JPH1053438A - Fluorescent lamp - Google Patents

Fluorescent lamp

Info

Publication number
JPH1053438A
JPH1053438A JP8207165A JP20716596A JPH1053438A JP H1053438 A JPH1053438 A JP H1053438A JP 8207165 A JP8207165 A JP 8207165A JP 20716596 A JP20716596 A JP 20716596A JP H1053438 A JPH1053438 A JP H1053438A
Authority
JP
Japan
Prior art keywords
titanium oxide
sol
fluorescent lamp
glass tube
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8207165A
Other languages
Japanese (ja)
Other versions
JP3726366B2 (en
Inventor
Masahiro Omori
将弘 大森
Tadashi Hamanaka
忠 濱中
Hidenori Nakamura
英則 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP20716596A priority Critical patent/JP3726366B2/en
Publication of JPH1053438A publication Critical patent/JPH1053438A/en
Application granted granted Critical
Publication of JP3726366B2 publication Critical patent/JP3726366B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a fluorescent lamp which is excellent in transparency and durability and can inhibit the lamp from being stained by using a glass tube having a specific titanium oxide thin layer formed on its surface as a lamp tube and decomposing organic substances on the surface by the action of the photocatalyst for a long period of time. SOLUTION: TiCl4 is dissolved in water to prepare a TiCl4 aqueous solution, preferably of 0.05-1mol/l concentration, and hydrolyzed in a reactor, as the liberation of HCl from the reactor is suppressed with a reflux condenser 3 to form a sol containing titanium oxide. Then, the sol is treated to remove HCl, its pH is adjusted to 0.5-5 and the glass tube surface for a fluorescent lamp is coated with the sol and fired to form a thin layer of titanium oxide. This glass tube having a titanium oxide thin layer formed is used for the fluorescent lamp. The average particle size of the titanium oxide particles is preferably 0.01-0.08μm in the sol. The thin layer of this titanium oxide is excellent in adhesion to the glass tube.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は蛍光ランプに関し、
さらに詳しくは蛍光ランプのガラス管表面に酸化チタン
薄膜を形成し、該酸化チタンの光触媒作用により油煙等
の有機物を分解することによりガラス管表面の汚れを防
止した蛍光ランプに関する。
The present invention relates to a fluorescent lamp,
More specifically, the present invention relates to a fluorescent lamp in which a titanium oxide thin film is formed on the surface of a glass tube of a fluorescent lamp, and organic substances such as oily smoke are decomposed by the photocatalytic action of the titanium oxide, thereby preventing the surface of the glass tube from being stained.

【0002】[0002]

【従来の技術】酸化チタンの光触媒機能については近
年、盛んに研究開発が行われている。この光触媒の利用
方法には有害物質の除去による防汚、アンモニアなどの
悪臭ガスの脱臭、細菌類の殺菌などがあるが、その利用
目的により酸化チタンの形態は、バルク粒子、薄膜、ゾ
ルと様々である。この光触媒機能はさらに透明性を付加
しようとする場合はもっぱら薄膜にされる場合が多い。
そのために酸化チタンはゾルの形で薄膜生成材料として
使用される。薄膜の利用形態として最近照明器具、例え
ば蛍光ランプのガラス管やそのカバーに酸化チタンゾル
を塗布して薄膜を形成し、光触媒作用により上記ガラス
管やカバーに油煙等の有機物が付着した場合、それを分
解し、ガラス管やカバーの汚れを防止する方法が提案さ
れている。酸化チタンゾルの生成方法に関しては、結晶
性或いはアモルファスの酸化チタン粒子を分散媒に分散
させるか、分散媒中にチタンアルコキシド、硫酸チタ
ン、四塩化チタンなどの酸化チタンの前駆体を混入させ
中和、加水分解などの方法によりゾルを形成させること
が一般的である。しかし、透明性の高い薄膜を形成させ
ることが可能であるものは少ない。
2. Description of the Related Art In recent years, research and development have been actively conducted on the photocatalytic function of titanium oxide. There are various ways to use this photocatalyst, such as antifouling by removing harmful substances, deodorization of odorous gas such as ammonia, and sterilization of bacteria.The form of titanium oxide varies depending on the purpose of use, such as bulk particles, thin films, and sols. It is. This photocatalytic function is often made exclusively as a thin film in order to add transparency.
For this purpose, titanium oxide is used as a film-forming material in the form of a sol. As a form of utilization of the thin film, recently, a titanium oxide sol is applied to a glass tube or a cover of a fluorescent lamp, for example, a fluorescent lamp to form a thin film. A method of disassembling the glass tube and the cover to prevent contamination has been proposed. Regarding the method of producing titanium oxide sol, crystalline or amorphous titanium oxide particles are dispersed in a dispersion medium, or a titanium alkoxide, titanium sulfate, titanium tetrachloride or other titanium oxide precursor is mixed into the dispersion medium and neutralized, It is common to form a sol by a method such as hydrolysis. However, few can form a highly transparent thin film.

