JPH11171544A - Titanium-containing material and its production - Google Patents

Titanium-containing material and its production

Info

Publication number
JPH11171544A
JPH11171544A JP10233011A JP23301198A JPH11171544A JP H11171544 A JPH11171544 A JP H11171544A JP 10233011 A JP10233011 A JP 10233011A JP 23301198 A JP23301198 A JP 23301198A JP H11171544 A JPH11171544 A JP H11171544A
Authority
JP
Japan
Prior art keywords
titanium
sol
mol
thin film
soln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10233011A
Other languages
Japanese (ja)
Inventor
Masahiro Omori
将弘 大森
Katsutoshi Tamura
克俊 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP10233011A priority Critical patent/JPH11171544A/en
Priority to KR1020017001978A priority patent/KR100630285B1/en
Priority to EP99919667A priority patent/EP1127844B1/en
Priority to CA002343085A priority patent/CA2343085C/en
Priority to PCT/JP1999/002712 priority patent/WO2000010921A1/en
Priority to CNB998123706A priority patent/CN1168663C/en
Priority to CNB2004100558230A priority patent/CN1310840C/en
Priority to US09/763,172 priority patent/US6610135B1/en
Publication of JPH11171544A publication Critical patent/JPH11171544A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a titanium-contg. material and a titanium-contg. coating soln. giving a thin film excellent in transparency, photocatalytic action and adhesion to a substrate by imparting a specified light transmissivity at a specified wavelength in a specified thickness even after heating up to the boiling point. SOLUTION: An aq. soln. of titanium tetrachloride is hydrolyzed in the presence of a carboxylic acid, preferably citric acid to produce the objective titanium-contg. material and titanium-contg. coating soln. having >=85% light transmissivity at 450-700 nm wavelength in 10 mm thickness even after heating to the b.p. The concn. of the titanium tetrachloride in the aq. soln. is preferably 0.1-10 mol/l (expressed in terms of TiO2 ) and the amt. of the carboxylic acid added is preferably 0.1-10 mol/l and 0.01-10 mol per 1 mol Ti atom. After the hydrolysis, dechlorination is optionally carried out by electrodialysis or other method so as to attain 50-10,000 ppm Cl ion concn. and pH 0.5-5. The particle diameter in the material or soln. is 0.0008-0.015 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はセラミックス、合成
樹脂等の基材に薄膜を形成するのに好適なチタン含有物
質、チタン含有コーティング液およびそれらの製造方法
に関する。該液より造られる薄膜は透明性に優れ、光触
媒作用、基材との密着も良好なものである。また、該液
は光触媒効果も高く、紫外線吸収機能も高い効果を持っ
ている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a titanium-containing substance, a titanium-containing coating liquid suitable for forming a thin film on a substrate such as ceramics and synthetic resin, and a method for producing the same. The thin film formed from the liquid has excellent transparency, good photocatalysis, and good adhesion to the substrate. Further, the liquid has a high photocatalytic effect and a high ultraviolet absorbing function.

【0002】[0002]

【従来の技術】四塩化チタン水溶液またはチタンアルコ
キシド等を加水分解して酸化チタンを生成させることは
よく知られ、その場合酸化チタンゾルが生成される。酸
化チタンゾルを最近照明器具、例えば蛍光ランプのガラ
ス管やそのカバーに塗布し薄膜を形成し、光触媒作用に
より上記ガラス管やカバーに油煙等の有機物が付着した
場合、それを分解し、ガラス管やカバーの汚れを防止す
る方法が提案されている。
2. Description of the Related Art It is well known that titanium oxide is produced by hydrolyzing an aqueous solution of titanium tetrachloride or titanium alkoxide, in which case a titanium oxide sol is produced. Recently, a titanium oxide sol is applied to a lighting device, for example, a glass tube or a cover of a fluorescent lamp to form a thin film, and when an organic substance such as oil smoke adheres to the glass tube or the cover by a photocatalytic action, it is decomposed, and the glass tube or the A method for preventing the cover from being stained has been proposed.

【0003】[0003]

【発明が解決しようとする課題】酸化チタン薄膜をガラ
ス、プラスチック、その他の基材に形成して光触媒とし
て利用する場合、その薄膜は触媒活性が高いことは当然
要求されるが、薄膜の透明性も要求される。そこで、触
媒活性を維持しつつ、透明性を更に改善するために、チ
タン含有物質の単分散でより微細粒子を造ることを本発
明の目的とする。
When a titanium oxide thin film is formed on glass, plastic, or another substrate and used as a photocatalyst, the thin film is naturally required to have high catalytic activity. Is also required. Then, in order to further improve the transparency while maintaining the catalytic activity, it is an object of the present invention to produce finer particles by monodispersion of a titanium-containing substance.

【0004】[0004]

【課題を解決するための手段】本発明者らは、カルボン
酸の存在下で、四塩化チタンを加水分解することによ
り、従来にない2〜5nmと微細な粒子を含むチタン含
有物質またはチタン含有コーティング液(ゾル)を造る
ことができ、生成される粒子が微細なため触媒活性を維
持し、従来にない透明性に優れた、即ち、沸点まで加熱
しても、波長450〜700nmにて厚さ10mmにお
ける光透過率が85%以上であるチタン含有物質または
チタン含有コーティング液(ゾル)が得られた。本発明
は、高い光触媒効果および紫外線吸収機能も有している
ため、透明性の高い光触媒効果材料および紫外線遮断保
護材料としても有用である。
Means for Solving the Problems The present inventors hydrolyze titanium tetrachloride in the presence of a carboxylic acid to obtain an unprecedented titanium-containing substance or a titanium-containing substance containing fine particles of 2 to 5 nm. A coating liquid (sol) can be produced, and the resulting particles are fine and maintain catalytic activity, and have unprecedented transparency, ie, have a thickness of 450 to 700 nm even when heated to the boiling point. A titanium-containing substance or a titanium-containing coating liquid (sol) having a light transmittance of 85% or more at a thickness of 10 mm was obtained. Since the present invention also has a high photocatalytic effect and an ultraviolet absorbing function, it is also useful as a highly transparent photocatalytic effect material and an ultraviolet shielding and protecting material.

