されつつある。
しかしながら、PHBは、融点(170から180℃)
付近で分解しやすいため成形が難しく、また、引張及び
曲げの強度は高いが、伸びが小さく耐衝撃性が低いとい
う欠点を有している。一方、PCLは伸び及び衝撃強度
は大きいものの弾性率が低いため形状保持性が低く、し
かも融点が60℃と低いために耐熱性が悪いという欠点
を有している。これらの理由によりPHBとPCLは、
環境保護に関する社会的要請に応えられるだけの優れた
生分解性を有しているにもかかわらず、いまだ各種産業
分野で十分に利用されるに至っていない。
2. Description of the Related Art Conventionally, many plastics have been used in various industrial fields as molding materials for packaging materials, clothing, fibers / monofilaments and industrial machine parts. At the same time, from the standpoint of environmental protection, the reuse of plastics is being called for, and there is a strong social demand for the development of biodegradable polymer materials that are completely decomposed by the action of microorganisms under natural environmental conditions. Among the biodegradable polymer materials known so far, poly β-hydroxybutyric acid (hereinafter abbreviated as PHB) and polycaprolactone (hereinafter P
CL (abbreviated as CL) has excellent biodegradability that completely decomposes under natural environmental conditions and is thermoplastic, and therefore its use for various applications by the existing molding method is being actively investigated.
However, PHB has a melting point (170 to 180 ° C)
Molding is difficult because it easily decomposes in the vicinity, and it has high tensile and bending strengths, but has the drawback of low elongation and low impact resistance. On the other hand, PCL has the drawbacks of high elongation and impact strength, but low shape retention due to low elastic modulus, and poor heat resistance due to low melting point of 60 ° C. For these reasons, PHB and PCL are
Despite having excellent biodegradability to meet social demands for environmental protection, it has not yet been fully utilized in various industrial fields.

【0003】本発明者の一部は、先にPCLとPHBを
混合することにより、微生物によって完全に分解され、
かつプラスチック成形材料として適用できるプラスチッ
クを得ることを見出し、特許出願(特開平3−1574
50)を行っている。このプラスチックは、生分解性の
点ではすぐれているものの、成形材料としての実用性の
点ではいまだ不十分である。即ち、この従来技術の場
合、その実施例の記載から明らかなように、PHBとP
CLを等重量で混合するとともに、その混合物中にPH
BとPCLとの共重合体を存在させることにより、伸び
率のよいフィルムを得ている。しかし、このフィルム
は、逆に、その共重合体の存在が原因になって、種々の
新しい問題を生じる。例えば、共重合体の存在は、PH
BとPCLの溶融混合物の結晶化速度を遅くさせるの
で、その成形に際して、完全に結晶化した成形品を得る
ためには、その冷却時間が長くなるという問題がある。
また、PHBとPCLの共重合体の存在は、成形品の結
晶性を低下させ、成形品のガスバリアー性を悪化させる
という問題もある。
Some of the inventors of the present invention have completely decomposed microorganisms by first mixing PCL and PHB,
Moreover, it was found that a plastic applicable as a plastic molding material was obtained, and a patent application (Japanese Patent Laid-Open No. 3-1574)
50). Although this plastic is excellent in biodegradability, it is still insufficient in practicality as a molding material. That is, in the case of this conventional technique, as is clear from the description of the embodiment, PHB and P
CL is mixed with equal weight, and PH is mixed in the mixture.
By allowing the copolymer of B and PCL to be present, a film having a good elongation rate is obtained. However, this film, on the contrary, presents various new problems due to the presence of its copolymer. For example, the presence of the copolymer is
Since the crystallization speed of the molten mixture of B and PCL is slowed down, there is a problem that the cooling time becomes long in order to obtain a completely crystallized molded product during its molding.
In addition, the presence of the copolymer of PHB and PCL lowers the crystallinity of the molded product and deteriorates the gas barrier property of the molded product.

【0004】[0004]

【発明が解決しようとする課題】本発明は、従来技術に
見られる前記問題を解決し、成形性にすぐれるととも
に、すぐれた物性の成形品を与える、高い実用性を有す
る生分解性樹脂組成物を提供することをその課題とす
る。
DISCLOSURE OF THE INVENTION The present invention solves the above problems found in the prior art, has excellent moldability, and gives a molded article having excellent physical properties, which is a highly practical biodegradable resin composition. The task is to provide things.