【0003】[0003]

【発明が解決しようとする課題】酸化チタン薄膜を蛍光
ランプのガラス管表面(外面)に形成して光触媒として
利用する場合、その薄膜は触媒活性及び透明性が高いこ
とが要求される。光触媒作用は粒子表面での反応である
ため高活性を持たせるには粒子が高い表面積をもつ微粒
子であること、また結晶性が良いことが必要である。透
明性をよくするためにも同様に微粒子であり、かつ単分
散であるものが望ましい。さらに酸化チタン薄膜とガラ
ス管との密着性をよくし、容易に薄膜が剥離しないよう
にしなければならない。
When a titanium oxide thin film is formed on the surface (outer surface) of a glass tube of a fluorescent lamp and used as a photocatalyst, the thin film is required to have high catalytic activity and high transparency. Since the photocatalysis is a reaction on the particle surface, it is necessary that the particles are fine particles having a high surface area and have good crystallinity in order to have high activity. Similarly, in order to improve transparency, it is desirable that the particles are fine particles and monodispersed. Further, the adhesion between the titanium oxide thin film and the glass tube must be improved so that the thin film is not easily peeled off.

【0004】従来の四塩化チタンを加水分解する方法で
は、粒子径が非常に小さい微粒子で、かつ結晶性がよ
く、薄膜にしたとき透明性がよい酸化チタンゾルをつく
ることが困難であった。チタンアルコシド化合物の加水
分解ではゾル中の酸化チタンは非常に小さい微粒子とな
るなど粉体特性としては優れているが、ゾル中にアルコ
ールが含まれ、薄膜にして焼成する場合爆発などの安全
上の問題がある。また、爆発を防ぐには防爆の大型設備
が必要となり、経済的に不利である。またチタンアルコ
シド化合物は四塩化チタンに比べ非常に高価である。本
発明は蛍光ランプ用のガラス管表面に光触媒作用が大き
く、透明性が高く、かつガラス管との密着性に優れた酸
化チタン薄膜を設け、有機物付着によるガラス管の汚れ
を防止した蛍光ランプを提供することを目的とする。
In the conventional method of hydrolyzing titanium tetrachloride, it has been difficult to produce a titanium oxide sol having fine particles having a very small particle size, good crystallinity, and high transparency when formed into a thin film. Titanium oxide in the sol has excellent powder properties such as very small fine particles in the hydrolysis of the titanium alkoxide compound. There is a problem. Also, large explosion-proof equipment is required to prevent explosions, which is economically disadvantageous. Titanium alkoxide compounds are much more expensive than titanium tetrachloride. The present invention provides a fluorescent lamp in which a titanium oxide thin film having a large photocatalytic action, high transparency, and excellent adhesion to the glass tube is provided on the surface of the glass tube for the fluorescent lamp to prevent the glass tube from being stained by organic substances. The purpose is to provide.

【0005】[0005]

【課題を解決するための手段】本発明者らは、入手が容
易であり、経済的にも有利な四塩化チタンの加水分解に
着目し、これから光触媒として優れた薄膜を蛍光ランプ
のガラス管に形成する方法について研究した結果、本発
明に到達したものである。即ち、本発明は四塩化チタン
の加水分解により酸化チタン含有ゾルを生成させて、該
ゾルを蛍光ランプ用のガラス管表面に塗布し、焼成して
該表面に薄膜を形成することを特徴とする蛍光ランプで
ある。
The present inventors have focused on the hydrolysis of titanium tetrachloride, which is easily available and economically advantageous, and will now provide a thin film excellent as a photocatalyst to a glass tube of a fluorescent lamp. As a result of studying a forming method, the present invention has been achieved. That is, the present invention is characterized in that a titanium oxide-containing sol is generated by hydrolysis of titanium tetrachloride, the sol is applied to the surface of a glass tube for a fluorescent lamp, and baked to form a thin film on the surface. It is a fluorescent lamp.

【0006】[0006]

【発明の実施の形態】本発明は四塩化チタンを加水分解
して酸化チタン含有ゾルを生成させ、そのゾルの状態で
ガラス管に塗布することが重要である。一般に酸化チタ
ンの微粒子は酸化チタンの前駆体を中和、加水分解して
濾過、乾燥、熱処理等により得られているが、この微粒
子を水などの溶媒に分散させてゾルにしたものは薄膜形
成用には適さない。これは酸化チタンの粒子は表面活性
が高く、微粒子になればなるほど活性度が上昇するため
水への分散は非常に困難になる、すなわち凝集体となっ
てしまい、これからつくられた薄膜は透明性に劣り、光
触媒作用も低下するためである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, it is important that titanium tetrachloride is hydrolyzed to form a titanium oxide-containing sol, and the sol is applied to a glass tube. In general, titanium oxide fine particles are obtained by neutralizing and hydrolyzing a precursor of titanium oxide, followed by filtration, drying, heat treatment, and the like.A sol obtained by dispersing these fine particles in a solvent such as water forms a thin film. Not suitable for use. This is because titanium oxide particles have a high surface activity, and the finer the particles, the higher the activity, which makes it extremely difficult to disperse them in water, that is, they become agglomerates, and the thin film made from this is transparent. This is because the photocatalytic action is also reduced.