【0005】[0005]

【発明の実施の形態】加水分解する四塩化チタン水溶液
中の四塩化チタンの濃度は低過ぎると生産性が悪く、ま
た濃度が高過ぎると反応が激しくなり、得られるチタン
含有物質の粒子が微細になりにくく、かつ分散性も悪く
なるため、好ましい濃度範囲はTiO2 換算として、
0.1〜10モル/リットルである。本発明では、四塩
化チタンを加水分解するのに、カルボン酸、好ましくは
水溶性カルボン酸の存在下で加水分解するのが特徴であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION If the concentration of titanium tetrachloride in an aqueous titanium tetrachloride solution to be hydrolyzed is too low, the productivity is poor, and if the concentration is too high, the reaction becomes violent, and the particles of the titanium-containing substance obtained are fine. And the dispersibility is also poor, so the preferred concentration range is TiO 2 conversion,
0.1 to 10 mol / liter. The present invention is characterized in that titanium tetrachloride is hydrolyzed in the presence of a carboxylic acid, preferably a water-soluble carboxylic acid.

【0006】カルボン酸の好ましい添加量は0.1〜1
0モル/リットルであり、添加量が0.1モル/リット
ル未満では、加水分解反応進行により白濁したゾルとな
り易く、一方、10モル/リットルを越えると逆にカル
ボン酸の塩として沈澱し始めるので好ましくない。好ま
しい水溶性カルボン酸としてはシュウ酸、クエン酸、リ
ンゴ酸、酒石酸、コハク酸などを用いることが可能であ
るが、できる限り少ない量で添加の効果が最大限発揮さ
せるためにはクエン酸が好ましい。水溶性のカルボン酸
でない場合は、低級または中級アルコールまたはケトン
類に溶解し、水中に添加すればよい。反応時にチタン原
子1モルに対して、クエン酸等の水溶性カルボン酸を
0.01モル以上、10モル以下の範囲で添加し、加水
分解反応を行うことで本発明のものは得られる。添加量
が0.01モル未満では所望の効果が得られ難く、加水
分解反応進行により白濁し、一方、10モルを越えると
逆にカルボン酸の塩として沈澱し始めるので好ましくな
い。
The preferred amount of carboxylic acid is 0.1 to 1
When the amount is less than 0.1 mol / L, the sol becomes turbid due to the progress of the hydrolysis reaction. On the other hand, when it exceeds 10 mol / L, the sol starts to precipitate as a carboxylic acid salt. Not preferred. As a preferred water-soluble carboxylic acid, oxalic acid, citric acid, malic acid, tartaric acid, succinic acid, and the like can be used, but citric acid is preferable in order to maximize the effect of addition in the smallest possible amount. . If it is not a water-soluble carboxylic acid, it may be dissolved in a lower or intermediate alcohol or ketone and added to water. The compound of the present invention can be obtained by adding a water-soluble carboxylic acid such as citric acid in a range of 0.01 mol or more and 10 mol or less with respect to 1 mol of titanium atom at the time of the reaction and performing a hydrolysis reaction. If the amount is less than 0.01 mol, it is difficult to obtain the desired effect, and the mixture becomes cloudy due to the progress of the hydrolysis reaction. On the other hand, if it exceeds 10 mol, it starts to precipitate as a carboxylic acid salt.

【0007】加水分解により発生する塩化水素は完全に
逸出が防止されていなくても抑制されておればよい。ま
たその方法も抑制できるものであれば特に限定されず、
例えば加圧することによっても可能であるが、最も容易
にして効果的な方法は加水分解の反応槽に還流冷却器を
設置して加水分解を行う方法である。この装置を図1に
示す。図1において1が四塩化チタンの水溶液2を充填
した反応槽で、これに還流冷却器3が設置されている。
4は撹拌機、5は温度計、6は反応槽を加熱するための
装置である。加水分解反応によって水及び塩化水素の蒸
気が発生するが、その大部分は還流冷却器により凝縮
し、反応槽に戻されるので反応槽から外に塩化水素が逸
出することは殆どない。
[0007] Hydrogen chloride generated by hydrolysis does not have to be completely prevented from escaping, as long as it is suppressed. The method is not particularly limited as long as the method can be suppressed.
For example, pressurization is possible, but the easiest and most effective method is to install a reflux condenser in the hydrolysis reaction tank to carry out hydrolysis. This device is shown in FIG. In FIG. 1, reference numeral 1 denotes a reaction tank filled with an aqueous solution 2 of titanium tetrachloride, in which a reflux condenser 3 is installed.
4 is a stirrer, 5 is a thermometer, and 6 is a device for heating the reaction tank. Although water and hydrogen chloride vapor are generated by the hydrolysis reaction, most of them are condensed by the reflux condenser and returned to the reaction tank, so that hydrogen chloride hardly escapes from the reaction tank.