【0005】[0005]

【課題を解決するための手段】本発明者らは、前記課題
を解決すべく鋭意研究を重ねた結果、本発明を完成する
に至った。即ち、本発明によれば、185℃における粘
度がn(A)であるポリβ−ヒドロキシ酪酸と、185
℃における粘度がn(B)であるポリカプロラクトンか
らなり、該ポリβ−ヒドロキシ酪酸の混合比c(A)が
10〜45重量%の範囲内にあり、かつ前記n(A)、
n(B)及びc(A)が下記式を満足することを特徴と
する成形性及び機械的性能にすぐれる生分解性樹脂組成
物が提供される。 4×10-3×c(A)−1.7≦log(n(A)/n
(B))≦4×10-3×c(A)−1.3
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have completed the present invention. That is, according to the present invention, poly (β-hydroxybutyric acid) having a viscosity of n (A) at 185 ° C. and 185
Composed of polycaprolactone having a viscosity of n (B) at 0 ° C., the mixing ratio c (A) of the poly β-hydroxybutyric acid is in the range of 10 to 45% by weight, and the n (A),
There is provided a biodegradable resin composition having excellent moldability and mechanical performance, characterized in that n (B) and c (A) satisfy the following formula. 4 × 10 −3 × c (A) -1.7 ≦ log (n (A) / n
(B)) ≦ 4 × 10 −3 × c (A) -1.3

【0006】本発明で使用されるPHBは、溶融粘度が
500 Poise以上のポリマーであり、微生物法あ
るいは化学合成法のいずれの方法で製造されたものでも
よい。しかし、現在のところ工業的には化学合成法は非
常に困難であり、微生物法により容易に製造することが
出来る。このPHBは、微生物あるいは酵素(PHBデ
ポリメラーゼ)により完全に分解されることが明らかに
されている。また、本発明に使用されるPHBは成形性
を改善するための可塑剤、結晶化速度を高めるための核
剤・結晶化促進剤を含んでいてもよい。
The PHB used in the present invention is a polymer having a melt viscosity of 500 Poise or more, and may be produced by any of the microbial method and the chemical synthesis method. However, at present, the chemical synthesis method is very difficult industrially and can be easily produced by the microbial method. It has been clarified that this PHB is completely decomposed by a microorganism or an enzyme (PHB depolymerase). The PHB used in the present invention may contain a plasticizer for improving moldability and a nucleating agent / crystallization accelerator for increasing the crystallization rate.

【0007】本発明で使用されるPCLは、化学的な反
応により合成されるポリエステルであり、例えば、カプ
ロラクトンの開環重付加反応で製造される他、カプロラ
クトンの加水分解あるいは別の化学的手法により合成さ
れたヒドロキシカルボン酸やヒドロキシカルボン酸エス
テル類の重縮合反応により合成することが出来る。この
PCLも微生物あるいは酵素(リパーゼあるいはエステ
ラーゼ)により完全に分解されることが明らかにされて
いる。
The PCL used in the present invention is a polyester synthesized by a chemical reaction, for example, it is produced by a ring-opening polyaddition reaction of caprolactone, and also by hydrolysis of caprolactone or another chemical method. It can be synthesized by a polycondensation reaction of the synthesized hydroxycarboxylic acid or hydroxycarboxylic acid ester. It has been clarified that this PCL is also completely decomposed by microorganisms or enzymes (lipase or esterase).

【0008】本発明では、組成物中のPHBの混合比
は、PHBとPCLの合計量に対し、10〜45重量
%、好ましくは30〜45重量%、PCLの混合比は、
PHBとPCLの合計量に対し、90〜55重量%、好
ましくは70〜55重量%であることが必要である。P
HBの割合が45重量%より多い50重量%付近の組成
物は、均一な溶融混合物を与えず、成形時の吐出むらや
成形物の表面の不均一性、成形物の外観不良を生じると
ともに、成形後の製品の機械的性能が製品間で大きく異
なる等の不都合を引き起こす。前記溶融混合物の不均一
性は、両材料の混合割合がともに近いため、両材料がと
もに混合材料中の連続相あるいは分散相になろうとする
ために混合状態が安定しないことに起因するものと考え
られる。PHBの混合比が10重量%を下回ると、PH
Bの混合による耐熱性についての改善効果が十分でなく
なる。
In the present invention, the mixing ratio of PHB in the composition is 10 to 45% by weight, preferably 30 to 45% by weight, based on the total amount of PHB and PCL, and the mixing ratio of PCL is
It is necessary to be 90 to 55% by weight, preferably 70 to 55% by weight, based on the total amount of PHB and PCL. P
A composition having an HB ratio of about 50% by weight, which is more than 45% by weight, does not give a uniform melt mixture, and causes uneven discharge during molding, unevenness of the surface of the molded product, and poor appearance of the molded product. This causes such inconvenience that the mechanical performances of the molded products differ greatly among the products. The non-uniformity of the molten mixture is considered to be due to the fact that the mixing ratios of both materials are close to each other, so that both materials tend to become a continuous phase or a dispersed phase in the mixed material and the mixed state is not stable. To be If the mixing ratio of PHB is less than 10% by weight, PH
The effect of improving the heat resistance by mixing B becomes insufficient.