【0007】本発明者らは先に粒子径が小さく、結晶性
のよい酸化チタン粒子を製造する方法を特許出願した
(特願平7−245446)。この方法は四塩化チタン
の加水分解反応を、生成する塩化水素の逸出を抑制しな
がら行う方法である。塩化水素の逸出を抑制する好まし
い方法は、加水分解反応槽に還流冷却器を設置し、蒸発
する塩化水素ガスを凝縮して反応槽に戻す方法である。
上記特許では得られた酸化チタン含有ゾルを濾過、乾
燥、必要により熱処理して酸化チタン粒子としている
が、本発明はこの途中で生成する酸化チタン含有ゾルを
用いて薄膜を形成する。加水分解する四塩化チタン水溶
液中の四塩化チタンの濃度は低過ぎると生産性が悪く、
生成する酸化チタン含有ゾルから薄膜を形成する際に効
率が低く、また濃度が高過ぎると反応が激しくなり、得
られる酸化チタンの粒子が微細になりにくく、かつ分散
性も悪くなるために透明薄膜形成材としては適さない。
The present inventors previously filed a patent application for a method for producing titanium oxide particles having a small particle size and good crystallinity (Japanese Patent Application No. Hei 7-245446). In this method, a hydrolysis reaction of titanium tetrachloride is performed while suppressing escape of generated hydrogen chloride. A preferred method of suppressing escape of hydrogen chloride is to install a reflux condenser in the hydrolysis reaction tank, condense the evaporating hydrogen chloride gas and return it to the reaction tank.
In the above-mentioned patent, the obtained titanium oxide-containing sol is filtered, dried and, if necessary, heat-treated to form titanium oxide particles. In the present invention, a thin film is formed using the titanium oxide-containing sol generated during the process. If the concentration of titanium tetrachloride in the titanium tetrachloride aqueous solution to be hydrolyzed is too low, the productivity is poor,
When a thin film is formed from the generated titanium oxide-containing sol, the efficiency is low, and when the concentration is too high, the reaction becomes violent, and the resulting titanium oxide particles are difficult to be fine and the dispersibility is poor, so that a transparent thin film is used. It is not suitable as a forming material.

【0008】本発明の酸化チタンゾルは生成したまま、
あるいはこれを脱塩素処理や必要により水溶性高分子の
1次結合材を少量加えてガラス管に塗布することが好ま
しく、その場合に酸化チタン濃度があまり薄いと塗布効
率が悪く、また濃度が高いと酸化チタンの透明薄膜形成
が難しくなる。これらのことを考慮して加水分解におけ
る四塩化チタンの濃度は0.05〜1モル/リットルが
好ましい。この加水分解によって得られるゾルあるいは
これを脱塩素処理等したゾル中の酸化チタンの濃度は、
加水分解の際あるはその後の脱塩素処理等における溶液
の体積変化は少ないので、四塩化チタンの濃度とほぼ同
様0.05〜1モル/リットル程度である。
[0008] The titanium oxide sol of the present invention is produced as
Alternatively, it is preferable to apply a small amount of a primary binder of a water-soluble polymer to the glass tube by applying a small amount of a dechlorination treatment, if necessary. In this case, if the titanium oxide concentration is too low, the coating efficiency is poor and the concentration is high. Thus, it becomes difficult to form a transparent thin film of titanium oxide. Taking these facts into consideration, the concentration of titanium tetrachloride in the hydrolysis is preferably 0.05 to 1 mol / l. The concentration of titanium oxide in the sol obtained by this hydrolysis or in the sol obtained by dechlorinating the sol,
Since the volume change of the solution during the hydrolysis or subsequent dechlorination treatment is small, the concentration is about 0.05 to 1 mol / liter, almost the same as the concentration of titanium tetrachloride.

【0009】本発明における酸化チタン含有ゾルの好ま
しい製法は、四塩化チタンの加水分解において発生する
塩化水素が反応槽から逸出するのを抑制し、できるだけ
水溶液中に残留させる方法である。加水分解により発生
する塩化水素は完全に逸出が防止されていなくても抑制
されておればよい。またその方法も抑制できるものであ
れば特に限定されず、例えば加圧することによっても可
能であるが、最も容易にして効果的な方法は加水分解の
反応槽に還流冷却器を設置して加水分解を行う方法であ
る。この装置を図1に示す。図において1が四塩化チタ
ンの水溶液2を充填した反応槽で、これに還流冷却器3
が設置されている。4は撹拌機、5は温度計、6は反応
槽を加熱するための装置である。加水分解反応によって
水及び塩化水素の蒸気が発生するが、その大部分は還流
冷却器により凝縮し、反応槽に戻されるので反応槽から
外に塩化水素が逸出することは殆どない。
A preferred method for producing the titanium oxide-containing sol in the present invention is a method in which hydrogen chloride generated in the hydrolysis of titanium tetrachloride is prevented from escaping from the reaction tank and remains in an aqueous solution as much as possible. Hydrogen chloride generated by hydrolysis does not have to be completely prevented from escaping, as long as it is suppressed. The method is not particularly limited as long as the method can be suppressed. For example, pressurization can be performed. However, the easiest and most effective method is to install a reflux condenser in a hydrolysis reaction tank and perform hydrolysis. How to do. This device is shown in FIG. In the figure, reference numeral 1 denotes a reaction tank filled with an aqueous solution 2 of titanium tetrachloride.
Is installed. 4 is a stirrer, 5 is a thermometer, and 6 is a device for heating the reaction tank. Although water and hydrogen chloride vapor are generated by the hydrolysis reaction, most of them are condensed by the reflux condenser and returned to the reaction tank, so that hydrogen chloride hardly escapes from the reaction tank.