【0008】本発明では、四塩化チタンを投入前にあら
かじめカルボン酸を溶媒に所定量を添加してから十分に
溶解させてから四塩化チタンを投入する。加水分解にお
ける温度は50℃以上、四塩化チタン水溶液の沸点迄の
範囲が好ましい。50℃未満では加水分解反応に長時間
を要する。加水分解は上記の温度に昇温し、10分から
12時間程度保持して行われる。この保持時間は加水分
解の温度が高温側にある程短くてよい。四塩化チタン水
溶液の加水分解は四塩化チタンと水との混合溶液を反応
槽中で所定の温度に加熱してもよく、また水を反応槽中
で予め加熱しておき、これに四塩化チタンを添加し、所
定の温度にしてもよい。
In the present invention, a predetermined amount of a carboxylic acid is previously added to a solvent before the addition of titanium tetrachloride, and then sufficiently dissolved, and then the titanium tetrachloride is added. The temperature in the hydrolysis is preferably in the range of 50 ° C. or higher and up to the boiling point of the aqueous solution of titanium tetrachloride. If the temperature is lower than 50 ° C., a long time is required for the hydrolysis reaction. The hydrolysis is carried out by raising the temperature to the above-mentioned temperature and holding for about 10 minutes to 12 hours. This holding time may be shorter as the hydrolysis temperature is higher. For the hydrolysis of the aqueous solution of titanium tetrachloride, a mixed solution of titanium tetrachloride and water may be heated to a predetermined temperature in a reaction vessel, or water may be heated in advance in the reaction vessel, To a predetermined temperature.

【0009】加水分解して得られるゾルを乾燥すれば乾
粉として取り出せるが、超微粒子のため凝集が激しく、
微細化した効果が認められなくなるので現実的ではな
い。ゾルとして使用する場合、加水分解反応後、必要に
応じて脱塩素処理を施すこともできる。脱塩素処理は一
般の公知手段でよく電気透析、イオン交換樹脂、電気分
解などが可能である。脱塩素の程度はゾルのpHを目安
にすればよく、塩素イオンが50〜10,000ppm
の場合、pHは約0.5〜5、好ましい範囲である10
0〜4,000ppmの場合、pHは約4〜1である。
本発明の水分散ゾルに有機溶媒を加え、水と有機溶媒の
混合物に分散させることもできる。本発明の水分散チタ
ン含有物質から薄膜を形成する場合、加水分解反応で生
成したゾルをそのまま用いるのが好ましく、このゾルか
ら粉末を製造し、これを水に分散し、ゾルにして用いる
ことは好ましい方法ではない。酸化チタンの粒子は表面
活性が高く、微粒子になればなるほど活性度が上昇する
ため水への分散は非常に困難になる、すなわち凝集体と
なってしまい、これからつくられた薄膜は透明性に劣
り、光触媒作用も低下するからである。本発明の製造方
法は、四塩化チタン水溶液の加水分解時に発生する塩化
水素の逸出を抑制すること、および凝集を防ぐ安定化剤
を添加すること、更には場合により乾燥工程を経ずにそ
のまま脱塩素してゾルにすることで、成膜した時に高い
光触媒能を有し、かつ、透明性も高い薄膜を得ることが
できる方法である。分散媒を有機溶媒とする場合は、四
塩化チタンを投入する溶媒を水溶性有機溶媒に置き換え
てやることで製造される。
When the sol obtained by hydrolysis is dried, it can be taken out as a dry powder.
This is not realistic because the effect of miniaturization is no longer recognized. When used as a sol, after the hydrolysis reaction, a dechlorination treatment can be performed if necessary. The dechlorination treatment can be performed by a commonly known means, such as electrodialysis, ion exchange resin, or electrolysis. The degree of dechlorination may be based on the pH of the sol, and the chlorine ion is 50 to 10,000 ppm.
In this case, the pH is about 0.5-5, a preferred range of 10
For 0 to 4,000 ppm, the pH is about 4-1.
An organic solvent can be added to the aqueous dispersion sol of the present invention and dispersed in a mixture of water and the organic solvent. When forming a thin film from the water-dispersed titanium-containing substance of the present invention, it is preferable to use the sol generated by the hydrolysis reaction as it is, to produce a powder from this sol, disperse it in water, and use it as a sol. This is not the preferred method. Titanium oxide particles have a high surface activity, and the finer the particles, the higher the activity, so it is very difficult to disperse them in water.In other words, they become agglomerates, and the thin films made therefrom have poor transparency. This is because the photocatalytic action is also reduced. The production method of the present invention is to suppress the escape of hydrogen chloride generated during the hydrolysis of the aqueous solution of titanium tetrachloride, and to add a stabilizer to prevent agglomeration. By dechlorinating into a sol, this method is capable of obtaining a thin film having high photocatalytic activity and high transparency when formed. When an organic solvent is used as the dispersion medium, it is produced by replacing the solvent into which titanium tetrachloride is charged with a water-soluble organic solvent.

【0010】本発明の製造方法で得られるチタン含有物
質である粒子については十分に同定されておらない。一
般的に四塩化チタンを加水分解して得られる酸化チタン
ゾル粒子ではないことは分析より分っている。本発明の
該粒子径は、0.0008〜0.015μmである。ま
た、本発明のチタン含有物質またはコーティング液は、
従来の酸化チタンゾルと異なり、常温において白濁状態
のものでないばかりか、沸点まで加熱しても無色透明の
もので、10mm×10mm角で高さ45mmの石英セ
ルに入れて測定しても、即ち厚さ10mmにて、波長4
50〜700nmにおいて光透過率が85%以上のチタ
ン含有物質であり、またチタン含有コーティング液であ
る。
The titanium-containing particles obtained by the production method of the present invention have not been sufficiently identified. Analysis has shown that the particles are not generally titanium oxide sol particles obtained by hydrolyzing titanium tetrachloride. The particle size of the present invention is from 0.0008 to 0.015 μm. Further, the titanium-containing substance or the coating liquid of the present invention,
Unlike conventional titanium oxide sols, they are not white turbid at room temperature, and are colorless and transparent even when heated to the boiling point. They are measured in a 10 mm × 10 mm square quartz cell having a height of 45 mm. At 10 mm, wavelength 4
A titanium-containing substance having a light transmittance of 85% or more at 50 to 700 nm, and a titanium-containing coating liquid.