【0009】また、本発明組成物は、下記式を満足する
ことが必要である。 4×10-3×c(A)−1.7≦log(n(A)/n
(B))≦4×10-3×c(A)−1.3 前記式中、c(A)はPHBの混合比(重量%)を示
し、n(A)は185℃でのPHBの溶融粘度(ポイ
ズ)を示し、n(B)は185℃でのPCLの溶融粘度
(ポイズ)を示す。前記式を満足する組成物の範囲を図
1に示す。図1において、直線1及び直線2は、それぞ
れ、次式(1)及び(2)で表わされるものである。 log(n(A)/n(B))=4×10-3×c(A)−1.3 (1) log(n(A)/n(B))=4×10-3×c(A)−1.7 (2) また、図1において、直線3及び4は、それぞれc
(A)が10%及び45%であることを示す。
Further, the composition of the present invention is required to satisfy the following formula. 4 × 10 −3 × c (A) -1.7 ≦ log (n (A) / n
(B)) ≦ 4 × 10 −3 × c (A) -1.3 In the above formula, c (A) represents a mixing ratio (% by weight) of PHB, and n (A) represents PHB at 185 ° C. The melt viscosity (poise) is shown, and n (B) shows the melt viscosity (poise) of PCL at 185 ° C. The range of compositions satisfying the above formula is shown in FIG. In FIG. 1, a straight line 1 and a straight line 2 are represented by the following equations (1) and (2), respectively. log (n (A) / n (B)) = 4 × 10 −3 × c (A) -1.3 (1) log (n (A) / n (B)) = 4 × 10 −3 × c (A) -1.7 (2) Further, in FIG. 1, straight lines 3 and 4 are c
(A) shows 10% and 45%.

【0010】本発明の組成物は、図1における直線1,
2,3及び4で包囲される範囲内に在ることが必要であ
る。HLBとPCLの溶融粘度比(n(A)/n
(B))及びHLBの混合比c(A)が前記範囲外にあ
る組成物は、HLBとPCLの溶融混合物の均一性が悪
くなり、その成形物は、外観及び物性において劣ったも
のとなる。
The composition of the present invention has a straight line 1 in FIG.
It is necessary to be within the range surrounded by 2, 3 and 4. Melt viscosity ratio of HLB and PCL (n (A) / n
The composition in which the mixing ratio c (A) of (B)) and HLB is out of the above range deteriorates the homogeneity of the molten mixture of HLB and PCL, and the molded product is inferior in appearance and physical properties. .

【0011】本発明の組成物は、着色剤、可塑剤、充填
剤、結晶核剤、酸化防止剤等の慣用の添加剤を含有する
ことができる。
The composition of the present invention may contain conventional additives such as colorants, plasticizers, fillers, crystal nucleating agents and antioxidants.

【0012】本発明の組成物は、従来技術に用いられた
ようなPHBとPCLの共重合体等の相溶化剤の添加は
必要とされない。本発明の組成物の場合は、このような
相溶化剤を用いることなしに、成形性にすぐれた均一な
溶融混合物を得ることができ、そして、機械的強度、耐
熱性、ガスバリヤー特性にすぐれ、しかも生分解性にす
ぐれた成形物を得ることができる。
The compositions of the present invention do not require the addition of compatibilizers such as PHB and PCL copolymers as used in the prior art. In the case of the composition of the present invention, it is possible to obtain a uniform melt mixture having excellent moldability without using such a compatibilizer, and it is excellent in mechanical strength, heat resistance and gas barrier properties. Moreover, a molded product having excellent biodegradability can be obtained.

【0013】本発明の組成物は、射出成形、射出ブロー
成形、射出延伸ブロー成形、押出、押出ブロー成形、押
出延伸ブロー成形、延伸、圧延、熱成形、紡糸、延伸を
ともなう紡糸、紡績、紡織等の一般に熱可塑性樹脂に適
用され得る成形加工法により、シート、フィルム、軟質
および硬質の容器・ボトル、チューブ、モノフィラメン
ト、繊維、不織布、織布、機械部品、スポーツ用具部品
等の製品に転化させることができる。これら成形加工品
のとくに具体的な用途として、使用後の回収又は再使用
が不可能又は困難な資材、例えば医療用器具及び備品、
食品、薬剤、香料等の容器、ごみ用の袋、釣り糸、漁網
等の糸、網、衣料用、工業用の布、その他の工業及び農
業資材等を示すことができる。
The composition of the present invention comprises injection molding, injection blow molding, injection stretch blow molding, extrusion, extrusion blow molding, extrusion stretch blow molding, stretching, rolling, thermoforming, spinning, spinning with stretching, spinning and spinning. Converted to products such as sheets, films, soft and hard containers / bottles, tubes, monofilaments, fibers, non-woven fabrics, woven fabrics, machine parts, sports equipment parts, etc. by a molding processing method that is generally applicable to thermoplastic resins such as be able to. As a particularly specific use of these molded products, materials that are impossible or difficult to collect or reuse after use, such as medical instruments and equipment,
It may include containers for foods, drugs, perfumes, bags for garbage, fishing lines, threads such as fishing nets, nets, clothes, industrial cloths, and other industrial and agricultural materials.

【0014】[0014]

【実施例】以下、実施例によって本発明を具体的に説明
するが、本発明はこれに限定されるものではない。な
お、以下において示す溶融粘度、引張物性、衝撃物性及
び融点は、以下のようにして測定した。また、PHB
は、特開昭62−055094号公報に記載されている
微生物を用いる方法により製造し、PCLは、米国ユニ
オンカーバイド社(以下UCC社と略す)およびダイセ
ル化学工業(株)(以下ダイセル社と略す)の製品を用
いた。
EXAMPLES The present invention will be described below in greater detail by giving Examples, but the present invention is not limited thereto. The melt viscosity, tensile properties, impact properties and melting points shown below were measured as follows. Also, PHB
Is produced by a method using a microorganism described in JP-A-62-055094, and PCL is referred to as Union Carbide Corporation (hereinafter abbreviated as UCC) and Daicel Chemical Industries Ltd. (hereinafter abbreviated as Daicel). ) Products were used.

【0015】(1)溶融粘度 キャピラリーレオメーター((株)島津製作所、商品
名: フローテスターCFT−500)を使用して測定した。 キャピラリー寸法:直径 1mmφ 長さ 10mm 測定温度:185℃ 圧力 :10kg/cm2
(1) Melt viscosity It was measured using a capillary rheometer (Shimadzu Corporation, trade name: Flow Tester CFT-500). Capillary dimensions: Diameter 1mm φ Length 10mm Measurement temperature: 185 ℃ Pressure: 10kg / cm 2

【0016】(2)引張試験 装置:引張試験機(オリエンテック社製、テンシロン
UHM III) 試験片形状:短冊型 長さ100mm、幅10mm、チャック間5
0mm 引張速度:50mm/min 測定条件:温度 23℃、相対湿度 50%
(2) Tensile test device: Tensile tester (Tensilon, manufactured by Orientec Co., Ltd.)
UHM III) Test piece shape: strip type length 100 mm, width 10 mm, chuck space 5
0mm Peeling speed: 50mm / min Measuring condition: Temperature 23 ℃, Relative humidity 50%

【0017】(3)融点 結晶部の融解に対応するDSC分析からの吸熱ピークを融
点として採用した。 DSC分析条件 装置:セイコー電子工業社製、SSC/560 昇温速度 :10℃/min
(3) Melting Point The endothermic peak from DSC analysis corresponding to the melting of the crystal part was adopted as the melting point. DSC analysis conditions Equipment: Seiko Electronics Co., Ltd., SSC / 560 Temperature rising rate: 10 ° C / min

【0018】実施例1〜2 PHB(融点:171℃、185℃での溶融粘度 1100 Pois
e)及びPCL(ダイセル社製、プラクセル−H7、融
点:61℃、185℃での溶融粘度 26000 Poise)を用い
(PHBとPCLの溶融粘度比は、1100/26000≒1/2
4)、両ポリマーを重量比で20/80あるいは40/60で混合
し、押出機[(株)東洋精機製、ラボプラストミル、スク
リュー 直径:20mm]を使用してシリンダー温度を170か
ら185℃、ダイ温度を185℃としてTダイ・冷却ロール法
により(冷却ロール温度:20℃)厚さ約250μmのシート
を作製した。得られたシートから長さ100mm、幅10mmの
短冊型試験片を切り出し、引張試験を行った。その結果
を表1に示す。
Examples 1-2 PHB (melting point: 171 ° C., melt viscosity at 185 ° C. 1100 Pois
e) and PCL (manufactured by Daicel, Plaxel-H7, melting point: 61 ° C., melt viscosity 26000 Poise at 185 ° C.) (melt viscosity ratio of PHB and PCL is 1100 / 26000≈1 / 2)
4) Mix both polymers in a weight ratio of 20/80 or 40/60 and use an extruder [Toyo Seiki Co., Ltd., Labo Plastomill, screw diameter: 20 mm] to change the cylinder temperature from 170 to 185 ° C. A sheet having a thickness of about 250 μm was produced by a T-die / cooling roll method (cooling roll temperature: 20 ° C.) with a die temperature of 185 ° C. A strip-shaped test piece having a length of 100 mm and a width of 10 mm was cut out from the obtained sheet and subjected to a tensile test. Table 1 shows the results.

【0019】比較例1 PCLとしてPCL(ダイセル社製)プラクセル−H4、
融点61℃、185℃での溶融粘度640 Poise)を用いた(こ
の場合のPHBとPCLの溶融粘度比は、1100/640≒1
/0.6)以外は、実施例1と同様にして厚さ約250μmの
シートを作製した。得られたシートから長さ100mm、幅1
0mmの短冊型試験片を切り出し、引張試験を行った。結
果を表1に示す。
Comparative Example 1 PCL (manufactured by Daicel) PLAXEL-H4,
A melting viscosity of 640 Poise at a melting point of 61 ° C and 185 ° C was used (the melt viscosity ratio of PHB and PCL in this case is 1100 / 640≈1).
/0.6) except that a sheet having a thickness of about 250 μm was produced in the same manner as in Example 1. Length 100 mm, width 1 from the obtained sheet
A 0 mm strip-shaped test piece was cut out and subjected to a tensile test. The results are shown in Table 1.

【0020】比較例2 PCLとしてPCL(ダイセル社製)プラクセル−H4、
融点61℃、185℃での溶融粘度640 Poise)を用いた(こ
の場合のPHBとPCLの溶融粘度比は、1100/640≒1
/0.6)以外は、実施例2と同様にして厚さ約250μmの
シートを作製した。得られたシートから長さ100mm、幅1
0mmの短冊型試験片を切り出し、引張試験を行った。結
果を表1に示す。
Comparative Example 2 As PCL, PCL (manufactured by Daicel) Plaxel-H4,
A melting viscosity of 640 Poise at a melting point of 61 ° C and 185 ° C was used (the melt viscosity ratio of PHB and PCL in this case is 1100 / 640≈1).
/0.6) except that a sheet having a thickness of about 250 μm was produced in the same manner as in Example 2. Length 100 mm, width 1 from the obtained sheet
A 0 mm strip-shaped test piece was cut out and subjected to a tensile test. The results are shown in Table 1.

【0021】比較例3 実施例1と同じPHBとPCL(PHBとPCLの溶融
粘度比は、約1/24)を用い、その両ポリマーを重量比で
50/50で混合した以外は、実施例1と同様の方法によ
り、厚さ約250μmのシートを作製した。このシートの作
製においては、押出機での押出時の吐出状態は不安定で
あり、厚さむらの小さいシートを得ることは困難であっ
た。また、得られたシートについて、実施例1と同様に
して短冊型の試験片を作製して引張試験を行ったが、引
張強度及び引張伸びの試験片間の差が大きかった。これ
らの現象はPHBとPCLの混合状態が安定していない
ために生じたと考えられる。
Comparative Example 3 The same PHB and PCL as in Example 1 (the melt viscosity ratio of PHB and PCL was about 1/24) were used, and the two polymers were used in a weight ratio.
A sheet having a thickness of about 250 μm was produced in the same manner as in Example 1 except that 50/50 was mixed. In the production of this sheet, the discharge state at the time of extrusion by an extruder was unstable, and it was difficult to obtain a sheet with small thickness unevenness. Further, with respect to the obtained sheet, a strip-shaped test piece was prepared in the same manner as in Example 1 and a tensile test was conducted. However, the difference in tensile strength and tensile elongation between the test pieces was large. It is considered that these phenomena occurred because the mixed state of PHB and PCL was not stable.

【0022】比較例4 実施例1で用いたPHBのみを用い、PCLを混合しな
かった以外は実施例1と同様にして、厚さ約250μmのシ
ートを作製した。得られたシートから長さ100mm、幅10m
mの短冊型試験片を切り出し、引張試験を行った。その
結果を表1に示す。
Comparative Example 4 A sheet having a thickness of about 250 μm was produced in the same manner as in Example 1 except that only PHB used in Example 1 was used and PCL was not mixed. Length 100mm, width 10m from the obtained sheet
A strip-shaped test piece of m was cut out and a tensile test was performed. Table 1 shows the results.

【0023】比較例5 実施例1で用いたPCLのみを用い、PHBを混合しな
かった以外は実施例1と同様の方法により、厚さ約250
μmのシートを作製した。得られたシートから長さ100m
m、幅10mmの短冊型試験片を切り出し、引張試験を行っ
た。その結果を表1に示す。
Comparative Example 5 A thickness of about 250 was obtained in the same manner as in Example 1 except that only PCL used in Example 1 was used and PHB was not mixed.
A μm sheet was prepared. 100m length from the obtained sheet
A strip-shaped test piece with m and a width of 10 mm was cut out and subjected to a tensile test. Table 1 shows the results.

【0024】比較例6 比較例1で用いたPCLのみを用い、PHBを混合しな
かった以外は比較例1と同様の方法により、厚さ約250
μmのシートを作製した。得られたシートから長さ100m
m、幅10mmの短冊型試験片を切り出し、引張試験を行っ
た。その結果を表1に示す。
Comparative Example 6 A thickness of about 250 was obtained in the same manner as in Comparative Example 1 except that only PCL used in Comparative Example 1 was used and PHB was not mixed.
A μm sheet was prepared. 100m length from the obtained sheet
A strip-shaped test piece with m and a width of 10 mm was cut out and subjected to a tensile test. Table 1 shows the results.

【0025】なお、表1に示したc(A)及びc(B)
は、それぞれ、組成物中のPHB及びPCLの混合比
(重量%)を示す。n(A)及びn(B)は、それぞ
れ、配合されるPHB及びPCLの185℃での溶融粘
度を示す。引張伸びの値の後にカッコ内に示した数値
は、次式で算出された引張強度の変動係数(V)を示
す。 V=(標準偏差/平均値)×100%
Incidentally, c (A) and c (B) shown in Table 1
Indicates the mixing ratio (% by weight) of PHB and PCL in the composition, respectively. n (A) and n (B) show melt viscosity at 185 ° C. of PHB and PCL to be blended, respectively. The numerical value in parentheses after the value of tensile elongation indicates the coefficient of variation (V) of tensile strength calculated by the following formula. V = (standard deviation / average value) × 100%

【0026】[0026]

【表1】 [Table 1]

【0027】前記表1に示した結果からわかるように、
PHBとPCLの溶融粘度比(n(A)/n(B))と
PHBの混合比(n(A))を図1に符号5で示した特
定の範囲内に保持することにより、成形性、及び引張物
性の両方にすぐれた成形品を得ることができる。また、
PHBの混合比(c(A))が50重量%であるときに
は、PHBとPCLの溶融粘度比(n(A)/n
(B))が本発明の範囲内にあっても、良好な結果を与
えない。
As can be seen from the results shown in Table 1 above,
By maintaining the melt viscosity ratio (n (A) / n (B)) of PHB and PCL and the mixing ratio (n (A)) of PHB within the specific range shown by reference numeral 5 in FIG. It is possible to obtain a molded product having excellent tensile properties and tensile properties. Also,
When the mixing ratio of PHB (c (A)) is 50% by weight, the melt viscosity ratio of PHB and PCL (n (A) / n
Even if (B) is within the scope of the present invention, it does not give good results.

【0028】実施例3 PHB(融点:171℃、185℃での溶融粘度 1100 Pois
e)及びPCL(ダイセル社製、プラクセル−H7、融
点:61℃、185℃での溶融粘度 26000 Poise)のペレッ
ト(PHBとPCLの溶融粘度比:1100/26000≒1/2
4)を用い、両ポリマーを重量比で30/70で混合し、この
混合物を押出機[スクリュー 直径:40mm]と円筒ダイ
と金型(500mlのボトル用)からなるブロー成形機を用い
て、押出温度:175〜180℃、ダイ温度:25℃、金型温
度:25℃の条件でブロー成形し、内容積:500ml、表面
積:0.042m2のボトルを作成した。このボトルについ
て、以下のようにしてその成形性、形状保持性、生分解
性を評価した。その結果を表2に示す。また、得られた
ボトルの容器壁の平均厚さ(mm)及びボトルの酸素透過率
(cc/ボトル・day・atm)を常法により測定し
た。その結果を表2に示す。
Example 3 PHB (melting point: 171 ° C., melt viscosity at 185 ° C. 1100 Pois
e) and pellets of PCL (manufactured by Daicel, Plaxel-H7, melting point: 61 ° C, melt viscosity 26000 Poise at 185 ° C) (melt viscosity ratio of PHB and PCL: 1100/26000 ≈ 1/2)
Using 4), both polymers were mixed at a weight ratio of 30/70, and the mixture was mixed using a blow molding machine consisting of an extruder [screw diameter: 40 mm], a cylindrical die and a mold (for a bottle of 500 ml). Blow molding was performed under the conditions of extrusion temperature: 175 to 180 ° C., die temperature: 25 ° C., mold temperature: 25 ° C., and a bottle having an internal volume of 500 ml and a surface area of 0.042 m 2 was prepared. The moldability, shape retention and biodegradability of this bottle were evaluated as follows. The results are shown in Table 2. Further, the average thickness (mm) of the container wall of the obtained bottle and the oxygen permeability (cc / bottle · day · atm) of the bottle were measured by a conventional method. The results are shown in Table 2.

【0029】(成形性)成形成料が実用性あるボトルへ
成形可能であるか否かを調べるとともに、ボトル底部の
ピンチオフ部の接着性が良好であるか否かを調べた。成
形性の評価基準は以下の通りである。 良:ボトルへの成形が可能で、かつボトル底部のピンチ
オフ部の接着性が良好である。 不良:ボトルへの成形が不可能であるか、又はボトル底
部のピンチオフ部の接着性が不良である。 (形状保持性)ボトルを空気循環恒温槽内に30分間静
置した際に、目視によりボトルの変形が確認されない最
高温度で評価した。 (生分解性)土壌中に12ヶ月保持した後の重量減少率
(%)で評価した。
(Moldability) It was examined whether or not the molding compound could be molded into a practical bottle, and whether or not the pinch-off portion at the bottom of the bottle had good adhesiveness. The moldability evaluation criteria are as follows. Good: Molding into a bottle is possible and the pinch-off portion at the bottom of the bottle has good adhesiveness. Poor: Molding into a bottle is impossible, or the pinch-off portion at the bottom of the bottle has poor adhesion. (Shape Retention) When the bottle was left standing in an air circulation constant temperature bath for 30 minutes, it was evaluated at the maximum temperature at which no deformation of the bottle was visually confirmed. (Biodegradability) The weight loss rate (%) after keeping in soil for 12 months was evaluated.

【0030】実施例4 実施例3において、PHBとPCLとの重量比を40:60
にした以外は同様にして実験を行なった。その結果を表
2に示す。
Example 4 In Example 3, the weight ratio of PHB to PCL was 40:60.
The experiment was performed in the same manner except that it was set to. The results are shown in Table 2.

【0031】比較例7 成形材料として、実施例3で示したPHBのみを用い、
実施例3と同様にしてブロー成形物を得ようとしたが、
この場合には、パリソン下部のピンチオフ部が十分に接
着せず、吹込まれた空気がもれてボトルは得られなかっ
た。
Comparative Example 7 Only the PHB shown in Example 3 was used as the molding material,
An attempt was made to obtain a blow molded product in the same manner as in Example 3,
In this case, the pinch-off part under the parison was not sufficiently adhered, and the blown air leaked and a bottle could not be obtained.

【0032】比較例8 実施例3において、成形材料として、実施例3で示した
PCLのみを用いた以外は同様にしてボトルを作製し
た。
Comparative Example 8 A bottle was prepared in the same manner as in Example 3, except that only PCL shown in Example 3 was used as the molding material.

【0033】比較例9 実施例3において、PHBとPCLとの重量比を50:
50にした以外は同様にして実験を行った。その結果を
表2に示す。
Comparative Example 9 In Example 3, the weight ratio of PHB to PCL was 50:
The experiment was conducted in the same manner except that the value was changed to 50. The results are shown in Table 2.

【0034】[0034]

【表2】 [Table 2]

【0035】[0035]

【発明の効果】本発明の組成物は、成形性にすぐれると
ともに、引張物性、耐衝撃強度等の機械的強度にすぐ
れ、さらに、耐熱性、ガスバリヤー性及び生分解性にす
ぐれた成形物を与える。
INDUSTRIAL APPLICABILITY The composition of the present invention has excellent moldability and mechanical properties such as tensile strength and impact resistance, and further has excellent heat resistance, gas barrier property and biodegradability. give.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の組成物範囲を示すグラフである。FIG. 1 is a graph showing the composition range of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩本 晃 茨城県つくば市東2丁目1番16号 大野 ハイツ101号 (72)発明者 原田 正広 神奈川県平塚市東八幡5丁目6番2号 三菱瓦斯化学株式会社 プラスチックス センター内 (72)発明者 今川 茂樹 新潟県新潟市太夫浜字新割182番地 三 菱瓦斯化学株式会社 新潟研究所内 (72)発明者 浦上 貞治 東京都千代田区丸の内二丁目5番2号 三菱瓦斯化学株式会社 本社内 審査官 冨士 良宏 (56)参考文献 特開 平3−157450(JP,A) 特開 平5−245996(JP,A) 特表 平3−505541(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akira Iwamoto 2-16, Higashi Tsukuba City, Ibaraki Prefecture 16-16 Ohno Heights 101 (72) Masahiro Harada 5-6-2 Higashi-Hachiman, Hiratsuka City, Kanagawa Mitsubishi Gas Chemical Co., Ltd. Company Plastics Center (72) Inventor Shigeki Imagawa Niigata City, Niigata City, Tayuhama, Niigata 182, Shinryo Gas Chemical Co., Ltd. Niigata Research Laboratory (72) Inventor Sadaharu Urakami 2-5-2 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Gas Chemical Co., Ltd. In-house Examiner Yoshihiro Fuji (56) References JP-A-3-157450 (JP, A) JP-A-5-245996 (JP, A) JP-A-3-505541 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 185℃における粘度がn(A)である
ポリβ−ヒドロキシ酪酸と、185℃における粘度がn
(B)であるポリカプロラクトンからなり、該ポリβ−
ヒドロキシ酪酸の混合比c(A)が10〜45重量%の
範囲内にあり、かつ前記n(A)、n(B)及びc
(A)が下記式を満足することを特徴とする成形性及び
機械的性能にすぐれる生分解性樹脂組成物。 4×10-3×c(A)−1.7≦log(n(A)/n
(B))≦4×10-3×c(A)−1.3
1. Poly (β-hydroxybutyric acid) having a viscosity of n (A) at 185 ° C. and n at 185 ° C.
(B) consisting of polycaprolactone,
The mixing ratio c (A) of hydroxybutyric acid is in the range of 10 to 45% by weight, and n (A), n (B) and c
A biodegradable resin composition having excellent moldability and mechanical performance, characterized in that (A) satisfies the following formula. 4 × 10 −3 × c (A) -1.7 ≦ log (n (A) / n
(B)) ≦ 4 × 10 −3 × c (A) -1.3
JP5111006A 1992-04-14 1993-04-14 Biodegradable resin composition Expired - Lifetime JP2530556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5111006A JP2530556B2 (en) 1992-04-14 1993-04-14 Biodegradable resin composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP12119792 1992-04-14
JP4-121197 1992-04-14
JP5111006A JP2530556B2 (en) 1992-04-14 1993-04-14 Biodegradable resin composition

Publications (2)

Publication Number Publication Date
JPH06192550A JPH06192550A (en) 1994-07-12
JP2530556B2 true JP2530556B2 (en) 1996-09-04

Family

ID=26450495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5111006A Expired - Lifetime JP2530556B2 (en) 1992-04-14 1993-04-14 Biodegradable resin composition

Country Status (1)

Country Link
JP (1) JP2530556B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0662839B2 (en) * 1989-11-14 1994-08-17 工業技術院長 Microbial degradable plastic molding and method for producing the same

Also Published As

Publication number Publication date
JPH06192550A (en) 1994-07-12

Similar Documents

Publication Publication Date Title
EP1449867B1 (en) Window of polylactic acid based resin films
TWI381012B (en) Biodegradable resin composition
WO2004000939A1 (en) Polylactic acid base polymer composition, molding thereof and film
US7388058B2 (en) Polyester blend compositions and biodegradable films produced therefrom
JP4127648B2 (en) Biodegradable resin composition, film and agricultural multi-film with controlled biodegradation rate
JP5145695B2 (en) Method for producing polylactic acid resin film
JP2530557B2 (en) Biodegradable resin composition
KR100428687B1 (en) Biodegradable polyester resin composition which has superior tear strength
JP3739311B2 (en) Biodegradable film
JP2530556B2 (en) Biodegradable resin composition
JP2003064245A (en) Biodegradable film or sheet, and molding product using the same
JP2003136592A (en) Biodegradable biaxially stretched film
JP4289841B2 (en) Polylactic acid resin composition with controlled biodegradation rate and molded article thereof
JP3459585B2 (en) Easy tear polylactic acid based biaxially stretched film
JP3623053B2 (en)   Biodegradable resin molding
JP2004244507A (en) Biodegradable plastic material
JPH0977124A (en) Packing bag composed of polylactic acid polymer
JP2005220172A (en) Polylactic acid polymer shrink film
JP7467454B2 (en) Molded body and its use
JPH08165414A (en) Biodegradable resin composition
JP2000108230A (en) Degradable foam cushioning body and its manufacture
JPH1160917A (en) Biodegradable resin composition and its production
JP2001172489A (en) Biodegradable resin composition
JP2012077254A (en) Polylactic acid-based resin composition and molding
JPH08188705A (en) Sheet having biodegradability

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080614

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term