【0010】加水分解における温度は50℃以上、四塩
化チタン水溶液の沸点迄の範囲が好ましい。50℃未満
では加水分解反応に長時間を要する。加水分解は上記の
温度に昇温し、10分から12時間程度保持して行われ
る。この保持時間は加水分解の温度が高温側にある程短
くてよい。四塩化チタン水溶液の加水分解は四塩化チタ
ンと水との混合溶液を反応槽中で所定の温度に加熱して
もよく、また水を反応槽中で予め加熱しておき、これに
四塩化チタンを添加し、所定の温度にしてもよい。四塩
化チタン水溶液の昇温速度は早い方が得られる粒子が細
かくなるので、好ましくは0.2℃/min以上、さら
に好ましくは0.5℃/min以上である。以上はバッ
チ式反応により酸化チタン含有ゾルを得る場合について
説明したが、反応槽を連続槽にして四塩化チタンと水を
連続投入しながら、投入口の反対側で反応液を取り出
し、引き続き脱塩素処理するような連続方式も可能であ
る。
The temperature in the hydrolysis is preferably in the range of 50 ° C. or higher and up to the boiling point of the aqueous solution of titanium tetrachloride. If the temperature is lower than 50 ° C., a long time is required for the hydrolysis reaction. The hydrolysis is carried out by raising the temperature to the above-mentioned temperature and holding for about 10 minutes to 12 hours. This holding time may be shorter as the hydrolysis temperature is higher. For the hydrolysis of the aqueous solution of titanium tetrachloride, a mixed solution of titanium tetrachloride and water may be heated to a predetermined temperature in a reaction vessel, or water may be heated in advance in the reaction vessel, To a predetermined temperature. The higher the temperature rising rate of the titanium tetrachloride aqueous solution, the finer the particles obtained, so the temperature is preferably 0.2 ° C./min or more, more preferably 0.5 ° C./min or more. The case where a titanium oxide-containing sol is obtained by a batch-type reaction has been described above, but while the reaction vessel is a continuous vessel and titanium tetrachloride and water are continuously charged, the reaction solution is taken out on the opposite side of the charging port, and then dechlorinated. A continuous mode of processing is also possible.

【0011】この方法によってゾル中の酸化チタン粒子
は平均粒径が0.01〜0.08μmの範囲の結晶性の
よいものとなる。酸化チタン含有ゾルには塩化水素が含
まれており、ゾルをガラス管に塗布焼成して薄膜を形成
する場合、塩化水素の濃度が高いと薄膜の透明性が下が
り、また焼成中に発生する塩化水素ガスによる装置上の
問題が生じるのでゾルを予め脱塩素処理することが好ま
しい。脱塩素処理は一般の公知手段でよく電気透析、イ
オン交換樹脂、電気分解などが可能である。脱塩素の程
度はゾルのpHを目安にすればよく、例えばpH0.5
〜5の範囲であり、好ましくはpH2〜3である。
According to this method, the titanium oxide particles in the sol have good crystallinity having an average particle size in the range of 0.01 to 0.08 μm. Hydrogen chloride is contained in titanium oxide-containing sol, and when a sol is applied to a glass tube and baked to form a thin film, the concentration of hydrogen chloride is high, the transparency of the thin film is reduced, and the chloride generated during calcination is reduced. It is preferable to subject the sol to a dechlorination treatment in advance because hydrogen gas causes problems on the apparatus. The dechlorination treatment can be performed by a commonly known means, such as electrodialysis, ion exchange resin, or electrolysis. The degree of dechlorination may be based on the pH of the sol, for example, a pH of 0.5
-5, preferably pH 2-3.