【0011】成膜性を向上させるために、必要に応じて
水溶性高分子を添加する。本発明で得られるものにはポ
リビニルアルコール、メチルセルロース、エチルセルロ
ース、ニトロセルロースなど種々のものが使用可能であ
るが完全にゾルに溶解することが必要である。そのた
め、光触媒性を持たせるためにゾル中に含有される量と
して10wt%以下が望ましい。また、添加する時期は
脱塩素処理終了後が好ましいが、脱塩素処理の前でも何
ら差し支えない。以上はバッチ式反応について説明した
が、反応槽を連続槽にして四塩化チタンを連続投入しな
がら、投入口の反対側で反応液を取り出し、引き続き脱
塩素処理するような連続方式も可能である。本発明によ
り得られたものより透明薄膜を形成する場合、ゾル中の
粒子の濃度が高過ぎると粒子が凝集し、ゾルが不安定に
なる。また、濃度が低過ぎると、例えば薄膜形成の際ゾ
ルの塗布工程に時間がかかるなどの問題が生じるので、
好ましい濃度は1〜30wt%である。
In order to improve the film-forming property, a water-soluble polymer is added as required. Various materials such as polyvinyl alcohol, methylcellulose, ethylcellulose and nitrocellulose can be used for the one obtained in the present invention, but it is necessary to completely dissolve it in the sol. Therefore, it is desirable that the amount contained in the sol be 10 wt% or less in order to impart photocatalytic properties. The addition is preferably performed after the completion of the dechlorination treatment, but may be performed before the dechlorination treatment. The above describes the batch-type reaction. However, a continuous method in which the reaction vessel is continuously charged with titanium tetrachloride, the reaction liquid is taken out on the opposite side of the charging port, and the dechlorination treatment is subsequently performed is also possible. . When forming a transparent thin film from that obtained by the present invention, if the concentration of the particles in the sol is too high, the particles aggregate and the sol becomes unstable. Further, if the concentration is too low, for example, it takes a long time to apply the sol during the formation of a thin film.
The preferred concentration is 1 to 30 wt%.

【0012】本発明にて得られるゾルを各種の材料、成
形体等の基材に塗布し、基材の表面に薄膜を形成するこ
とができる。基材としてはセラミックス、金属、プラス
チック、木材、紙等殆ど制限なく対象とすることができ
る。基材をアルミナ、ジルコニア等からなる触媒担体と
し、これにこの薄膜の触媒を担持して触媒として使用す
ることもできる。また蛍光ランプ等の照明器具のガラス
やそのプラスチックカバー等を基材としてこれに薄膜を
形成すれば薄膜は透明であり、かつ光触媒作用を有する
ので光を遮断することなく油煙等の有機物を分解するこ
とができ、ガラスやカバーの汚れを防止するのに有効で
ある。また建築用ガラスや壁材に薄膜を形成すれば同様
に汚れを防止することが可能になるので、高層ビルなど
の窓材や壁材に用いることができ、清掃作業を必要とし
なくなるためビル管理コスト削減に役立つ。本発明によ
り得られる単分散ゾルを基材に塗布するには基材をゾル
中に浸漬する方法、基材にゾルをスプレーする方法、ゾ
ルを刷毛で基材に塗布する方法などが採用される。ゾル
の塗布量は液状の厚さにして0.01〜0.2mmが適
当である。塗布後乾燥して溶媒を除去すれば薄膜が得ら
れ、このままでも触媒等の用途に供することができる。
基材が金属やセラミックス、例えばガラス等の耐熱性で
ある場合は、薄膜を形成後焼成することができ、これに
よって薄膜は一層強く基材に密着し、薄膜の硬度も上
る。この焼成温度は200℃以上が好ましい。焼成温度
の上限には特に制限はなく、基材の耐熱性に応じて定め
ればよいが、あまり温度を高くしても薄膜の硬度や基材
との密着性は増さないので800℃位迄が適当である。
焼成の雰囲気は特に制限されず、大気中でよい。焼成時
間は特に制限はなく、例えば1〜60分の範囲で行えば
よい。焼成によって得られる薄膜の厚さは、前記の塗布
量の場合0.02〜1.0μm位である。本発明により
得られるゾルが可視光に対して完全に透明であること、
また、このゾルを用いて製造される薄膜が高い光触媒能
を示しかつ透明性も高いことは、粒子が可視光に対し光
散乱・吸収を起こさない程、非常に微細な粒子であるこ
と、更に分散状態における粒子が凝集がなく、限りなく
1次粒子として存在しているからである。
The sol obtained by the present invention can be applied to a base material such as various materials and molded articles to form a thin film on the surface of the base material. As the base material, ceramics, metals, plastics, woods, papers, and the like can be used with almost no restrictions. The base material may be a catalyst carrier made of alumina, zirconia, or the like, and the thin film catalyst may be supported on the carrier and used as a catalyst. In addition, if a thin film is formed on a glass of a lighting device such as a fluorescent lamp or its plastic cover as a base material, the thin film is transparent and has a photocatalytic action, so that organic substances such as oil smoke can be decomposed without blocking light. It is effective in preventing stains on the glass and the cover. Also, if a thin film is formed on architectural glass or wall material, it will be possible to prevent dirt similarly, so it can be used for window materials and wall materials of high-rise buildings, etc., and cleaning work will not be required, so building management Helps reduce costs. To apply the monodisperse sol obtained by the present invention to a substrate, a method of immersing the substrate in the sol, a method of spraying the sol on the substrate, a method of applying the sol to the substrate with a brush, and the like are employed. . The appropriate amount of the sol to be applied is 0.01 to 0.2 mm as a liquid thickness. If the solvent is removed by drying after coating, a thin film can be obtained, which can be used as a catalyst or the like as it is.
When the substrate is heat-resistant such as metal or ceramics, for example, glass, it can be fired after forming the thin film, whereby the thin film adheres more strongly to the substrate and the hardness of the thin film increases. The firing temperature is preferably 200 ° C. or higher. The upper limit of the sintering temperature is not particularly limited and may be determined according to the heat resistance of the base material. However, if the temperature is too high, the hardness of the thin film and the adhesion to the base material do not increase. Up to is appropriate.
The firing atmosphere is not particularly limited, and may be in the air. The firing time is not particularly limited, and may be, for example, in the range of 1 to 60 minutes. The thickness of the thin film obtained by firing is about 0.02 to 1.0 μm in the case of the above-mentioned coating amount. The sol obtained by the present invention is completely transparent to visible light,
Further, the thin film produced using this sol exhibits high photocatalytic activity and high transparency, that the particles are very fine particles so as not to cause light scattering and absorption with respect to visible light. This is because the particles in the dispersed state do not agglomerate and exist as primary particles without limit.

【0013】[0013]

【実施例】以下、実施例により具体的に説明するが、本
発明は実施例に限定されるものではない。 実施例1 蒸留水300gを図1に示す還流冷却器付きの反応槽に
装入し、撹拌速度を約200rpmに保ちながら、3
8.4gのクエン酸を溶解させ、ここに四塩化チタン
(Ti含有量:16.3%、比重1.59、純度99.
9%)水溶液63.4gを添加した。添加終了後、この
液を昇温し100℃付近まで加熱し、この状態で60分
間保持して完全に反応を終了した。冷却後、反応で生成
した残留塩素を電気透析により、塩素濃度600ppm
まで取り除き、pH=2とした後、成膜用助剤として水
溶性高分子であるポリビニルアルコールを濃度1.0w
t%にしたチタン含有コーティング液を造った。この液
を10mm×10mm×45mmの石英セルを用い分光
光度計(日本分光Ubest300)で200nm〜7
00nmの領域の透過スペクトルを測定した。測定結果
を図2に示す。図2から明らかに可視光領域である38
0nm〜700nmにおいては吸光度は低く、ほぼ完全
に透明であることが明らかであり、450〜700nm
においては、95%の光透過率である。また、紫外光で
ある380nm以下では酸化チタンの場合に見られる特
有の紫外線の吸収が認められた。更に、粒度分布測定器
(大塚電子DLS−7000)により粒度分布を測定
し、その結果、平均粒子径d50=2.56nmであっ
た。また、このコーティング液(チタン含有物質)は非
常に安定であり、1週間以上経過しても生成した微粒子
の沈降は認められなかった。前記粒子を60℃の真空乾
燥器を用いて取り出し、透過型電子顕微鏡で電子線回折
を行ったが、化合物として同定することはできなかっ
た。乾燥品は、X線回折的には無定形で、400℃焼成
品はルチル型の酸化チタンのピークが見られた。
EXAMPLES The present invention will be described below in more detail with reference to examples, but the present invention is not limited to the examples. Example 1 300 g of distilled water was charged into a reaction vessel equipped with a reflux condenser shown in FIG. 1, and the stirring speed was maintained at about 200 rpm.
8.4 g of citric acid was dissolved, and titanium tetrachloride (Ti content: 16.3%, specific gravity: 1.59, purity: 99.000 g) was dissolved therein.
63.4 g of an aqueous solution (9%) were added. After the addition was completed, the temperature of the solution was increased to about 100 ° C., and the reaction was maintained for 60 minutes to complete the reaction. After cooling, the residual chlorine generated in the reaction was subjected to electrodialysis to obtain a chlorine concentration of 600 ppm.
After the pH was adjusted to 2, a polyvinyl alcohol as a water-soluble polymer was used as a film-forming auxiliary at a concentration of 1.0 w
A titanium containing coating solution was made up to t%. Using a 10 mm × 10 mm × 45 mm quartz cell, this solution was measured with a spectrophotometer (JASCO Ubest300) to obtain a solution of 200 nm to 7 nm.
The transmission spectrum in the 00 nm region was measured. FIG. 2 shows the measurement results. It is apparent from FIG. 2 that the visible light region is 38.
It is clear that the absorbance is low at 0 nm to 700 nm and almost completely transparent, and 450 to 700 nm.
Has a light transmittance of 95%. At 380 nm or less, which is ultraviolet light, absorption of a specific ultraviolet ray observed in the case of titanium oxide was observed. Furthermore, the particle size distribution was measured by a particle size distribution analyzer (Otsuka Electronics DLS-7000), and as a result, the average particle size d 50 was 2.56 nm. The coating liquid (titanium-containing substance) was very stable, and no sedimentation of the generated fine particles was observed even after one week or more. The particles were taken out using a vacuum dryer at 60 ° C. and subjected to electron beam diffraction with a transmission electron microscope, but could not be identified as a compound. The dried product was amorphous in terms of X-ray diffraction, and the product baked at 400 ° C. showed a peak of rutile titanium oxide.

【0014】更に、前記液をスピンコーターを用いてガ
ラス基板に均一に塗布して、100℃乾燥器で乾燥し透
明膜を得た。この薄膜付きガラス基板の透過スペクトル
を図3に示す。図3より明らかに可視部では97%以上
の透過率を示し、ほぼ完全に透明であった。更に、紫外
部において酸化チタン特有のものに似た吸収が認められ
た。光触媒能を測定するため、この透明薄膜上に有機色
素を含有する赤インクを均一に塗布し、これに紫外線照
射ランプ(ブラックライト)を照射して、退色試験を行
った。試験は退色前後の赤色の中心波長である550n
mにおける吸収率を比較することで検討した。結果を表
1に示す。表から明らかなように赤色の退色が認めら
れ、紫外線吸収による光触媒能が確認された。
Further, the above liquid was uniformly applied to a glass substrate using a spin coater, and dried at 100 ° C. to obtain a transparent film. FIG. 3 shows the transmission spectrum of this glass substrate with a thin film. FIG. 3 clearly shows that the visible portion has a transmittance of 97% or more, and is almost completely transparent. Further, absorption similar to that specific to titanium oxide was observed in the ultraviolet. In order to measure the photocatalytic ability, a red ink containing an organic dye was uniformly applied on the transparent thin film and irradiated with an ultraviolet irradiation lamp (black light) to perform a fading test. The test was performed at 550n, which is the center wavelength of red before and after fading.
It examined by comparing the absorptivity at m. Table 1 shows the results. As is clear from the table, red fading was observed, and the photocatalytic ability by ultraviolet absorption was confirmed.

【0015】実施例2 実施例1において、クエン酸の添加量を153.6gと
した以外は実施例1と同様にしてチタン含有コーティン
グ液(チタン含有物質)を造った。このゾル状液の透過
スペクトルを測定したところ可視光域においては吸光度
は低くほぼ完全に透明であった。また、紫外部において
は酸化チタンに似た吸収が認められた。また、粒度分布
を測定したところ4.14nmであった。更に、前記ゾ
ル状液をスピンコーターを用いてガラス基板に均一に塗
布して、100℃乾燥器で乾燥し透明膜を得た。更に電
気炉中で空気雰囲気下400℃、30min焼成し、ガ
ラス基板に密着させた。この薄膜付きガラス基板の透過
スペクトルを測定したところ可視部では95%以上の透
過率を示しほぼ完全に透明であった。また、紫外部にお
いて酸化チタン特有の吸収に似たものが認められた。こ
のチタン含有物質の光触媒能を測定するために、実施例
1と同様にして赤インクの退色試験を実施した。結果を
表1に示す。表1から明らかに赤色の退色が認められ、
光触媒能を有することが確認された。
Example 2 A titanium-containing coating liquid (titanium-containing substance) was prepared in the same manner as in Example 1 except that the amount of citric acid added was changed to 153.6 g. When the transmission spectrum of this sol-like liquid was measured, the absorbance was low and almost completely transparent in the visible light region. Further, absorption similar to titanium oxide was observed in the ultraviolet. The particle size distribution measured was 4.14 nm. Further, the sol-like liquid was uniformly applied to a glass substrate using a spin coater, and dried with a dryer at 100 ° C. to obtain a transparent film. Furthermore, it was baked at 400 ° C. for 30 minutes in an air atmosphere in an electric furnace, and was adhered to a glass substrate. When the transmission spectrum of this glass substrate with a thin film was measured, it showed a transmittance of 95% or more in the visible region, and was almost completely transparent. In addition, an absorption similar to absorption specific to titanium oxide was observed in the ultraviolet. In order to measure the photocatalytic ability of the titanium-containing substance, a red ink fading test was performed in the same manner as in Example 1. Table 1 shows the results. Table 1 clearly shows red fading,
It was confirmed to have photocatalytic ability.

【0016】実施例3 実施例1において、クエン酸の代わりに酒石酸60gを
添加する以外は実施例1と同様にした。ゾルの吸光度は
実施例1と同様であった。また、平均粒子径は3.5n
mであった。更に、前記ゾル状液を用いてガラス基板上
に成膜した。これを200℃空気中で乾燥し、密着させ
た。この薄膜付きガラス基板の透過スペクトル、光触媒
能は実施例1と同様の性能であった。
Example 3 The procedure of Example 1 was repeated, except that 60 g of tartaric acid was added instead of citric acid. The absorbance of the sol was the same as in Example 1. The average particle size is 3.5n.
m. Further, a film was formed on a glass substrate using the sol liquid. This was dried in air at 200 ° C. and brought into close contact. The transmission spectrum and the photocatalytic activity of this glass substrate with a thin film were the same as those in Example 1.

【0017】実施例4 実施例1において作成した透明ゾルを塗装鋼板に塗布し
て400℃×15分焼結させ、酸化チタン透明膜を形成
させた。この塗膜の鉛筆硬度は5H、ゴバン目剥離試験
結果は90/100であった。
Example 4 The transparent sol prepared in Example 1 was applied to a coated steel plate and sintered at 400 ° C. for 15 minutes to form a titanium oxide transparent film. The pencil hardness of this coating film was 5H, and the result of the stripping test was 90/100.

【0018】実施例5 四塩化チタン水溶液中の四塩化チタンの濃度をTiO2
換算として0.25モル/リットルとして、クエン酸添
加比率を0.01、1.0および10(クエン酸濃度/
TiO2 換算濃度比、モル比)としてチタン含有物質を
造った。他の条件等、操作は実施例1と同じである。造
られたものの平均粒子径d50は、それぞれ1.10n
m、4.4nmおよび12.5nmであった。
EXAMPLE 5 The concentration of titanium tetrachloride in an aqueous solution of titanium tetrachloride was adjusted to TiO 2
The conversion ratio of citric acid was 0.01, 1.0 and 10 (citric acid concentration /
A titanium-containing substance was prepared as a concentration ratio (molar ratio in terms of TiO 2 ). The operation such as other conditions is the same as that of the first embodiment. The average particle diameter d 50 of the produced ones is 1.10 n each.
m, 4.4 nm and 12.5 nm.