【0012】酸化チタン含有ゾルをガラス管に塗布する
場合、塗膜の成膜性をよくするためゾルに溶解する水溶
性高分子の1次結合材をゾルに添加することが好まし
い。水溶性高分子は、特に制限はないがポリビニルアル
コール、メチルセルロース、エチルセルロース、ニトロ
セルロースなどが好適である。その量はゾル中に含有す
る酸化チタンに対し10重量%以下が適当である。高分
子の添加時期は脱塩素処理の前でもよいが、処理後がよ
り好ましい。このようにして得られた酸化チタン含有ゾ
ルを蛍光ランプ用のガラス管(蛍光ランプとして製品化
される以前の材料としてのガラス管)に塗布するにはガ
ラス管をゾル中に浸漬する方法、ガラス管にゾルをスプ
レーする方法、ゾルを刷毛でガラス管に塗布するなどの
方法が採用される。ゾルの塗布量は厚さにして0.01
〜0.2mmが適当である。
When the sol containing titanium oxide is applied to a glass tube, it is preferable to add a primary binder of a water-soluble polymer dissolved in the sol to the sol in order to improve the film forming property of the coating film. The water-soluble polymer is not particularly limited, but polyvinyl alcohol, methyl cellulose, ethyl cellulose, nitrocellulose and the like are preferable. The amount is suitably not more than 10% by weight based on the titanium oxide contained in the sol. The polymer may be added before the dechlorination treatment, but after the treatment is more preferred. In order to apply the titanium oxide-containing sol thus obtained to a glass tube for a fluorescent lamp (a glass tube as a material before being commercialized as a fluorescent lamp), a method of immersing the glass tube in the sol, A method of spraying a sol on a tube, a method of applying the sol to a glass tube with a brush, and the like are employed. The applied amount of the sol is 0.01
0.20.2 mm is appropriate.

【0013】酸化チタンゾルを塗布したガラス管は次に
焼成する。焼成により生成する酸化チタン薄膜の強度が
向上し、またガラス管と薄膜との密着性が向上する。焼
成温度は100℃以上で効果があるが、好ましくは20
0℃以上である。焼成温度の上限には特に制限はなく、
ガラス管が変形しない範囲であればよい。一般的には焼
成の上限温度は800℃位、好ましくは600℃位であ
る。焼成の雰囲気は特に制限されず、大気中でよい。焼
成時間は特に制限はなく、例えば1〜60分の範囲で行
えばよい。焼成によって得られる酸化チタン薄膜の厚さ
は、前記の塗布量の場合0.05〜1.0μm位であ
る。本発明による酸化チタンゾルを用いて製造される酸
化チタン薄膜が高い光触媒能力を示し、かつ透明性も高
いのは、酸化チタンが結晶性であること、酸化チタン微
粒子が非常に微細な粒子であること、不純物を含んでい
ないこと、さらにこの酸化チタン微粒子が1次粒子に限
りなく近く分散している状態であることによると考えら
れる。本発明の蛍光ランプはそのガラス管が前記した特
定の酸化チタン薄膜を有するものである以外は従来のと
変わりはなく、すべての蛍光ランプを対象とすることが
できる。
The glass tube coated with the titanium oxide sol is then fired. The strength of the titanium oxide thin film formed by firing is improved, and the adhesion between the glass tube and the thin film is improved. The sintering temperature is effective at 100 ° C. or higher, but is preferably 20 ° C.
0 ° C. or higher. There is no particular upper limit for the firing temperature,
What is necessary is just a range which does not deform | transform a glass tube. Generally, the upper limit temperature of firing is about 800 ° C., preferably about 600 ° C. The firing atmosphere is not particularly limited, and may be in the air. The firing time is not particularly limited, and may be, for example, in the range of 1 to 60 minutes. The thickness of the titanium oxide thin film obtained by firing is about 0.05 to 1.0 μm in the case of the above-mentioned coating amount. The titanium oxide thin film produced by using the titanium oxide sol according to the present invention exhibits high photocatalytic ability and high transparency because the titanium oxide is crystalline and the titanium oxide fine particles are very fine particles. This is considered to be due to the fact that they do not contain impurities and that the titanium oxide fine particles are dispersed as close as possible to the primary particles. The fluorescent lamp of the present invention is the same as the conventional fluorescent lamp except that the glass tube has the above-mentioned specific titanium oxide thin film, and can be applied to all fluorescent lamps.

【0014】[0014]