【0019】比較例1 実施例1において、クエン酸を添加しないこと以外は実
施例1と同様の操作を行った。四塩化チタン添加後約5
minは透明な状態であったが、液温度が約60℃以上
になるにつれて徐々に白濁し始め、約90℃以上ではほ
ぼ白色液となった。粒度分布を測定したところ粒子の平
均粒子径は65nmであった。
Comparative Example 1 The same operation as in Example 1 was carried out except that citric acid was not added. About 5 after adding titanium tetrachloride
Although min was a transparent state, it gradually began to become cloudy as the liquid temperature became about 60 ° C. or higher, and became almost a white liquid at about 90 ° C. or higher. When the particle size distribution was measured, the average particle size of the particles was 65 nm.

【0020】比較例2 粒子径が7nmであるアナターゼ型酸化チタン粒子を用
い、酸化チタン濃度を2%となるように水に超音波分散
器を用いて分散させた。この際、解膠剤として塩酸を添
加してpH1とし、酸化チタンゾルとした。粒度分布を
測定したところ粒子の平均粒子径は35nmであった
が、ゾルは白色を呈していた。光触媒能の結果を表1に
示す。
Comparative Example 2 Anatase type titanium oxide particles having a particle diameter of 7 nm were dispersed in water using an ultrasonic disperser so that the titanium oxide concentration was 2%. At this time, hydrochloric acid was added as a deflocculant to adjust the pH to 1, thereby obtaining a titanium oxide sol. When the particle size distribution was measured, the average particle size of the particles was 35 nm, but the sol was white. Table 1 shows the results of the photocatalytic activity.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【発明の効果】本発明の製造方法により、光触媒作用お
よび活性を維持しつつ、従来にない高度な透明性を有す
るチタン含有物質、並びにチタン含有コーティング液
(ゾル)を提供することができる。
According to the production method of the present invention, it is possible to provide a titanium-containing substance and a titanium-containing coating liquid (sol) having an unprecedented high transparency while maintaining photocatalysis and activity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法に用いられる反応槽の概略断面図
である。
FIG. 1 is a schematic sectional view of a reaction tank used in the method of the present invention.

【図2】実施例1によって造られた液の波長200〜7
00nmにおける透過率を示す。
FIG. 2 shows wavelengths 200 to 7 of a liquid prepared according to Example 1.
The transmittance at 00 nm is shown.

【図3】実施例1によって造られた液をガラス基板上に
塗布し、乾燥した膜の透過率を示す。
FIG. 3 shows the transmittance of a film prepared by applying the liquid prepared in Example 1 on a glass substrate and drying the liquid.

【符号の説明】[Explanation of symbols]

1 反応槽 2 四塩化チタン水溶液 3 還流冷却器 4 撹拌機 5 温度計 6 加熱装置 DESCRIPTION OF SYMBOLS 1 Reaction tank 2 Titanium tetrachloride aqueous solution 3 Reflux cooler 4 Stirrer 5 Thermometer 6 Heating device

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 沸点まで加熱しても、波長450〜70
0nmにて厚さ10mmにおける光透過率が85%以上
であることを特徴とするチタン含有物質。
1. Even when heated to the boiling point, the wavelength is 450 to 70
A titanium-containing substance having a light transmittance of 85% or more at a thickness of 10 mm at 0 nm.
【請求項2】 沸点まで加熱しても、波長450〜70
0nmにて厚さ10mmにおける光透過率が85%以上
であることを特徴とするチタン含有コーティング液。
2. Even when heated to the boiling point, the wavelength is 450-70.
A titanium-containing coating liquid having a light transmittance of 85% or more at 0 nm and a thickness of 10 mm.
【請求項3】 四塩化チタンを加水分解することにおい
て、カルボン酸の存在下で行うことを特徴とする加水分
解方法。
3. A hydrolysis method, wherein the hydrolysis of titanium tetrachloride is performed in the presence of a carboxylic acid.
【請求項4】 カルボン酸の存在下で、四塩化チタンを
加水分解することを特徴とするチタン含有物質の製造方
法。
4. A method for producing a titanium-containing substance, comprising hydrolyzing titanium tetrachloride in the presence of a carboxylic acid.
【請求項5】 カルボン酸の存在下で、四塩化チタンを
加水分解することを特徴とするチタン含有コーティング
液の製造方法。
5. A method for producing a titanium-containing coating liquid, comprising hydrolyzing titanium tetrachloride in the presence of a carboxylic acid.
JP10233011A 1997-08-20 1998-08-19 Titanium-containing material and its production Pending JPH11171544A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP10233011A JPH11171544A (en) 1997-08-20 1998-08-19 Titanium-containing material and its production
KR1020017001978A KR100630285B1 (en) 1998-08-19 1999-05-24 Finely particulate titanium-containing substance, coating fluid containing the same, processes for producing these, and molded article having thin film comprising the substance
EP99919667A EP1127844B1 (en) 1998-08-19 1999-05-24 Finely particulate titanium-containing substance, coating fluid containing the same, processes for producing these, and molded article having thin film comprising the substance
CA002343085A CA2343085C (en) 1998-08-19 1999-05-24 Titanium-containing finely divided particulate material, aqueous sol composition and coating liquid containing same, process for producing same, and shaped article having film thereof
PCT/JP1999/002712 WO2000010921A1 (en) 1998-08-19 1999-05-24 Finely particulate titanium-containing substance, coating fluid containing the same, processes for producing these, and molded article having thin film comprising the substance
CNB998123706A CN1168663C (en) 1998-08-19 1999-05-24 Finely particulate titanium-containing substance, coating fluid containing the same, processes for producing these, and molded article having thin film comprising the substance
CNB2004100558230A CN1310840C (en) 1998-08-19 1999-05-24 Titanium-containing finely divided particulate material, aqueous sol composition and coating liquid containing same, process for producing same, and shaped article having film thereof
US09/763,172 US6610135B1 (en) 1998-08-19 1999-05-24 Titanium-containing finely divided particulate material, aqueous sol composition and coating liquid containing same, process for producing same, and shaped article having film thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP22339497 1997-08-20
JP9-223394 1997-08-20
JP10233011A JPH11171544A (en) 1997-08-20 1998-08-19 Titanium-containing material and its production

Publications (1)

Publication Number Publication Date
JPH11171544A true JPH11171544A (en) 1999-06-29

Family

ID=26525449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10233011A Pending JPH11171544A (en) 1997-08-20 1998-08-19 Titanium-containing material and its production

Country Status (1)

Country Link
JP (1) JPH11171544A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002002232A1 (en) * 2000-06-30 2002-01-10 Ecole Polytechnique Federale De Lausanne (Epfl) Carboxylate-containing photocatalytic body, manufacture and use thereof
JP2005169160A (en) * 2003-12-05 2005-06-30 Ishihara Sangyo Kaisha Ltd Liquid photocatalyst composition and photocatalytic body formed by using the same
JP2005179118A (en) * 2003-12-19 2005-07-07 Toho Catalyst Co Ltd Method for manufacturing aqueous titanium tetrachloride solution
WO2020170918A1 (en) * 2019-02-19 2020-08-27 昭和電工株式会社 Titanium oxide production method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002002232A1 (en) * 2000-06-30 2002-01-10 Ecole Polytechnique Federale De Lausanne (Epfl) Carboxylate-containing photocatalytic body, manufacture and use thereof
US7081428B1 (en) 2000-06-30 2006-07-25 Ecole Polytechnique Federale De Lausanne (Epfl) Carboxylate-containing photocatalytic body, manufacture and use thereof
JP2005169160A (en) * 2003-12-05 2005-06-30 Ishihara Sangyo Kaisha Ltd Liquid photocatalyst composition and photocatalytic body formed by using the same
JP4522082B2 (en) * 2003-12-05 2010-08-11 石原産業株式会社 Photocatalyst liquid composition and photocatalyst formed using the same
JP2005179118A (en) * 2003-12-19 2005-07-07 Toho Catalyst Co Ltd Method for manufacturing aqueous titanium tetrachloride solution
JP4553233B2 (en) * 2003-12-19 2010-09-29 東邦チタニウム株式会社 Method for producing aqueous titanium tetrachloride solution
WO2020170918A1 (en) * 2019-02-19 2020-08-27 昭和電工株式会社 Titanium oxide production method
KR20210096194A (en) * 2019-02-19 2021-08-04 쇼와 덴코 가부시키가이샤 Manufacturing method of titanium oxide
CN113260594A (en) * 2019-02-19 2021-08-13 昭和电工株式会社 Method for producing titanium oxide
JPWO2020170918A1 (en) * 2019-02-19 2021-09-13 昭和電工株式会社 Titanium oxide manufacturing method

Similar Documents

Publication Publication Date Title
US6774147B2 (en) Particles, aqueous dispersion and film of titanium oxide, and preparation thereof
US6610135B1 (en) Titanium-containing finely divided particulate material, aqueous sol composition and coating liquid containing same, process for producing same, and shaped article having film thereof
JP4335446B2 (en) Titanium oxide sol, thin film and method for producing them
JPH1143327A (en) Titanium oxide particle, its water dispersing sol, coated film and their production
JP7060583B2 (en) Method for producing iron-containing rutile-type titanium oxide fine particle dispersion, iron-containing rutile-type titanium oxide fine particles and their uses
JP2000051708A (en) Photocatalyst coating film and its forming method
US6479141B1 (en) Photocatalytic coating composition and product having photocatalytic thin film
JP4619601B2 (en) PHOTOCATALYTIC COATING COMPOSITION AND PRODUCT HAVING PHOTOCATALYTIC THIN FILM
KR20220160005A (en) Method for producing zirconia-coated titanium oxide fine particles, zirconia-coated titanium oxide fine particles and uses thereof
JP3506481B2 (en) Coating solution for coating and substrate with coating
JPH11171544A (en) Titanium-containing material and its production
EP1689525B1 (en) Transparent film-forming composition
JP2000017229A (en) Substrate film for photocatalytic film, formation thereof and article comprising base material having photocatalytic film formed using substrate film for photocatalytic film
JP2004043304A (en) Method for forming titanium dioxide membrane and catalyst or the like having the titanium dioxide membrane
JP4608042B2 (en) Coating agent for forming inorganic film, method for producing the same, and method for forming the inorganic film
JP3726366B2 (en) Fluorescent lamp
WO2004014986A1 (en) Metal alkoxide hydrolytic polycondensation solution and transparent films manufactured therefrom
JP2003238158A (en) Titanium oxide particle, its water dispersed sol, thin film and manufacturing method thereof
Pérez-Villar et al. Synthesis and characterization of biocide-photocatalytic active coatings on silver painted glasses

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050804

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080912

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080912

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106