【実施例】以下、実施例により具体的に説明する。 実施例1 四塩化チタン(純度99.9%)に水を加え、四塩化チ
タン濃度が0.25モル/リットル(酸化チタン換算2
重量%)となるように溶液を調整した。この時、水溶液
の液温が50℃以上に上昇しないように氷冷など適当な
冷却装置を設けた。次に、この水溶液1リットルを図1
に示す還流冷却器付きの反応槽に装入し、沸点付近(1
04℃)まで加熱し、60分間保持して加水分解した。
冷却後、反応で生成した残留塩素を電気透析により取り
除き、pH=2とした後、成膜用助剤として水溶性高分
子であるポリビニルアルコールを酸化チタン含有量に対
して0.1%添加して、酸化チタンゾルとした。このゾ
ルは安定であり、1日以上経過しても生成した酸化チタ
ン微粒子の沈降は認められなかった。透過型電子顕微鏡
でこの粒子を観察したところ平均粒子径は0.015n
mであり、X線回折装置から前記粒子の同定を行ったと
ころ結晶性の酸化チタンであった。このゾルを用いてデ
ィップコートによりガラス板上に塗布して乾燥後、50
0℃で1時間空気中で熱処理して酸化チタン薄膜を得
た。熱処理後の酸化チタン薄膜の厚さは0.15μmで
あった。
The present invention will be specifically described below with reference to examples. Example 1 Water was added to titanium tetrachloride (purity: 99.9%), and the titanium tetrachloride concentration was 0.25 mol / liter (2 in terms of titanium oxide).
(% By weight). At this time, an appropriate cooling device such as ice cooling was provided so that the liquid temperature of the aqueous solution did not rise to 50 ° C. or higher. Next, 1 liter of this aqueous solution is
Into a reactor equipped with a reflux condenser shown in
(0.4 ° C.) and held for 60 minutes to hydrolyze.
After cooling, residual chlorine generated by the reaction was removed by electrodialysis, and the pH was adjusted to 2. Then, polyvinyl alcohol as a water-soluble polymer was added as a film-forming auxiliary at 0.1% with respect to the content of titanium oxide. Thus, a titanium oxide sol was obtained. This sol was stable, and no sedimentation of the generated titanium oxide fine particles was observed even after one day or more. Observation of these particles using a transmission electron microscope revealed that the average particle size was 0.015 n.
m, and the particles were identified by an X-ray diffractometer. As a result, the particles were crystalline titanium oxide. This sol is applied on a glass plate by dip coating and dried.
Heat treatment was performed at 0 ° C. for 1 hour in the air to obtain a titanium oxide thin film. The thickness of the titanium oxide thin film after the heat treatment was 0.15 μm.

【0015】実施例2 水溶性高分子をメチルセルロースに変えた以外は実施例
1と同様にして酸化チタンゾルを作成し、同様に酸化チ
タン薄膜を得た。
Example 2 A titanium oxide sol was prepared in the same manner as in Example 1 except that the water-soluble polymer was changed to methyl cellulose, and a titanium oxide thin film was similarly obtained.

【0016】比較例1 1次粒子径が0.01μmであるアモルファスの酸化チ
タン粒子を用い、実施例1と同じ酸化チタン濃度を2重
量%として水に超音波分散器を用いて分散させた。この
際、塩酸を添加してpHを実施例1と同じ値にし、さら
に実施例1と同様の操作をして酸化チタンゾルとした。
この酸化チタンのゾルは時間の経過と共に酸化チタンの
微粒子が沈降した。沈降後の上澄み液で成膜した膜には
光触媒能力が認められなかったため、ゾルを再び超音波
分散器で分散させてから実施例1と同じ方法でガラス板
上に成膜し、光触媒能力の評価を行った。
Comparative Example 1 Amorphous titanium oxide particles having a primary particle diameter of 0.01 μm were used, and the same titanium oxide concentration as in Example 1 was used at 2% by weight and dispersed in water using an ultrasonic disperser. At this time, hydrochloric acid was added to adjust the pH to the same value as in Example 1, and the same operation as in Example 1 was performed to obtain a titanium oxide sol.
In this titanium oxide sol, fine particles of titanium oxide settled with the passage of time. Since the film formed from the supernatant liquid after sedimentation did not show photocatalytic ability, the sol was again dispersed with an ultrasonic disperser, and then formed on a glass plate in the same manner as in Example 1. An evaluation was performed.

【0017】比較例2 1次粒子径が0.05μmである結晶性の酸化チタン粒
子を用いた以外は比較例1と同様にして酸化チタンゾル
を得た。このゾルも比較例1と同様酸化チタン微粒子の
沈降が認められたので再分散させて成膜した。 成膜の評価 実施例、比較例それぞれの酸化チタンゾルから得た酸化
チタン薄膜の光透過率、光触媒能力及びガラス板との密
着性を測定した。
Comparative Example 2 A titanium oxide sol was obtained in the same manner as in Comparative Example 1, except that crystalline titanium oxide particles having a primary particle size of 0.05 μm were used. This sol was redispersed to form a film because precipitation of titanium oxide fine particles was observed as in Comparative Example 1. Evaluation of film formation Light transmittance, photocatalytic ability, and adhesion to a glass plate of a titanium oxide thin film obtained from each of the titanium oxide sols of Examples and Comparative Examples were measured.

【0018】光透過率の測定方法は、ガラス板上に成膜
した酸化チタン薄膜を日本分光(株)製分光光度計にセ
ットして700〜200nmまで波長を連続的に変化さ
せることで光透過率を測定した。そして550nmにお
ける光透過率を本発明における光透過率として表わし
た。その結果を表1に示す。シュウ酸の分解方法は、成
膜した酸化チタン薄膜付ガラス板で反応容器を作製し、
これに5ミリモル/リットルのシュウ酸を入れ、酸素を
吹込みながら100Wの水銀ランプを照射し、4時間後
のシュウ酸の分解量を過マンガン酸カリウムの酸化還元
滴定により求めた。その結果を表2に示す。また焼成後
のガラス板と薄膜との密着性は鉛筆硬度試験法ならびに
ごばん目剥離試験法(JIS K5400)により求め
た。その結果を表3に示す。
The light transmittance is measured by setting a titanium oxide thin film formed on a glass plate in a spectrophotometer manufactured by JASCO Corporation and continuously changing the wavelength from 700 to 200 nm. The rate was measured. Then, the light transmittance at 550 nm was represented as the light transmittance in the present invention. Table 1 shows the results. The decomposition method of oxalic acid is to prepare a reaction vessel with a glass plate with a titanium oxide thin film formed,
5 mmol / l oxalic acid was added thereto, and a 100 W mercury lamp was irradiated while blowing oxygen, and the decomposition amount of oxalic acid after 4 hours was determined by redox titration of potassium permanganate. Table 2 shows the results. The adhesion between the fired glass plate and the thin film was determined by a pencil hardness test method and a peeling test method (JIS K5400). Table 3 shows the results.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】比較例1においては、酸化チタンの凝集体
がガラス板上に形成され表面が不均一であった。比較例
2においては、透明な酸化チタン薄膜が得られなかった
ため、光触媒能力の評価は実施しなかった。
In Comparative Example 1, an aggregate of titanium oxide was formed on the glass plate and the surface was uneven. In Comparative Example 2, the evaluation of the photocatalytic ability was not performed because a transparent titanium oxide thin film was not obtained.

【0022】[0022]

【表3】 [Table 3]

【0023】[0023]

【発明の効果】本発明の酸化チタンゾルは有機溶媒を全
く含まず溶媒が水であり、これに結晶性の酸化チタン微
粒子を効率よく分散させている。さらに、触媒活性を低
下させるような不純物の含有量も少ないために、成膜し
て得られる酸化チタン薄膜は紫外線吸収による光触媒能
力を有する透明薄膜材料として好適である。また、酸化
チタン薄膜は透明性がよく、かつガラス管との密着性が
よい。従って、この薄膜を蛍光ランプのガラス管に形成
させることによりガラス管の透明性を損なうことなく、
しかも耐久性がよいので長期に亘って光触媒作用により
有機物を分解し汚れを防止することができる。本発明に
おけるゾル組成が基本的に水系であるために成膜時に防
爆設備等の有機成分の除外設備を必要としないために装
置的、経済的に有利である。
The titanium oxide sol of the present invention contains no organic solvent and the solvent is water, in which crystalline titanium oxide fine particles are efficiently dispersed. Further, the titanium oxide thin film obtained by forming the film is suitable as a transparent thin film material having a photocatalytic ability by absorbing ultraviolet light because the content of impurities which lowers the catalytic activity is small. Further, the titanium oxide thin film has good transparency and good adhesion to a glass tube. Therefore, by forming this thin film on the glass tube of the fluorescent lamp, without impairing the transparency of the glass tube,
In addition, since it has good durability, organic substances can be decomposed by photocatalysis for a long period of time to prevent contamination. Since the sol composition in the present invention is basically water-based, equipment for eliminating organic components such as explosion-proof equipment is not required at the time of film formation, which is advantageous in terms of equipment and economy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法に用いられる反応槽の概略断面図
である。
FIG. 1 is a schematic sectional view of a reaction tank used in the method of the present invention.

【符号の説明】[Explanation of symbols]

1 反応槽 2 四塩化チタン水溶液 3 還流冷却器 4 撹拌機 5 温度計 6 加熱装置 DESCRIPTION OF SYMBOLS 1 Reaction tank 2 Titanium tetrachloride aqueous solution 3 Reflux cooler 4 Stirrer 5 Thermometer 6 Heating device

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 四塩化チタンの加水分解により酸化チタ
ン含有ゾルを生成させて、該ゾルを蛍光ランプ用のガラ
ス管表面に塗布し、焼成して該表面に酸化チタン薄膜を
形成したガラス管を使用することを特徴とする蛍光ラン
プ。
1. A method for producing a titanium oxide-containing sol by hydrolysis of titanium tetrachloride, applying the sol to the surface of a glass tube for a fluorescent lamp, and firing the glass tube to form a titanium oxide thin film on the surface. A fluorescent lamp characterized by being used.
【請求項2】 酸化チタンゾルの生成後脱塩素処理して
ガラス管表面に塗布する請求項1記載の蛍光ランプ。
2. The fluorescent lamp according to claim 1, wherein the titanium oxide sol is generated and then dechlorinated and applied to the surface of the glass tube.
【請求項3】 酸化チタン含有ゾルのpHが0.5〜5
である請求項2記載の蛍光ランプ。
3. The pH of the sol containing titanium oxide is 0.5 to 5
The fluorescent lamp according to claim 2, wherein
【請求項4】 ゾル中の酸化チタン粒子の平均粒径が
0.01〜0.08μmである請求項1〜3のいずれか
に記載の蛍光ランプ。
4. The fluorescent lamp according to claim 1, wherein the titanium oxide particles in the sol have an average particle size of 0.01 to 0.08 μm.
【請求項5】 四塩化チタンの加水分解における四塩化
チタン水溶液中の四塩化チタンの濃度が0.05〜1モ
ル/lである請求項1〜4のいずれかに記載の蛍光ラン
プ。
5. The fluorescent lamp according to claim 1, wherein the concentration of titanium tetrachloride in the titanium tetrachloride aqueous solution in the hydrolysis of titanium tetrachloride is 0.05 to 1 mol / l.
【請求項6】 加水分解を反応槽に還流冷却器を設置し
て行う請求項1〜5のいずれかに記載の蛍光ランプ。
6. The fluorescent lamp according to claim 1, wherein the hydrolysis is performed by installing a reflux condenser in the reaction tank.
【請求項7】 焼成温度が100〜800℃である請求
項1〜6のいずれかに記載の蛍光ランプ。
7. The fluorescent lamp according to claim 1, wherein a firing temperature is 100 to 800 ° C.
JP20716596A 1996-08-06 1996-08-06 Fluorescent lamp Expired - Fee Related JP3726366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20716596A JP3726366B2 (en) 1996-08-06 1996-08-06 Fluorescent lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20716596A JP3726366B2 (en) 1996-08-06 1996-08-06 Fluorescent lamp

Publications (2)

Publication Number Publication Date
JPH1053438A true JPH1053438A (en) 1998-02-24
JP3726366B2 JP3726366B2 (en) 2005-12-14

Family

ID=16535312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20716596A Expired - Fee Related JP3726366B2 (en) 1996-08-06 1996-08-06 Fluorescent lamp

Country Status (1)

Country Link
JP (1) JP3726366B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006506302A (en) * 2002-09-13 2006-02-23 ショイテン グラースグループ Fireproof glass unit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01169866A (en) * 1987-12-25 1989-07-05 Hitachi Ltd Discharge lamp
JPH0214820A (en) * 1988-03-23 1990-01-18 Fuji Titan Kogyo Kk Production of titanium oxide thin film-forming material
JPH06293519A (en) * 1992-07-28 1994-10-21 Ishihara Sangyo Kaisha Ltd Production of titanium oxide particles and film
JPH07232080A (en) * 1993-12-28 1995-09-05 Toto Ltd Multifunctional material with photocatalyst function and its preparation
JPH0899041A (en) * 1993-12-09 1996-04-16 Agency Of Ind Science & Technol Photocatalyst of titanium oxide porous thin film and preparation of the same
JPH08173512A (en) * 1994-12-27 1996-07-09 Sharp Corp Deodorizing element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01169866A (en) * 1987-12-25 1989-07-05 Hitachi Ltd Discharge lamp
JPH0214820A (en) * 1988-03-23 1990-01-18 Fuji Titan Kogyo Kk Production of titanium oxide thin film-forming material
JPH06293519A (en) * 1992-07-28 1994-10-21 Ishihara Sangyo Kaisha Ltd Production of titanium oxide particles and film
JPH0899041A (en) * 1993-12-09 1996-04-16 Agency Of Ind Science & Technol Photocatalyst of titanium oxide porous thin film and preparation of the same
JPH07232080A (en) * 1993-12-28 1995-09-05 Toto Ltd Multifunctional material with photocatalyst function and its preparation
JPH08173512A (en) * 1994-12-27 1996-07-09 Sharp Corp Deodorizing element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006506302A (en) * 2002-09-13 2006-02-23 ショイテン グラースグループ Fireproof glass unit

Also Published As

Publication number Publication date
JP3726366B2 (en) 2005-12-14

Similar Documents

Publication Publication Date Title
EP1052224B1 (en) Particles, aqueous dispersion and film of titanium oxide, and preparation thereof
JP4335446B2 (en) Titanium oxide sol, thin film and method for producing them
JP3524342B2 (en) Titanium dioxide sol and thin film for thin film formation
CA2343085C (en) Titanium-containing finely divided particulate material, aqueous sol composition and coating liquid containing same, process for producing same, and shaped article having film thereof
JP7060583B2 (en) Method for producing iron-containing rutile-type titanium oxide fine particle dispersion, iron-containing rutile-type titanium oxide fine particles and their uses
WO2007037321A1 (en) Titanium oxide photocatalyst, method for producing same and use thereof
JPH0971418A (en) Method for forming titania film
WO2021200135A1 (en) Method for producing zirconia-coated titanium oxide microparticles, zirconia-coated titanium oxide microparticles and use thereof
Anderson et al. The effect of Brij® surfactants in sol–gel processing for the production of TiO2 thin films
JP3251167B2 (en) Titanium oxide-based ceramic paint and method for producing the same
JP3726366B2 (en) Fluorescent lamp
JP4187632B2 (en) Method for forming titanium dioxide thin film and catalyst having the titanium dioxide thin film
JP3550947B2 (en) Method for producing and using photocatalytic multifunctional member
JP4010934B2 (en) Titanium oxide particles, water-dispersed sols, thin films thereof, and production methods thereof
JPH11171544A (en) Titanium-containing material and its production
WO2006123424A1 (en) Titanium oxide film, process for producing the same and aqueous peroxotitanic acid solution

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20010528

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20011127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050919

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081007

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees