JPH1053421A - Powder for lower layer of coating type magnetic recording medium - Google Patents

Powder for lower layer of coating type magnetic recording medium

Info

Publication number
JPH1053421A
JPH1053421A JP22074696A JP22074696A JPH1053421A JP H1053421 A JPH1053421 A JP H1053421A JP 22074696 A JP22074696 A JP 22074696A JP 22074696 A JP22074696 A JP 22074696A JP H1053421 A JPH1053421 A JP H1053421A
Authority
JP
Japan
Prior art keywords
lower layer
powder
weight
major axis
axis length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22074696A
Other languages
Japanese (ja)
Other versions
JP4139873B2 (en
Inventor
Seiichi Kuno
誠一 久野
Kazuhisa Saito
和久 斉藤
Kazuji Sano
和司 佐野
Shinichi Konno
慎一 紺野
Yoshifumi Horikawa
義史 堀川
Yasuhiko Aihara
靖彦 粟飯原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP22074696A priority Critical patent/JP4139873B2/en
Priority to US08/952,438 priority patent/US6040043A/en
Priority to EP97907409A priority patent/EP0842901A4/en
Priority to PCT/JP1997/000927 priority patent/WO1997034830A1/en
Publication of JPH1053421A publication Critical patent/JPH1053421A/en
Priority to US09/501,993 priority patent/US6171692B1/en
Application granted granted Critical
Publication of JP4139873B2 publication Critical patent/JP4139873B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a nonmagnetic layer containing iron oxyhydroxide powder comprising acicular particles having a specific average major axis length and releasing H2 O in a specified amount or less on heating, and having excellent surface smoothness. SOLUTION: A suspension containing ferrous hydroxide colloid obtained by the addition of an aqueous alkali hydroxide solution to an aqueous ferrous salt solution is oxidized by the aeration of an oxygen-containing gas at a pH of approximately >=11 at a temperature of <=80 deg.C to obtain acicular iron oxyhydroxide powder having an average major axis length of 0.01-0.5μm, an average minor axis length of 0.01-0.05μm, an average axis ratio of 1-30, a specific surface area of 10-300m<2> /g, a crystal particle diameter of 10-200Å and a releasing water amount of <=2wt.% at 100 deg.C. The iron oxyhydroxide powder or the iron oxyhydroxide powder coated with 0.1-30wt.% of Al and/or Si is dispersed in a resin binder comprising a urethane resin and methyl ethyl ketone/ cyclohexanone/toluene, etc., and subsequently coated on a base film such as a polyethylene terephthalate film to form a nonmagnetic lower layer for a magnetic recording medium.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,重層構造の塗布型
磁気記録媒体に用いられる下層用粉末に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lower layer powder used for a coating type magnetic recording medium having a multilayer structure.

【0002】[0002]

【従来の技術】結合剤樹脂(バインダー)に磁性粉を分
散含有させた塗膜を支持体上に塗布することによって支
持体上に磁性層を形成するいわゆる塗布型磁気記録媒体
において,低ノイズで高出力特性を得るために該磁性層
の厚みをより薄くすることが望まれ,このために,該磁
性層と支持体の間に,非磁性粉末を結合剤樹脂中に分散
含有させた非磁性層の塗膜(本明細書では下層と呼ぶ)
を形成する重層構造の塗布型磁気記録媒体が提案されて
いる。
2. Description of the Related Art A so-called coating type magnetic recording medium in which a magnetic layer is formed on a support by applying a coating film in which magnetic powder is dispersed and contained in a binder resin (binder) is formed on the support, has low noise. In order to obtain high output characteristics, it is desired to reduce the thickness of the magnetic layer. For this purpose, a non-magnetic powder in which a non-magnetic powder is dispersed and contained in a binder resin is interposed between the magnetic layer and the support. Layer coating (herein referred to as the lower layer)
There has been proposed a coating type magnetic recording medium having a multilayer structure for forming a magnetic recording medium.

【0003】従来,この下層を形成するための非磁性粉
末としては,球状酸化チタン粉末または針状酸化鉄粉末
が主に使用されている。また,このような下層をもつ磁
気記録媒体については,例えば特開昭63−18741
8号公報,特開平4−167225号公報,特開平6−
60362号公報,特開平6−131653号公報に記
載されたようなものがある。また,特開平4−1672
25号公報,特開平6−139553号公報,特開平6
−215360号公報,特開平7−78331号公報,
特開平7−105530号公報,特開平7−18264
9号公報,特開平7−282443号公報,特開平7−
326037号公報,特開平7−334835号公報等
には,かような重層構造の磁気記録媒体において,下層
を形成する非磁性粉として針状のヘマタイト等を用いた
場合の特性値が示されており,針状の非磁性粉として
は,開示された実施例の他にもオキシ水酸化鉄等も使用
可能であるとの教示もなされている。
Heretofore, spherical titanium oxide powder or acicular iron oxide powder has been mainly used as a nonmagnetic powder for forming the lower layer. A magnetic recording medium having such a lower layer is disclosed in, for example, JP-A-63-18741.
No. 8, JP-A-4-167225, JP-A-6-167225
No. 60362 and Japanese Patent Application Laid-Open No. 6-131653. In addition, Japanese Patent Laid-Open No. 4-1672
No. 25, JP-A-6-139553, JP-A-6-139553
-215360, JP-A-7-78331,
JP-A-7-105530, JP-A-7-18264
9, JP-A-7-282443, JP-A-7-282443
Japanese Patent Application Laid-Open No. 326037, Japanese Patent Application Laid-Open No. Hei 7-334835, and the like show characteristic values of such a magnetic recording medium having a multilayer structure when needle-like hematite or the like is used as a nonmagnetic powder for forming a lower layer. It is also taught that iron oxyhydroxide and the like can be used as the needle-shaped nonmagnetic powder in addition to the disclosed embodiment.

【0004】[0004]

【発明が解決しようとする課題】しかし,重層構造の磁
気記録媒体において,オキシ水酸化鉄を下層用粉体とし
て使用した実績はなく,前記の公報にもオキシ水酸化鉄
(FeOOH)を下層用粉末とした場合の具体例は示さ
れていない。したがって,どのようなオキシ水酸化鉄で
あれば,磁気記録媒体用の下層用粉末として意図する機
能が発揮されるかは未知の部分が多い。一方,オキシ水
酸化鉄は一般にFe(OH)2の懸濁液を酸化する方法で
製造されるが,良く知られているように,この酸化の条
件がわずかに変動しても生成相が異なり,性状や形態の
異なるものとなる。したがって,公知のオキシ水酸化鉄
のあらゆるものが前記の下層粉に適した性質を具備する
と言う訳のものでもない。
However, there has been no record of using iron oxyhydroxide as a lower layer powder in a magnetic recording medium having a multilayer structure, and in the above-mentioned publication, iron oxyhydroxide (FeOOH) was used for the lower layer. A specific example in the case of powder is not shown. Therefore, it is often unknown what kind of iron oxyhydroxide exhibits the intended function as the lower layer powder for the magnetic recording medium. On the other hand, iron oxyhydroxide is generally produced by a method of oxidizing a suspension of Fe (OH) 2. As is well known, even if the conditions of this oxidation are slightly changed, the formed phases are different. , And have different properties and forms. Therefore, not all known iron oxyhydroxides have properties suitable for the above-mentioned lower layer powder.

【0005】本発明は,オキシ水酸化鉄粉を下層用粉体
に適用する場合に,その粉体の化学的・物理的性質や形
状特性がどのように磁気記録媒体の表面平滑性,強度,
磁気特性更には耐候性等に影響を与えるかを明らかに
し,重層構造磁気記録媒体の特性向上に寄与することを
課題とする。
According to the present invention, when the iron oxyhydroxide powder is applied to the powder for the lower layer, how the chemical / physical properties and shape characteristics of the powder are adjusted to determine the surface smoothness, strength,
It is an object of the present invention to clarify whether magnetic characteristics and weather resistance are affected, and to contribute to improving the characteristics of a multilayered magnetic recording medium.

【0006】[0006]

【課題を解決するための手段】本発明によれば,平均長
軸長0.01〜0.5μmの針状粒子からなり且つ10
0℃で放出するH2Oの量が2重量%以下のオキシ水酸
化鉄粉からなる塗布型磁気記録媒体用の下層用粉末を提
供する。さらに,本発明によれば,枝分かれ方向が二次
元方向に偏りをもつ平均長軸長0.01〜0.5μmの
針状粒子からなり且つ100℃で放出するH2Oの量が
2重量%以下のオキシ水酸化鉄粉からなる塗布型磁気記
録媒体用の下層用粉末を提供する。
According to the present invention, there are provided needle-like particles having an average major axis length of 0.01 to 0.5 μm, and
Provided is a lower layer powder for a coating type magnetic recording medium comprising an iron oxyhydroxide powder having an amount of H 2 O released at 0 ° C. of 2% by weight or less. Further, according to the present invention, the amount of H 2 O composed of needle-like particles having an average major axis length of 0.01 to 0.5 μm having a branching direction biased in a two-dimensional direction and released at 100 ° C. is 2% by weight. A lower layer powder for a coating type magnetic recording medium comprising the following iron oxyhydroxide powder is provided.

【0007】[0007]

【発明の実施の形態】支持体と磁性層との間に,非磁性
粉末を分散させた非磁性層(下層)を設ける本来の目的
は,磁性層の厚みを薄くして短い記録波長領域での出力
を確保し,また優れた電磁変換特性例えば消去特性やオ
ーバーライト特性を改良することにある。このためには
磁性層自身にもそれなりの特性が要求されるが,下層の
非磁性層側の役割としては,表面凹凸の少ない滑らかな
薄い磁性層をその上に塗布できること,すなわち,非磁
性層自体が表面平滑性に優れること,磁気記録媒体の強
度に寄与すること,そして上層の磁性層の磁気特性を充
分に引出し得ることが主として挙げられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The primary purpose of providing a non-magnetic layer (lower layer) in which non-magnetic powder is dispersed between a support and a magnetic layer is to reduce the thickness of the magnetic layer so that it can be used in a short recording wavelength region. And to improve excellent electromagnetic conversion characteristics such as erasing characteristics and overwriting characteristics. For this purpose, the magnetic layer itself is required to have a certain characteristic, but the role of the lower nonmagnetic layer side is that a smooth thin magnetic layer with little surface irregularities can be applied thereon, that is, the nonmagnetic layer Mainly, they are excellent in surface smoothness themselves, contribute to the strength of the magnetic recording medium, and can sufficiently bring out the magnetic properties of the upper magnetic layer.

【0008】下層用粉末として使用されたことのある球
状酸化チタンでは,テープ化した場合に強度が針状のも
のに比べて充分ではなくかつ微粒子化も困難である。ま
た針状の酸化鉄(ヘマタイト)については,その製法
上,粒子間焼結を免れることができないので,表面平滑
性が十分得られないという問題が付随する。
[0008] Spherical titanium oxide which has been used as the powder for the lower layer, when formed into a tape, does not have sufficient strength as compared with a needle-shaped powder, and it is difficult to form fine particles. In addition, acicular iron oxide (hematite) has a problem in that surface sintering cannot be sufficiently obtained because sintering between particles cannot be avoided due to its manufacturing method.

【0009】オキシ水酸化鉄を結合剤樹脂に分散させた
塗膜を形成する場合,表面平滑性や強度等は,使用する
結合剤樹脂にもよるが,オキシ水酸化鉄の物理・化学的
性質や寸法・形状に大きく影響を受ける。前記の下層の
役割,すなわち表面平滑性,強度および磁性層の特性改
善を果たすことができる下層用オキシ水酸化鉄粉として
は,平均長軸長0.01〜0.5μmの針状粒子からな
り且つ100℃で放出するH2Oの量が2重量%以下の
オキシ水酸化鉄粉であるのがよい。
When forming a coating film in which iron oxyhydroxide is dispersed in a binder resin, the surface smoothness and strength depend on the binder resin used, but the physical and chemical properties of the iron oxyhydroxide And size and shape are greatly affected. The iron oxyhydroxide powder for the lower layer capable of fulfilling the role of the lower layer, that is, improving the surface smoothness, strength and properties of the magnetic layer, is composed of acicular particles having an average major axis length of 0.01 to 0.5 μm. It is also preferable that the amount of H 2 O released at 100 ° C. be 2% by weight or less.

【0010】さらに,下層が有すべき前記の役割は,枝
分かれ方向が二次元方向に偏りをもつ平均長軸長0.0
1〜0.5μmの針状粒子からなり且つ100℃で放出
するH2Oの量が2重量%以下のオキシ水酸化鉄粉によ
って,より有利に果たすことができる。
Further, the role that the lower layer should have is that the branching direction has a two-dimensionally biased average long axis length of 0.0.
By of H 2 O amount is 2% by weight of iron oxyhydroxide powder that releases at and 100 ° C. consists acicular particles of 1~0.5Myuemu, can play more advantageously.

【0011】前記の役割は,平均長軸長0.01〜0.
5μmの針状粒子からなり,0.1〜30重量%のAl
を含有し且つ100℃で放出するH2Oの量が2重量%
以下のオキシ水酸化鉄粉によっても,より有利に果たす
ことができる。
The above-mentioned role is that the average major axis length is 0.01-0.
Consisting of 5 μm needle-shaped particles, 0.1 to 30% by weight of Al
Of H 2 O containing and releasing at 100 ° C. is 2% by weight
It can be more advantageously achieved by the following iron oxyhydroxide powder.

【0012】前記の役割は,平均長軸長0.01〜0.
5μmの針状粒子からなり,0.1〜30重量%のSi
を含有し且つ100℃で放出するH2Oの量が2重量%
以下のオキシ水酸化鉄粉によっても,より有利に果たす
ことができる。
The above-mentioned role is that the average major axis length is 0.01-0.
Consisting of 5 μm needle-like particles, 0.1 to 30% by weight of Si
Of H 2 O containing and releasing at 100 ° C. is 2% by weight
It can be more advantageously achieved by the following iron oxyhydroxide powder.

【0013】前記の役割は,平均長軸長0.01〜0.
5μmの針状粒子からなり,AlとSiを合計で0.1
〜30重量%含有し且つ100℃で放出するH2Oの量
が2重量%以下のオキシ水酸化鉄粉によっても,より有
利に果たすことができる。
The above-mentioned role is that the average major axis length is 0.01-0.
Consisting of 5 μm needle-shaped particles, Al and Si were added in a total of 0.1
By of H 2 O amount is 2% by weight of iron oxyhydroxide powder emitting at 30% content by and 100 ° C., it can be accomplished more advantageously.

【0014】前記の役割は,平均長軸長0.01〜0.
5μmの針状粒子からなり,タップ密度が0.4以上で
且つ100℃で放出するH2Oの量が2重量%以下のオ
キシ水酸化鉄粉によっても,より有利に果たすことがて
きる。
The above-mentioned role is that the average major axis length is 0.01-0.
This can be achieved more advantageously by iron oxyhydroxide powder comprising needle-like particles of 5 μm, having a tap density of 0.4 or more and releasing H 2 O at 100 ° C. of 2% by weight or less.

【0015】さらに前記の役割は,平均長軸長0.01
〜0.5μmの針状粒子からなり,0.1〜30重量%
のAlを含有し且つ大気中での分解温度が210℃以
上,好ましくは215℃以上で100℃で放出するH2
Oの量が2重量%以下のオキシ水酸化鉄粉によっても,
より有利に果たすことができる。本発明に従うオキシ水
酸化鉄粉は,前記に加えて,さらに次の特性を有するも
のが好ましい。
Further, the above-mentioned role is that the average major axis length is 0.01.
Consisting of needle-like particles of 0.5 to 0.5 μm, 0.1 to 30% by weight
H 2 containing Al at a decomposition temperature in the air of 210 ° C. or higher, preferably 215 ° C. or higher and released at 100 ° C.
Even with iron oxyhydroxide powder having an O content of 2% by weight or less,
It can be performed more advantageously. The iron oxyhydroxide powder according to the present invention preferably has the following characteristics in addition to the above.

【0016】〔比表面積〕 BET法による測定値で1
0〜300m2/gの範囲であればよく,望ましくは40m2
/g以上,さらに好ましくは40〜150m2/gである。 〔タップ密度〕 0.3〜0.8g/cm3 ,好ましくは0.
40g/cm3 以上のものがよい。 〔圧縮密度〕 0.5〜3.0g/cm3, 好ましくは1.0
〜2.0g/cm3 である。 〔真比重〕 3.0〜6.0g/cm3 が望ましく,より好ま
しくは3.5〜4.3g/cm3 である。このように真比重に
対する圧縮密度とタップ密度が高いと,テープ化工程中
でカレンダーをかけたときに塗膜中で粉が圧密し易くな
り,このことがテープ表面平滑性の向上に有利に作用す
る。 〔結晶粒径〕(結晶子) 10〜200オングストロー
ム,好ましくは50〜150オングストロームである。
[Specific surface area] As measured by the BET method, 1
It may be in the range of 0 to 300 m 2 / g, preferably 40 m 2 / g
/ g or more, more preferably 40 to 150 m 2 / g. [Tap density] 0.3 to 0.8 g / cm 3 , preferably 0.3 g / cm 3
It is preferably 40 g / cm 3 or more. [Compression density] 0.5 to 3.0 g / cm 3 , preferably 1.0
22.0 g / cm 3 . [True specific gravity] It is desirably 3.0 to 6.0 g / cm 3 , and more preferably 3.5 to 4.3 g / cm 3 . If the compression density and tap density relative to the true specific gravity are high, the powder tends to be compacted in the coating film when calendering is performed during the tape forming process, which is advantageous in improving the tape surface smoothness. I do. [Crystal Grain Size] (Crystallite) It is 10 to 200 angstroms, preferably 50 to 150 angstroms.

【0017】粒子サイズは,要するところ,平均長軸長
0.01〜0.5μm,平均短軸長0.01〜0.05
μm,平均軸比1〜30が望ましく,比表面積は10〜
300m2/gが望ましく,結晶粒径は10〜200A
が望ましいが,このような微粒子では,特に最も短い軸
の長さ(最短軸長)がテープ表面平滑性に作用し,最短
軸長が短いことにより表面平滑性が向上する。最短軸長
は結晶粒径と比表面積に反映されている。
The particle size is, as required, an average major axis length of 0.01 to 0.5 μm and an average minor axis length of 0.01 to 0.05.
μm, an average axis ratio of 1 to 30 is desirable, and a specific surface area is 10 to 10.
300 m 2 / g is desirable, and the crystal grain size is 10 to 200 A
However, in such fine particles, the length of the shortest axis (shortest axis length) affects the surface smoothness of the tape, and the shortest axis length improves the surface smoothness. The shortest axis length is reflected in the crystal grain size and the specific surface area.

【0018】また,粉末の表面処理状態およびpHも塗
料化に際しての分散性に影響するので,表面平滑性に影
響を与える。これらの好ましい範囲は次のとおりであ
り,この範囲に調整することが望ましい。 〔ステリアン酸吸着量〕 0.1〜3.0mg/m2。 〔樹脂吸着量〕 0.5〜4.0mg/m2。 〔pH〕 粉体 pHは6〜11,好ましくは8〜10,
更に好ましくは8.0〜9.5である。この pH調整に
よって塗料化時の分散性が良好となり,表面平滑性の向
上に有効に作用する。
Further, the surface treatment state and pH of the powder also affect the dispersibility at the time of forming a paint, and thus affect the surface smoothness. These preferred ranges are as follows, and it is desirable to adjust to these ranges. [Stearic acid adsorption amount] 0.1 to 3.0 mg / m 2 . [Resin adsorption amount] 0.5 to 4.0 mg / m 2 . [PH] Powder pH is 6-11, preferably 8-10,
More preferably, it is 8.0 to 9.5. By adjusting the pH, the dispersibility at the time of coating is improved, which effectively works to improve the surface smoothness.

【0019】本発明に従う下層用粉末は,通常のオキシ
水酸化鉄粉末の製法によって得られる。例えば第一鉄塩
水溶液に当量以上の水酸化アルカリ水溶液を加えて得ら
れる水酸化第一鉄コロイドを含む懸濁液をpH11以上
にて80℃以下の温度で酸素含有ガスを通気して酸化反
応を行い,乾燥後調湿することによって生成させる方
法,または第一鉄塩水溶液と炭酸アルカリ水溶液とを反
応させて得られる懸濁液に酸素含有ガスを通気して酸化
反応を行い,乾燥後調湿することによって生成させる方
法等が挙げられる。このような方法によっ得られるオキ
シ水酸化鉄粉は,針状酸化鉄(ヘマタイト)粉を製造す
る場合に比べると,高温度での処理工程がないので粒子
間焼結の問題は起きない。
The powder for the lower layer according to the present invention can be obtained by a usual method for producing iron oxyhydroxide powder. For example, a suspension containing ferrous hydroxide colloid obtained by adding an equivalent amount or more of an aqueous alkali hydroxide solution to an aqueous ferrous salt solution is subjected to an oxidation reaction by passing an oxygen-containing gas at a pH of 11 or more and a temperature of 80 ° C. or less. And a method of producing by drying and then adjusting the humidity. Alternatively, an oxygen-containing gas is passed through a suspension obtained by reacting an aqueous solution of ferrous salt with an aqueous solution of alkali carbonate to carry out an oxidation reaction, and the drying is adjusted. Examples of the method include a method of producing by wetting. The iron oxyhydroxide powder obtained by such a method does not have a processing step at a high temperature as compared with the case of producing needle-like iron oxide (hematite) powder, so that there is no problem of interparticle sintering.

【0020】図1は,長軸長=0.30μm,Al=2.
8重量%,比表面積(BET)=65m2/gの本発明に従
うオキシ水酸化鉄粉のTEM(透過型電子顕微鏡)写真
である。図1に見られるように,各粒子は枝分かれを有
しているが,その枝分かれ方向は紙面と平行な方向に偏
っている。このことは3個以上の枝分かれをもつもので
も,その枝分かれ角度がほぼ一定の角度に見えることか
ら伺い知れる。紙面と垂直な方向の成分が多いならば枝
分かれ角度はよりシャープに見える筈だからである。こ
のように各粒子について,複数の枝分かれをもっても,
各粒子の枝分かれ方向が或る一面の二次元方向に偏って
いることは,この粒子からなる粉体を下層用粉末とした
とき,表面平滑性に寄与することになる。塗布したとき
に,支持体面と垂直方向の枝分かれ成分が少ないからで
ある。そして,枝分かれを有することは互いに絡み合う
からテープ強度向上にも寄与する。
FIG. 1 shows that the major axis length = 0.30 μm and Al = 2.
5 is a TEM (transmission electron microscope) photograph of the iron oxyhydroxide powder according to the present invention having a specific surface area (BET) of 8% by weight and a specific surface area (BET) of 65 m 2 / g. As shown in FIG. 1, each particle has a branch, but the branching direction is deviated in a direction parallel to the paper surface. This can be seen from the fact that even if the branching has three or more branches, the branching angle looks almost constant. This is because if there are many components in the direction perpendicular to the paper surface, the branching angle should look sharper. Thus, even if each particle has multiple branches,
The fact that the branching direction of each particle is biased in a certain two-dimensional direction contributes to the surface smoothness when the powder composed of the particles is used as the lower layer powder. This is because, when coated, there are few branching components in the direction perpendicular to the support surface. And, having the branches contributes to the improvement of the tape strength because they are entangled with each other.

【0021】特に長軸長が0.5μm以下の場合に,こ
れを樹脂バイダーに分散させて支持体に塗布すると極め
て良好な表面平滑性を示す。図1にも見られるように,
このような微細なオキシ水酸化鉄の針状粒子は短軸長が
非常に細くて針状比が高いという特徴があり,このため
に塗布時にテープ長手方向に良好に配向され(枝分かれ
方向もこの方向に配向され),表面平滑性に加えてテー
プ強度も向上する。
In particular, when the major axis length is 0.5 μm or less, when this is dispersed in a resin binder and applied to a support, very good surface smoothness is exhibited. As can be seen in FIG.
Such fine needle-like particles of iron oxyhydroxide are characterized by a very short minor axis length and a high needle-like ratio, so that they are well oriented in the longitudinal direction of the tape during application (the branching direction is also in this direction). Orientation), and the tape strength is improved in addition to the surface smoothness.

【0022】さらに,オキシ水酸化鉄に適量のAlを含
有させると耐熱性および保存安定性を増すことができ
る。Alの含有量が0.1〜30重量%であれば,テー
プ化の際の乾燥工程における昇温時にもオキシ水酸化鉄
粉体が変質せず安定で存在できる。Alの含有量が0.
1重量%未満ではAlの含有による効果は不充分であ
る。Alの含有量が30重量%より多いと粉体の比表面
積が大きくなって分散性が悪くなる。ここで,Alの含
有量とは,Alが化合物として含有されている場合には
その化合物の量ではなく,Al元素の含有量を言う。ま
たAlの含有は,オキシ水酸化鉄中に固溶していてもよ
いし,オキシ水酸化鉄の表面に被着していてもよい。
Further, when an appropriate amount of Al is contained in the iron oxyhydroxide, heat resistance and storage stability can be increased. When the content of Al is 0.1 to 30% by weight, the iron oxyhydroxide powder can be stably present without being deteriorated even when the temperature is raised in the drying step in forming the tape. Al content is 0.
If the amount is less than 1% by weight, the effect of Al content is insufficient. If the Al content is more than 30% by weight, the specific surface area of the powder becomes large and the dispersibility becomes poor. Here, the content of Al refers to the content of the Al element, not the amount of the compound when Al is contained as a compound. Al may be contained as a solid solution in the iron oxyhydroxide or may be adhered to the surface of the iron oxyhydroxide.

【0023】オキシ水酸化鉄にAlを含有させるのに
は,Al2(SO4)3, Al(NO3)3,AlCl3 などの
水可溶塩,更にはNaAlO2(アルミン酸ナトリウ
ム)などの水可溶性アルミン酸などの化合物を使用する
ことができる。これらのAl化合物を用いてAlをオキ
シ水酸化鉄粒子の表面に“被着”させるには, 例えばこ
れらのAl化合物をアルカリ水溶液中に溶解させ,この
溶液中に該オキシ水酸化鉄を分散させた後,炭酸ガスを
吹き込むか酸を添加し中和させることによって行うこと
ができ,結晶質ないし非晶質なAl23・nH2O(含
水酸化アルミニウム)としてAlは粒子表面に被着され
る。一方,Alをオキシ水酸化鉄粒子に“固溶”させる
には,FeSO4 やFeCl2 等の第一鉄塩の水溶液を
NaOH,Na2CO3,NH4OH等の中和剤で中和し
た後に空気等により酸化してα−FeOOH,γ−Fe
OOH等を生成させる反応系に, 上記の水可溶性のAl
塩やアルミン酸塩を添加すればよい。
To make the iron oxyhydroxide contain Al, water-soluble salts such as Al 2 (SO 4 ) 3 , Al (NO 3 ) 3 , and AlCl 3, and NaAlO 2 (sodium aluminate) Compounds such as water-soluble aluminate can be used. In order to “adhere” Al onto the surface of iron oxyhydroxide particles using these Al compounds, for example, these Al compounds are dissolved in an aqueous alkali solution, and the iron oxyhydroxide is dispersed in this solution. After that, it can be carried out by blowing carbon dioxide gas or adding an acid to neutralize, and Al is deposited on the particle surface as crystalline or amorphous Al 2 O 3 .nH 2 O (hydrous aluminum oxide). Is done. On the other hand, to “dissolve” Al in iron oxyhydroxide particles, an aqueous solution of a ferrous salt such as FeSO 4 or FeCl 2 is neutralized with a neutralizing agent such as NaOH, Na 2 CO 3 , and NH 4 OH. And then oxidized by air or the like to make α-FeOOH, γ-Fe
The above water-soluble Al
A salt or an aluminate may be added.

【0024】また,本発明に従う粉末はSi化合物等の
他元素を用いてその粒子表面性をコントロールしてもよ
い。Siを含有させる場合には,0.1〜30重量%の
範囲とする。AlとSiを含有させる場合には,両者の
合計量で0.1〜30重量%の範囲とするのがよい。こ
こで,Siの含有量とは,Siが化合物として含まれて
いる場合でも,Si化合物の量ではなく,Si元素の含
有量を言う。
In the powder according to the present invention, the particle surface property may be controlled by using another element such as a Si compound. When Si is contained, the content is in the range of 0.1 to 30% by weight. When Al and Si are contained, the total amount of both is preferably in the range of 0.1 to 30% by weight. Here, the content of Si refers to the content of the Si element, not the amount of the Si compound, even when Si is contained as a compound.

【0025】オキシ水酸化鉄を大気中で加熱したさいの
分解温度はオキシ水酸化鉄中のAl含有量によって変化
することがわかった。図2にオキシ水酸化鉄中のAl含
有量(重量%)を変えた場合の分解開始温度と分解終了
温度を示した。これらの分解温度はJIS K 712
0に準じて示差熱分析計で測定したものである。図2中
に示した星印を結ぶ曲線は各測定値のプロットから演繹
されたものである。この曲線に見られるように,オキシ
水酸化鉄の分解開始温度と分解開始温度はいずれもAl
含有量の増加とともに高くなることがわかる。各曲線の
代表値を挙げると下記のとおりである。
It has been found that the decomposition temperature of the iron oxyhydroxide when heated in the atmosphere changes depending on the Al content in the iron oxyhydroxide. FIG. 2 shows the decomposition start temperature and the decomposition end temperature when the Al content (% by weight) in the iron oxyhydroxide was changed. These decomposition temperatures are in accordance with JIS K 712.
It was measured by a differential thermal analyzer according to 0. The curves connecting the stars shown in FIG. 2 are deduced from plots of the measured values. As can be seen from this curve, both the decomposition onset temperature of iron oxyhydroxide and the decomposition onset temperature are Al
It can be seen that the content increases as the content increases. The representative values of each curve are as follows.

【0026】 [0026]

【0027】オキシ水酸化鉄に含まれる水分は下層の特
性に影響を与える。100℃に保持したときに放出する
水分量が2重量%以下であることが必要で,好ましくは
100℃で放出される水分量が1.5重量%以下であ
る。100℃で放出される水分量が2重量%より多い場
合には,結合剤樹脂への分散が不十分となり,塗布して
もテープ化が困難となる。この水分量はカールフイッシ
ャー法による水分測定の原理を用いて計測できる。その
一例を下記に示した。
The water contained in the iron oxyhydroxide affects the properties of the lower layer. The amount of water released at 100 ° C. must be 2% by weight or less, and preferably the amount of water released at 100 ° C. is 1.5% by weight or less. If the amount of water released at 100 ° C. is more than 2% by weight, the dispersion in the binder resin becomes insufficient, and it becomes difficult to form a tape even when applied. This moisture content can be measured using the principle of moisture measurement by the Karl Fischer method. One example is shown below.

【0028】 [0028]

【0029】重層構造の磁気記録媒体において,本発明
に従うオキシ水酸化鉄粉を用いた下層を形成する場合,
上層の磁性層としては,次の成分組成をもつ針状のメタ
ル粉を用いて構成するのがよい。
In the case of forming a lower layer using the iron oxyhydroxide powder according to the present invention in a magnetic recording medium having a multilayer structure,
The upper magnetic layer is preferably formed using acicular metal powder having the following composition.

【0030】〔上層メタル粉の成分組成〕 Co:5〜50at.% Al:0.1〜30at.% 希土類元素(Yを含む):0.1〜10at.%, 周期律表第1a族元素:0.05重量%以下, 周期律表第2a族元素:0.1重量%以下(0重量%を
含む), をFe中に含有し,100℃で放出するH2Oの量が2
重量%以下または300℃で放出するH2Oの量が4.
0重量%以下である針状の強磁性金属粉。
[Component composition of upper metal powder] Co: 5 to 50 at.% Al: 0.1 to 30 at.% Rare earth element (including Y): 0.1 to 10 at.%, Group 1a element of the periodic table : 0.05% by weight or less, Group 2a element of the periodic table: 0.1% by weight or less (including 0% by weight) in Fe, and the amount of H 2 O released at 100 ° C. is 2%.
3. The amount of H 2 O released at below 300 wt% or at 300 ° C.
Needle-like ferromagnetic metal powder of 0% by weight or less.

【0031】ここで,周期律表第1a族元素の例として
は,Li,Na,K等が挙げられ,これらが複合して含
有する場合にもその総量を0.05重量%以下とする。
周期律表第2a族元素の例としては,Mg,Ca,S
r,Ba等が挙げられ,これらが複合して含有する場合
にもその総量を0.1重量%以下とする。また希土類元
素としては,Y,La,Ce,Pr,Nd,Sm,T
b,Dy,Gd等が挙げられ,これらが複合して含有す
る場合にもその総量を0.1〜10at.%とする。これら
の元素が化合物として含有されている場合にも,化合物
の量ではなく化合物中の当該元素の含有量を言う。
Here, examples of Group 1a elements of the periodic table include Li, Na, K and the like. Even when these are contained in combination, the total amount is set to 0.05% by weight or less.
Examples of Group 2a elements of the periodic table include Mg, Ca, S
r, Ba and the like, and when these are contained in combination, the total amount is set to 0.1% by weight or less. The rare earth elements include Y, La, Ce, Pr, Nd, Sm, T
b, Dy, Gd, etc., and when these are contained in combination, the total amount is 0.1 to 10 at.%. Even when these elements are contained as a compound, the content of the element in the compound is not the amount of the compound.

【0032】このメタル粉が具備すべき好ましい形状と
物性は次のとおりである。 〔長軸長〕:0.01〜0.4μm 〔比表面積〕:BET法で30〜70m2/g 〔結晶粒径〕:50〜250オングストローム 〔保磁力Hc〕:1200〜3000(Oe) 〔飽和磁束密度σS 〕:100〜200(emu/g)
Preferred shapes and physical properties that the metal powder should have are as follows. [Long axis length]: 0.01 to 0.4 μm [Specific surface area]: 30 to 70 m 2 / g by BET method [Crystal grain size]: 50 to 250 Å [Coercive force Hc]: 1200 to 3000 (Oe) [ Saturation magnetic flux density [sigma] S ]: 100 to 200 (emu / g)

【0033】このメタル粉を製造するにはCoを含むオ
キシ水酸化鉄または酸化鉄に所定量のAlを含有させ,
これを加熱還元する方法が好適である。この加熱還元に
供するオキシ水酸化鉄ないし酸化鉄を主体として含む化
合物粉末としてはα−FeOOH,γ−FeOOH,α
−Fe23,γ−Fe23,Fe34及びこれらの中間
型に相当するものの他,これらにNi,Cr,Mn,Z
n等の金属成分を含有したものが好適なものとして挙げ
られ,針状性の良いものが好ましい。そのさい,Alを
含有させるのに使用できるAl化合物としては,Al2
(SO43,Al(NO33,AlCl3等の水可溶
塩,さらにはNaAlO2などの水可溶性アルミン酸な
どが挙げられる。これらのAl化合物を被還元物の粒子
表面に被着させるには,通常これらのAl化合物をアル
カリ水溶液中に溶解させ,この溶液中に被還元物粉末を
分散させた後,炭酸ガスを吹き込むか酸を添加して中和
することによって行われ,結晶質ないし非晶質なAl2
3・nH2O(含水酸化アルミニウム)として粒子表面
に被着される。またAlを該被還元物の粒子に固溶させ
る方法でも良い。
In order to produce this metal powder, a predetermined amount of Al is added to iron oxyhydroxide or iron oxide containing Co.
A method of reducing this by heating is preferred. Compound powders mainly containing iron oxyhydroxide or iron oxide to be subjected to the heat reduction include α-FeOOH, γ-FeOOH,
-Fe 2 O 3 , γ-Fe 2 O 3 , Fe 3 O 4 and those corresponding to the intermediate type thereof, and Ni, Cr, Mn, Z
Those containing a metal component such as n are preferred, and those having good needle-like properties are preferred. At this time, Al compounds that can be used to contain Al include Al 2
Examples thereof include water-soluble salts such as (SO 4 ) 3 , Al (NO 3 ) 3 , and AlCl 3 , and water-soluble aluminates such as NaAlO 2 . In order to apply these Al compounds to the particle surfaces of the object to be reduced, usually, these Al compounds are dissolved in an aqueous alkaline solution, and after the powder of the object to be reduced is dispersed in the solution, carbon dioxide gas is blown. This is performed by adding an acid to neutralize the crystalline or amorphous Al 2
O 3 .nH 2 O (hydrous aluminum hydroxide) is applied to the particle surface. Alternatively, a method in which Al is dissolved in the particles of the substance to be reduced may be used.

【0034】Coを含むα−FeOOH,γ−FeOO
HにAlを固溶させるには,FeSO4,FeCl2等の
第1鉄塩を主成分とした水溶液をNaOH,Na2
3,NH4OH等の中和剤で中和した後に空気等により
酸化してα−FeOOH,γ−FeOOH等を生成させ
る反応系に上記の水可溶性のAl塩やアルミン酸塩を添
加すればよい。さらにCoを含むα−Fe23にAlを
固溶させるにはFe2(SO43,FeCl3等の第2鉄
塩の水溶液とNaOH,KOH等の中和剤を使用し,水
熱合成法によりα−Fe23を合成する反応系に上記の
水可溶性のAl塩やアルミン酸塩を添加すればよい。
Α-FeOOH containing Co, γ-FeOO
To form a solid solution of Al in H, an aqueous solution mainly containing a ferrous salt such as FeSO 4 or FeCl 2 is added to NaOH, Na 2 C
After neutralizing with a neutralizing agent such as O 3 or NH 4 OH and then oxidizing with air or the like to generate α-FeOOH, γ-FeOOH, etc., the above water-soluble Al salt or aluminate is added. I just need. Further, in order to dissolve Al in α-Fe 2 O 3 containing Co, an aqueous solution of a ferric salt such as Fe 2 (SO 4 ) 3 and FeCl 3 and a neutralizing agent such as NaOH and KOH are used. The water-soluble Al salt or aluminate may be added to a reaction system for synthesizing α-Fe 2 O 3 by a thermal synthesis method.

【0035】このようにして得られたCoを含むAl含
有オキシ水酸化鉄ないし酸化鉄を加熱してAlをAl2
3として固定し,このものを,Y(希土類元素を含
む)を含有させる工程の原料として使用するのが良い。
このときオキシ水酸化鉄は脱水反応により酸化鉄に変成
されている。Yを含有する液中に原料粒子を分散させて
アルカリを添加して水酸化物の形で析出させる方法,Y
元素化合物含有液中に原料粒子を分散させ水分を蒸発さ
せる方法等がある。
The Al-containing iron oxyhydroxide or iron oxide containing Co thus obtained is heated to convert Al to Al 2
It is preferable to fix it as O 3 and use this as a raw material in the step of containing Y (including rare earth elements).
At this time, the iron oxyhydroxide is transformed into iron oxide by a dehydration reaction. A method in which raw material particles are dispersed in a liquid containing Y, and an alkali is added to precipitate in the form of a hydroxide;
There is a method of dispersing raw material particles in an element compound-containing liquid and evaporating water.

【0036】上記の各種方法にて所定量のCoとAlと
Y(希土類元素を含む)を含有させた酸化鉄の粉末は,
還元性雰囲気中で加熱することにより還元され鉄を主成
分とするCoとAlとY(希土類元素を含む)を含有す
る金属磁性粉となる。
The iron oxide powder containing predetermined amounts of Co, Al and Y (including a rare earth element) by the above-mentioned various methods is
By heating in a reducing atmosphere, the metal magnetic powder is reduced and becomes a metallic magnetic powder containing Co, Al and Y (including a rare earth element) containing iron as a main component.

【0037】金属磁性粉のY(希土類元素を含む)の含
有量は0.1〜10原子%,好ましくは0.2〜5原子%
が良い。0.1原子%未満ではY(希土類元素)の効果
が小さくて焼結しやすくなり,10原子%を超えるとY
(希土類元素)の酸化物の量が多くなって飽和磁化が小
さくなり,上層用の金属磁性粉として不適当なものとな
る。
The content of Y (including rare earth elements) in the metal magnetic powder is 0.1 to 10 atomic%, preferably 0.2 to 5 atomic%.
Is good. If the content is less than 0.1 atomic%, the effect of Y (rare earth element) is small and sintering becomes easy.
The amount of (rare earth element) oxide increases and the saturation magnetization decreases, which makes the metal magnetic powder unsuitable for the upper layer.

【0038】金属磁性粉のAlの含有量は0.1〜30
原子%,好ましくは1〜20原子%であるのが良い。
0.1原子%未満では,焼結しやすくなり,30原子%
を超えると飽和磁化が小さくなってしまう。
The Al content of the metal magnetic powder is 0.1 to 30.
Atomic%, preferably 1 to 20 atomic%.
If it is less than 0.1 atomic%, sintering becomes easy and 30 atomic%
If it exceeds, the saturation magnetization becomes small.

【0039】上記金属磁性粉において,周期律表第1a
族元素を0.05重量%以下及び第2a族元素を0.1
重量%以下とするには,原料として周期律表第1a族及
び第2a族元素を含まないもの或いは出来るだけ含有量
の低いものを使用することに加え,オキシ水酸化鉄,酸
化鉄,金属磁性粉の各化合物の段階で十分な洗浄を行っ
て除去することが好ましい。洗浄する場合,工程が進む
につれて上記元素は粒子表面に偏析してくるようになる
ので洗浄効率は良くなる。また洗浄水に温水や酸を加え
pHを下げた洗浄水を用いれば更に効率よく除去するこ
とができる。
In the metal magnetic powder, the periodic table 1a
Group element is 0.05% by weight or less and group 2a element is
In order to reduce the content by weight to less than 1% by weight, it is necessary to use, as raw materials, those which do not contain elements of Groups 1a and 2a of the Periodic Table or those whose content is as low as possible. It is preferable to perform sufficient washing at the stage of each compound of the powder to remove the powder. In the case of cleaning, the above elements are segregated on the particle surface as the process proceeds, so that the cleaning efficiency is improved. Further, if warm water or an acid is added to the washing water to reduce the pH, the washing water can be more efficiently removed.

【0040】第1a族元素が0.05重量%を超えると
テープ化のときに樹脂との相溶性が悪くなって分散でき
なかったり,磁気塗料化しても塗膜強度の低いものとな
る。またこの元素が可溶性であるために,テープを或る
時間保持したときにテープ表面に析出して結晶性の化合
物となり,この化合物がドロップアウトの増大等の原因
となりテープ保存安定性を低下させる。また第2a族元
素が0.1重量%を超えると樹脂との相溶性が悪くなる
と共に塗膜強度も低くなり,極端に多くなると第1a族
元素と同様にテープ保存安定性も悪くなる。
When the Group 1a element exceeds 0.05% by weight, the compatibility with the resin is deteriorated when the tape is formed, so that the element cannot be dispersed. Further, since this element is soluble, when the tape is held for a certain period of time, it precipitates on the tape surface to become a crystalline compound, and this compound causes an increase in dropout and the like, and lowers the storage stability of the tape. On the other hand, if the Group 2a element exceeds 0.1% by weight, the compatibility with the resin is deteriorated and the coating film strength is lowered. If the Group 2a element is extremely large, the tape storage stability is deteriorated like the Group 1a element.

【0041】金属磁性粉が保有する水分は,100℃で
検出(放出)される量が2.0重量%以下,好ましくは
1.5重量%以下で,300℃で検出(放出)される量
が4.0重量%,好ましくは3.0重量%以下であるの
が良い。金属磁性粉が保有する水分量により塗料の粘度
が変化し,バイダー吸着量も変化するが,100℃で検
出される水分量が2.0重量%を超えると,または30
0℃で検出される水分量が4.0重量%を超えると,下
層の上に重層塗布するさいに,分散不十分となってテー
プ化が困難となる。
The amount of water contained in the metallic magnetic powder is detected (released) at 100 ° C. at 2.0% by weight or less, preferably 1.5% by weight or less, and is detected (released) at 300 ° C. Is 4.0% by weight, preferably 3.0% by weight or less. The viscosity of the paint changes depending on the amount of water held by the metal magnetic powder, and the amount of binder adsorbed also changes. However, if the amount of water detected at 100 ° C. exceeds 2.0% by weight, or
If the amount of water detected at 0 ° C. exceeds 4.0% by weight, it is difficult to form a tape due to insufficient dispersion when coating the lower layer with multiple layers.

【0042】金属磁性粉の粒子サイズは0.01〜0.4
μmが適当で,好ましくは0.4〜0.2μmが良い。
0.01μm未満では磁性粉が超常磁性となり電磁変換
特性が著しく低下し,0.4μmを超えると磁性粉が多
磁区となり電磁変換特性が低下する。
The particle size of the metal magnetic powder is 0.01 to 0.4.
μm is appropriate, and preferably 0.4 to 0.2 μm.
If it is less than 0.01 μm, the magnetic powder becomes superparamagnetic and the electromagnetic conversion characteristics are significantly reduced. If it exceeds 0.4 μm, the magnetic powder becomes multi-domain and the electromagnetic conversion characteristics deteriorate.

【0043】金属磁性粉の比表面積(BET)は30〜
70m2/gが適当で,好ましくは40〜60m2/gが
良い。30m2/g未満ではテープ化時の樹脂との相溶
性が悪くなって電磁変換特性が低下する。70m2/g
を超えるとテープ化時に分散不良を起こしてやはり電磁
変換特性が低下する。
The specific surface area (BET) of the metal magnetic powder is 30 to
70m 2 / g is suitable, preferably of 40 to 60 2 / g is good. If it is less than 30 m 2 / g, the compatibility with the resin at the time of forming into a tape becomes poor, and the electromagnetic conversion characteristics deteriorate. 70m 2 / g
If the ratio exceeds the above range, poor dispersion occurs at the time of forming into a tape, and the electromagnetic conversion characteristics also deteriorate.

【0044】金属磁性粉の結晶子は50〜250オング
ストロームが適当で,好ましくは100〜200オング
ストロームであるのが良い。50オングストロム未満で
は磁性粉が超常磁性となり電磁変換特性が著しく低下す
る。250オングストロームを超えるとノイズが増大し
て電磁変換特性が低下する。
The crystallite of the metal magnetic powder is suitably from 50 to 250 angstroms, and preferably from 100 to 200 angstroms. If the thickness is less than 50 angstroms, the magnetic powder becomes superparamagnetic and the electromagnetic conversion characteristics are significantly reduced. If it exceeds 250 angstroms, noise increases and electromagnetic conversion characteristics deteriorate.

【0045】金属磁性粉の磁気特性は保磁力Hcは高い
ほど高密度記録に適するが,ヘッドの性能に合わせて1
200〜3000(Oe)にコントロールされ,好まし
くは1600〜2600(Oe)である。飽和磁束密度
σS は高いほど高出力となるが,耐酸化性やノイズ等と
の兼ね合いから120〜180emu/g程度が好まし
い。
The higher the coercive force Hc, the better the magnetic properties of the metal magnetic powder are for high-density recording.
It is controlled at 200 to 3000 (Oe), preferably 1600 to 2600 (Oe). The higher the saturation magnetic flux density σ s, the higher the output, but it is preferably about 120 to 180 emu / g in consideration of oxidation resistance and noise.

【0046】重層構造の磁気記録媒体を形成するため
に,下層および上層を塗布する支持体としては,ポリエ
チレンテレフタラート,ポリエチレンナフタレート等の
ポリエステル類,ポリオレフィン類,セルローストリア
セテート,ポリカーボネイト,ポリアミド,ポリイミ
ド,ポリアミドイミド,ポリスルフォン・アラミド,芳
香族ポリアミド,等の公知のフィルムが使用できる。
As the support on which the lower and upper layers are coated to form a multilayered magnetic recording medium, polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyolefins, cellulose triacetate, polycarbonate, polyamide, polyimide, Known films such as polyamide imide, polysulfone aramid, and aromatic polyamide can be used.

【0047】[0047]

【実施例】【Example】

(1) 表1に示したように,本発明に従う下層用粉末の実
施例〔下層例1〜20〕および下層比較例1〜8と,
(2) 表2〜3に示したように,本発明に従う下層用粉末
を用いた下層に金属磁性粉を用いた上層を塗布して構成
した磁気記録媒体の実施例〔媒体例1〜15〕および媒
体比較例1〜13について,以下に説明する。
(1) As shown in Table 1, examples of lower layer powder according to the present invention (lower layer examples 1 to 20) and lower layer comparative examples 1 to 8
(2) As shown in Tables 2 and 3, Examples of a magnetic recording medium constituted by applying an upper layer using metal magnetic powder to a lower layer using the lower layer powder according to the present invention [medium examples 1 to 15] Hereinafter, the medium comparative examples 1 to 13 will be described.

【0048】先ず,各実施例に示した特性値の測定につ
いて説明する。
First, measurement of characteristic values shown in each embodiment will be described.

【0049】平均長軸長(表中にIで示す),平均短軸
長(同dで示す)および軸比(同I/dで示す)は,1
08000倍(下層用粉末の場合)または174000
倍(上層の金属磁性粉の場合)の電子顕微鏡写真から測
定した100個の粒子の平均値で示した。結晶粒径すな
わち結晶子(同Dx)は,X線回析装置を用いて得られ
たプロファイルから(110)面に相当するピークの半
価幅を求め,これをシェラーの式に代入して算出した。
The average major axis length (indicated by I in the table), the average minor axis length (indicated by d) and the axial ratio (indicated by I / d) are 1
08000 times (in case of lower layer powder) or 174000
The average value of 100 particles measured from an electron micrograph of × (in the case of the metal magnetic powder in the upper layer) was shown. The crystal grain size, that is, the crystallite (the same Dx) is calculated by obtaining the half-value width of the peak corresponding to the (110) plane from the profile obtained by using an X-ray diffraction apparatus, and substituting this into Scherrer's equation. did.

【0050】比表面積(同BET)はBET法で測定し
た。ステアリン酸吸着量(同STAまたはSt.吸着量)
は,試料粉末をステアリン酸2%のMEK溶液に分散さ
せた後,遠心分離機により試料粉末を沈ませ,上澄み液
の濃度を求めることにより比表面積当りの吸着量として
算出した。樹脂吸着量(同樹脂)はポリウレタン樹脂の
2%MIBK溶液を使用し,ステアリン酸吸着量と同様
の方法で算出した。
The specific surface area (BET) was measured by the BET method. Stearic acid adsorption amount (same STA or St. adsorption amount)
Was obtained by dispersing a sample powder in a 2% MEK solution of stearic acid, then sinking the sample powder by a centrifugal separator, and calculating the concentration of the supernatant to calculate the amount of adsorption per specific surface area. The resin adsorption amount (the same resin) was calculated in the same manner as the stearic acid adsorption amount using a 2% MIBK solution of a polyurethane resin.

【0051】粉体pHはJIS K5101により測定
した。真比重は溶媒としてトルエンを使用し液浸法で測
定した。圧縮密度(同CD)は試料を80kgf/cm
2で圧縮したときの密度である。タップ密度(同TA
P)はJIS K5101により測定した。
The powder pH was measured according to JIS K5101. The true specific gravity was measured by a liquid immersion method using toluene as a solvent. Compressed density (CD) is 80 kgf / cm
This is the density when compressed by 2 . Tap density (TA
P) was measured according to JIS K5101.

【0052】粉体の水分量は,カールフイッシャー法に
より100℃(または300℃)での重量変化から求め
た。また,分解温度も示差熱データから分解開始温度と
終了温度を求めた。水分量による粘性の変化は,塗料に
分散させたときの該塗料の粘度をE型粘度計により求め
た。
The water content of the powder was determined from the weight change at 100 ° C. (or 300 ° C.) by the Karl Fischer method. In addition, the decomposition start temperature and end temperature were determined from the differential heat data. The change in viscosity due to the amount of water was determined by measuring the viscosity of the paint when dispersed in the paint using an E-type viscometer.

【0053】表面平滑性は,株式会社小坂研究所製の3
次元微細形状測定機(ET−30HK)を用いて,テー
プの下地層表面のRa(粗度)を測定することにより評
価した。
The surface smoothness was measured by Kosaka Laboratory Co., Ltd.
The evaluation was performed by measuring the Ra (roughness) of the surface of the underlayer of the tape using a dimensional fine shape measuring device (ET-30HK).

【0054】なお,各表において, Hc:保磁力(Oe), σs:金属磁性粉の飽和磁束密度(emu/g), σr:金属磁性粉の残留磁束密度(emu/g), Br:テープの残留磁束密度(ガウス), Bm:テープの飽和磁束密度(ガウス), σr/σsおよびBr/Bm:角形比 ΔσsおよびΔBm:60℃で90RH(相対湿度)の
雰囲気下で1週間放置後のσsおよびBmの低下率
(%), 耐候試験後の析出物の有無:60℃で90RHの雰囲気
下で1週間放置後のテープ表面を顕微鏡観察したときの
析出物の有無, を示している。電磁変換特性の測定はHi8デッキを用
いて行った。
In each table, Hc: coercive force (Oe), σs: saturation magnetic flux density of metal magnetic powder (emu / g), σr: residual magnetic flux density of metal magnetic powder (emu / g), Br: tape Magnetic flux density (Gauss), Bm: Saturated magnetic flux density of the tape (Gauss), σr / σs and Br / Bm: Squareness ratio Δσs and ΔBm: After standing at 60 ° C. in an atmosphere of 90 RH (relative humidity) for one week The reduction rate (%) of σs and Bm, the presence or absence of precipitates after the weathering test: the presence or absence of precipitates when the tape surface was left under an atmosphere of 90 RH at 60 ° C. for one week and observed with a microscope. The measurement of the electromagnetic conversion characteristics was performed using a Hi8 deck.

【0055】(1) 下層用粉末の実施例〔下層例1〜2
0〕および下層比較例1〜8
(1) Examples of lower layer powder [Lower layer examples 1-2]
0] and lower layer comparative examples 1 to 8

【0056】〔下層例1〕以下の組成からなる塗料を用
意する。 オキシ水酸化鉄 100重量部 (本例では長軸長=0.15μm,100℃の水分量=
1重量%) ポリウレタン樹脂 20重量部 メチルエチルケトン 165重量部 シクロヘキサノン 65重量部 トルエン 165重量部 ステアリン酸 1重量部 アセチルアセトン 1重量部 遠心ボールミルで1時間分散させて得た上記組成の塗料
を,ポリエチレンテレフタラートからなるベースフィル
ム上に,アプリケーターを用いて,目標厚みが約3μm
となるように塗布して非磁性の下層を形成した。用いた
オキシ水酸化鉄粉末の諸特性値と得られた下層の性質を
表1に示した(以下の例および比較例についても同じく
表1に併記した)。
[Lower layer example 1] A paint having the following composition is prepared. 100 parts by weight of iron oxyhydroxide (in this example, major axis length = 0.15 μm, water content at 100 ° C. =
Polyurethane resin 20 parts by weight Methyl ethyl ketone 165 parts by weight Cyclohexanone 65 parts by weight Toluene 165 parts by weight Stearic acid 1 part by weight acetylacetone 1 part by weight A paint of the above composition obtained by dispersing for 1 hour by a centrifugal ball mill was prepared from polyethylene terephthalate. The target thickness is about 3 μm on the base film using an applicator.
To form a nonmagnetic lower layer. The various characteristic values of the iron oxyhydroxide powder used and the properties of the obtained lower layer are shown in Table 1 (the following examples and comparative examples are also shown in Table 1).

【0057】〔下層例2〕前記実施例1の塗料を構成す
る長軸長=0.15μmのオキシ水酸化鉄を,長軸長=
0.15μm,Al=0.2重量%被着のオキシ水酸化鉄
に変え,他の条件は下層例1と同一にして下層とした。
[Lower Layer Example 2] Iron oxyhydroxide having a major axis length of 0.15 μm, which constitutes the coating material of Example 1, was replaced with a major axis length =
0.15 μm, Al = 0.2% by weight Iron oxyhydroxide was applied, and the other conditions were the same as those of the lower layer example 1 to form a lower layer.

【0058】〔下層例3〕前記下層例1の塗料を構成す
る長軸長=0.15μmのオキシ水酸化鉄を,長軸長=
0.15μm,Al=1.0重量%被着のオキシ水酸化鉄
に変え,他の条件は下層例1と同一にして下層とした。
[Lower Layer Example 3] The iron oxide oxyhydroxide having a major axis length of 0.15 μm, which constitutes the coating material of the lower layer example 1, was prepared.
0.15 μm, Al = 1.0% by weight Iron oxyhydroxide was applied, and the other conditions were the same as the lower layer example 1 to form a lower layer.

【0059】〔下層例4〕前記下層例1の塗料を構成す
る長軸長=0.15μmのオキシ水酸化鉄を,長軸長=
0.15μm,Al=2.5重量%被着のオキシ水酸化鉄
に変え,他の条件は下層例1と同一にして下層とした。
[Lower Layer Example 4] The iron oxide oxyhydroxide having a major axis length of 0.15 μm, which constitutes the coating material of the lower layer example 1, was prepared.
0.15 μm, Al = 2.5% by weight Iron oxyhydroxide was applied, and the other conditions were the same as the lower layer example 1 to form a lower layer.

【0060】〔下層例5〕前記下層例1の塗料を構成す
る長軸長=0.15μmのオキシ水酸化鉄を,長軸長=
0.15μm,Al=5.0重量%被着のオキシ水酸化鉄
に変え,他の条件は下層例1と同一にして下層とした。
[Lower Layer Example 5] The iron oxide oxyhydroxide having a major axis length of 0.15 μm, which constitutes the coating material of the lower layer example 1, was prepared.
0.15 μm, Al = 5.0% by weight Iron oxyhydroxide to be applied was used, and the other conditions were the same as the lower layer example 1 to form a lower layer.

【0061】〔下層例6〕前記下層例1の塗料を構成す
る長軸長=0.15μmのオキシ水酸化鉄を,長軸長=
0.15μm,Al=30.0重量%被着のオキシ水酸化
鉄に変え,他の条件は下層例1と同一にして下層とし
た。
[Lower Layer Example 6] Iron oxide oxyhydroxide having a major axis length of 0.15 μm, which constitutes the coating material of the lower layer example 1, was prepared using the following method.
0.15 μm, Al = 30.0% by weight Iron oxyhydroxide was applied, and the other conditions were the same as those of the lower layer example 1 to form a lower layer.

【0062】〔下層例7〕前記下層例1の塗料を構成す
る長軸長=0.15μmのオキシ水酸化鉄を,長軸長=
0.15μm,Al=1.0重量%固溶のオキシ水酸化鉄
に変え,他の条件は下層例1と同一にして下層とした。
[Lower Layer Example 7] The iron oxide oxyhydroxide having a major axis length of 0.15 μm, which constitutes the coating material of the lower layer example 1, was prepared.
0.15 μm, Al = 1.0% by weight solid iron oxide oxyhydroxide was used, and other conditions were the same as the lower layer example 1 to form a lower layer.

【0063】〔下層例8〕前記下層例1の塗料を構成す
る長軸長=0.15μmのオキシ水酸化鉄を,長軸長=
0.15μm,Al=2.5重量%固溶のオキシ水酸化鉄
に変え,他の条件は下層例1と同一にして下層とした。
[Lower layer example 8] Iron oxide oxyhydroxide having a major axis length of 0.15 μm, which constitutes the coating material of the lower layer example 1, was prepared using the following formula.
0.15 μm, Al = 2.5% by weight of solid solution was changed to iron oxyhydroxide, and the other conditions were the same as the lower layer example 1 to form a lower layer.

【0064】〔下層例9〕前記下層例1の塗料を構成す
る長軸長=0.15μmのオキシ水酸化鉄を,長軸長=
0.15μm,Al=5.0重量%固溶のオキシ水酸化鉄
に変え,他の条件は下層例1と同一にして下層とした。
[Lower Layer Example 9] The iron oxide oxyhydroxide having a major axis length of 0.15 μm, which constitutes the coating material of the lower layer example 1, was prepared as follows.
The lower layer was changed to 0.15 μm, Al = 5.0 wt% solid solution iron oxyhydroxide, and the other conditions were the same as the lower layer example 1.

【0065】〔下層例10〕前記下層例1の塗料を構成
する長軸長=0.15μmのオキシ水酸化鉄を,長軸長
=0.15μm,Al=10.0重量%固溶のオキシ水酸
化鉄に変え,他の条件は下層例1と同一にして下層とし
た。
[Lower Layer Example 10] The iron oxyhydroxide having a major axis length of 0.15 μm, which constitutes the coating material of the lower layer example 1, was replaced by a solid solution of oxyhydroxide having a major axis length of 0.15 μm and Al = 10.0% by weight. Instead of iron hydroxide, the other conditions were the same as in the lower layer example 1 to form a lower layer.

【0066】〔下層例11〕前記下層例1の塗料を構成
する長軸長=0.15μmのオキシ水酸化鉄を,長軸長
=0.15μm,Al=20.0重量%固溶のオキシ水酸
化鉄に変え,他の条件は下層例1と同一にして下層とし
た。
[Lower Layer Example 11] The iron oxyhydroxide having a major axis length of 0.15 μm, which constitutes the coating material of the lower layer example 1, was replaced by a solid solution of oxyhydroxide having a major axis length of 0.15 μm and Al = 20.0% by weight. Instead of iron hydroxide, the other conditions were the same as in the lower layer example 1 to form a lower layer.

【0067】〔下層例12〕前記下層例1の塗料を構成
する長軸長=0.15μmのオキシ水酸化鉄を,長軸長
=0.10μmのオキシ水酸化鉄に変え,他の条件は下
層例1と同一にして下層とした。
[Lower layer example 12] Iron oxide oxyhydroxide having a major axis length of 0.15 µm constituting the coating material of the lower layer example 1 was changed to iron oxyhydroxide having a major axis length of 0.10 µm. A lower layer was formed in the same manner as in Lower Layer Example 1.

【0068】〔下層例13〕前記下層例1の塗料を構成
する長軸長=0.15μmのオキシ水酸化鉄を,長軸長
=0.30μmのオキシ水酸化鉄に変え,他の条件は下
層例1と同一にして下層とした。
[Lower Layer Example 13] The iron oxide oxyhydroxide having a major axis length of 0.15 μm constituting the paint of the lower layer example 1 was changed to iron oxyhydroxide having a major axis length of 0.30 μm. A lower layer was formed in the same manner as in Lower Layer Example 1.

【0069】〔下層例14〕前記下層例1の塗料を構成
する長軸長=0.15μmのオキシ水酸化鉄を,長軸長
=0.05μm,Al=5.0重量%被着のオキシ水酸化
鉄に変え,他の条件は下層例1と同一にして下層とし
た。
[Lower Layer Example 14] The iron oxyhydroxide having a major axis length of 0.15 μm, which constitutes the coating material of the lower layer example 1, was prepared by coating the oxyhydroxide having a major axis length of 0.05 μm and Al = 5.0% by weight. Instead of iron hydroxide, the other conditions were the same as in the lower layer example 1 to form a lower layer.

【0070】〔下層例15〕前記下層例1の塗料を構成
する長軸長=0.15μmのオキシ水酸化鉄を,長軸長
=0.10μm,Al=5.0重量%被着のオキシ水酸化
鉄に変え,他の条件は下層例1と同一にして下層とし
た。
[Lower Layer Example 15] The iron oxide oxyhydroxide having a major axis length of 0.15 μm, which constitutes the coating material of the lower layer example 1, was replaced with an oxyhydroxide having a major axis length of 0.10 μm and Al = 5.0% by weight. Instead of iron hydroxide, the other conditions were the same as in the lower layer example 1 to form a lower layer.

【0071】〔下層例16〕前記下層例1の塗料を構成
する長軸長=0.15μmのオキシ水酸化鉄を,長軸長
=0.30μm,Al=5.0重量%被着のオキシ水酸化
鉄に変え,他の条件は下層例1と同一にして下層とし
た。
[Lower Layer Example 16] The iron oxide oxyhydroxide having a major axis length of 0.15 μm, which constitutes the coating material of the lower layer example 1, was coated with oxyhydroxide having a major axis length of 0.30 μm and Al = 5.0% by weight. Instead of iron hydroxide, the other conditions were the same as in the lower layer example 1 to form a lower layer.

【0072】〔下層例17〕前記下層例1の塗料を構成
する長軸長=0.15μmのオキシ水酸化鉄を,長軸長
=0.05μm,Al=5.0重量%固溶のオキシ水酸化
鉄に変え,他の条件は下層例1と同一にして下層とし
た。
[Lower Layer Example 17] Iron oxyhydroxide having a major axis length of 0.15 μm, which constitutes the coating material of the lower layer example 1, was replaced with a solid solution of oxyhydroxide having a major axis length of 0.05 μm and Al = 5.0 wt%. Instead of iron hydroxide, the other conditions were the same as in the lower layer example 1 to form a lower layer.

【0073】〔下層例18〕前記下層例1の塗料を構成
する長軸長=0.15μmのオキシ水酸化鉄を,長軸長
=0.10μm,Al=5.0重量%固溶のオキシ水酸化
鉄に変え,他の条件は下層例1と同一にして下層とし
た。
[Lower Layer Example 18] The iron oxyhydroxide having a major axis length of 0.15 μm, which constitutes the coating material of the lower layer example 1, was replaced by a solid solution of oxyhydroxide having a major axis length of 0.10 μm and Al = 5.0% by weight. Instead of iron hydroxide, the other conditions were the same as in the lower layer example 1 to form a lower layer.

【0074】〔下層例19〕前記下層例1の塗料を構成
する長軸長=0.15μmのオキシ水酸化鉄を,長軸長
=0.30μm,Al=5.0重量%固溶のオキシ水酸化
鉄に変え,水分量を(A)0.5重量%,(B)1.0重
量%および(C)2.0%と3水準で変化させたものを
下層とした。
[Lower Layer Example 19] Iron oxyhydroxide having a major axis length of 0.15 μm, which constitutes the coating material of the lower layer example 1, was replaced with an oxyhydroxide having a major axis length of 0.30 μm and Al = 5.0% by weight. The lower layer was changed to iron hydroxide and the water content was changed at three levels: (A) 0.5% by weight, (B) 1.0% by weight and (C) 2.0%.

【0075】〔下層例20〕前記下層例1の塗料を構成
する長軸長=0.15μmのオキシ水酸化鉄を,長軸長
=0.50μm,Al=5.0重量%固溶のオキシ水酸化
鉄に変え,他の条件は下層例1と同一にして下層とし
た。
[Lower Layer Example 20] The iron oxyhydroxide having a major axis length of 0.15 μm, which constitutes the coating material of the lower layer example 1, was replaced by a solid solution of oxyhydroxide having a major axis length of 0.50 μm and Al = 5.0% by weight. Instead of iron hydroxide, the other conditions were the same as in the lower layer example 1 to form a lower layer.

【0076】〔下層比較例1〕前記下層例1の塗料を構
成する長軸長=0.15μmのオキシ水酸化鉄を,長軸
長=0.15μmのα−Fe23に変え,他の条件は下
層例1と実質的に同一として下層とした。
[Lower Layer Comparative Example 1] Iron oxide oxyhydroxide having a major axis length of 0.15 μm constituting the paint of the lower layer example 1 was changed to α-Fe 2 O 3 having a major axis length of 0.15 μm. Are substantially the same as those of the lower layer example 1 to form a lower layer.

【0077】〔下層比較例2〕前記下層例1の塗料を構
成する長軸長=0.15μmのオキシ水酸化鉄を,平均
径=0.035μmの酸化チタンに変え,他の条件は下
層例1と実質的に同一にして下層とした。
[Lower Layer Comparative Example 2] The iron oxide oxyhydroxide having a major axis length of 0.15 μm constituting the paint of the lower layer example 1 was changed to titanium oxide having an average diameter of 0.035 μm. The lower layer was made substantially the same as that of No. 1.

【0078】〔下層比較例3〕前記下層例1の塗料を構
成する長軸長=0.15μmのオキシ水酸化鉄を,長軸
長=0.15μm,Al=35.0重量%被着のオキシ水
酸化鉄に変え,他の条件は下層例1と同一にして下層と
した。
[Lower layer comparative example 3] Iron oxide oxyhydroxide having a major axis length of 0.15 µm, which constitutes the coating material of the lower layer example 1, was coated with a major axis length of 0.15 µm and Al = 35.0% by weight. The lower layer was changed to iron oxyhydroxide and the other conditions were the same as those of the lower layer example 1.

【0079】〔下層比較例4〕前記下層例1の塗料を構
成する長軸長=0.15μmのオキシ水酸化鉄を,長軸
長=0.15μm,Al=35.0重量%固溶のオキシ水
酸化鉄に変え,他の条件は下層例1と同一にして下層と
した。
[Lower Layer Comparative Example 4] The iron oxide oxyhydroxide having a major axis length of 0.15 μm, which constitutes the coating material of the lower layer example 1, was dissolved in a solid solution with a major axis length of 0.15 μm and Al of 35.0% by weight. The lower layer was changed to iron oxyhydroxide and the other conditions were the same as those of the lower layer example 1.

【0080】〔下層比較例5〕前記下層例1の塗料を構
成する長軸長=0.15μmのオキシ水酸化鉄を,長軸
長=0.005μmのオキシ水酸化鉄に変え,他の条件
は下層例1と同一にして下層とした。
[Lower layer comparative example 5] Iron oxide oxyhydroxide having a major axis length of 0.15 µm constituting the coating material of the lower layer example 1 was changed to iron oxyhydroxide having a major axis length of 0.005 µm. Was the same as the lower layer example 1 to form a lower layer.

【0081】〔下層比較例6〕前記下層例1の塗料を構
成する長軸長=0.15μmのオキシ水酸化鉄を,長軸
長=0.60μmのオキシ水酸化鉄に変え,他の条件は
下層例1と同一にして下層とした。
[Lower layer comparative example 6] The iron oxide oxyhydroxide having a major axis length of 0.15 µm constituting the coating material of the lower layer example 1 was changed to iron oxyhydroxide having a major axis length of 0.60 µm. Was the same as the lower layer example 1 to form a lower layer.

【0082】〔下層比較例7〕前記下層例1の塗料を構
成する長軸長=0.15μmのオキシ水酸化鉄を,長軸
長=0.60μm,Al=5.0重量%被着のオキシ水酸
化鉄に変え,他の条件は下層例1と同一にして下層とし
た。
[Lower layer comparative example 7] Iron oxide oxyhydroxide having a major axis length of 0.15 µm, which constitutes the coating material of the lower layer example 1, was coated with a major axis length of 0.60 µm and Al = 5.0% by weight. The lower layer was changed to iron oxyhydroxide and the other conditions were the same as those of the lower layer example 1.

【0083】〔下層比較例8〕前記下層例1の塗料を構
成する長軸長=0.15μmのオキシ水酸化鉄を,長軸
長=0.60μm,Al=5.0重量%固溶のオキシ水酸
化鉄に変え,他の条件は下層例1と同一にして下層とし
た。
[Lower Layer Comparative Example 8] The iron oxyhydroxide having a major axis length of 0.15 μm, which constitutes the coating material of the lower layer example 1, was dissolved in a solid solution of a major axis length of 0.60 μm and Al = 5.0% by weight. The lower layer was changed to iron oxyhydroxide and the other conditions were the same as those of the lower layer example 1.

【0084】[0084]

【表1】 [Table 1]

【0085】表1の結果に見られるように,本発明に従
うオキシ水酸化鉄粉末を用いた下地層は比較例のものに
比べて粗度が小さく表面平滑性に優れた且つ十分な強度
を有することがわかる。
As can be seen from the results in Table 1, the underlayer using the iron oxyhydroxide powder according to the present invention has a small roughness, excellent surface smoothness and sufficient strength as compared with those of the comparative example. You can see that.

【0086】(2) 記録媒体の実施例〔媒体例1〜17〕
および媒体比較例1〜13
(2) Embodiment of recording medium [medium examples 1 to 17]
And medium comparative examples 1 to 13

【0087】〔媒体例1〕 ・以下の組成からなる下層塗料を用意する。 オキシ水酸化鉄 100重量部 (本例では長軸長=0.15μm,100℃の水分量=
1.0重量%) ポリウレタン樹脂 20重量部 メチルエチルケトン 165重量部 シクロヘキサノン 65重量部 トルエン 165重量部 ステアリン酸 1重量部 アセチルアセトン 1重量部 遠心ボールミルで1時間分散させて得た上記組成の塗料
を,ポリエチレンテレフタレートからなるベースフィル
ム上にアプリケーターを用いて塗布して下層を形成し
た。用いたオキシ水酸化鉄粉末の諸特性値と得られた下
層の性質を表2に示す(下記の例及び比較例も表2に併
記する)。
[Medium Example 1] A lower layer paint having the following composition is prepared. 100 parts by weight of iron oxyhydroxide (in this example, major axis length = 0.15 μm, water content at 100 ° C. =
1.0% by weight) Polyurethane resin 20 parts by weight Methyl ethyl ketone 165 parts by weight Cyclohexanone 65 parts by weight Toluene 165 parts by weight Stearic acid 1 part by weight acetylacetone 1 part by weight A coating material of the above composition obtained by dispersing for 1 hour by a centrifugal ball mill is polyethylene terephthalate. Was applied using a applicator on a base film made of to form a lower layer. Table 2 shows various characteristic values of the iron oxyhydroxide powder used and properties of the obtained lower layer (the following examples and comparative examples are also shown in Table 2).

【0088】・以下の組成からなる上層塗料を用意す
る。 金属磁性粉 100重量部 (本例では,金属Fe中に,Co:30at.%,Al:1
0at.%,Y:4at.%,Na:0.002wt%,Ca:0.
004wt%を含有する) ポリウレタン樹脂 30重量部 メチルエチルケトン 190重量部 シクロヘキサノン 80重量部 トルエン 110重量部 ステアリンブチル 1重量部 アセチルアセトン 1重量部 α−アルミナ 3重量部 カーボンブラック 2重量部 遠心ボールミルで1時間分散させて得たこの組成の上層
用塗料を,前記の下層の上にアプリケーターを用いて塗
布してシート状試料を形成,これをさらにカレンダー処
理を行った後8mm幅にスリットし磁気テープを得た。
用いた金属磁性粉末の諸特性値と,得られた磁気テープ
の性質を表2〜表3に示した(下記の例及び比較例も表
2〜表3に併記する)。
An upper layer paint having the following composition is prepared. 100 parts by weight of metal magnetic powder (In this example, in metal Fe, Co: 30 at.%, Al: 1
0 at.%, Y: 4 at.%, Na: 0.002 wt%, Ca: 0.
Polyurethane resin 30 parts by weight Methyl ethyl ketone 190 parts by weight Cyclohexanone 80 parts by weight Toluene 110 parts by weight Stearin butyl 1 part by weight acetylacetone 1 part by weight α-alumina 3 parts by weight Carbon black 2 parts by weight Disperse by a centrifugal ball mill for 1 hour. The upper layer paint thus obtained was applied on the lower layer using an applicator to form a sheet-like sample, which was further calendered and slit to a width of 8 mm to obtain a magnetic tape.
Various characteristic values of the metal magnetic powder used and properties of the obtained magnetic tape are shown in Tables 2 and 3 (the following examples and comparative examples are also shown in Tables 2 and 3).

【0089】〔媒体例2〕媒体例1の下層を構成する長
軸長0.15μmのオキシ水酸化鉄を,長軸長0.30μ
mのオキシ水酸化鉄に変え,他の条件は媒体例1と同一
にして磁気テープを得た。
[Medium Example 2] Iron oxyhydroxide having a major axis of 0.15 μm constituting the lower layer of Medium Example 1 was replaced with 0.30 μm of major axis.
m was changed to iron oxyhydroxide, and the other conditions were the same as in Medium Example 1 to obtain a magnetic tape.

【0090】〔媒体例3〕媒体例1の上層を構成する金
属磁性粉のCo量,Y量および長軸長を,Co:10a
t.%,Y:2at.%,長軸長:0.095μmの金属磁性粉
に変え,他の条件は媒体例1と同一にして磁気テープを
得た。
[Medium Example 3] The amount of Co, the amount of Y, and the major axis length of the metal magnetic powder constituting the upper layer of Medium Example 1 were expressed as Co: 10a
A magnetic tape was obtained in the same manner as in Example 1 except that the metal magnetic powder was changed to t.%, Y: 2 at.%, major axis length: 0.095 μm.

【0091】〔媒体例4〕媒体例1の下層を構成する長
軸長0.15μmのオキシ水酸化鉄を,長軸長0.30μ
m,Al:5重量%被着のオキシ水酸化鉄に変え,他の
条件は媒体例1と同一にして磁気テープを得た。
[Medium Example 4] Iron oxyhydroxide having a major axis of 0.15 μm constituting the lower layer of Medium Example 1 was replaced with 0.30 μm of major axis.
m, Al: 5% by weight of iron oxyhydroxide to be adhered, and the other conditions were the same as in Medium Example 1 to obtain a magnetic tape.

【0092】〔媒体例5〕媒体例1の下層を構成する長
軸長0.15μmのオキシ水酸化鉄を,長軸長0.30μ
m,Al:5重量%固溶のオキシ水酸化鉄に変え,他の
条件は媒体例1と同一にして磁気テープを得た。
[Medium Example 5] Iron oxyhydroxide having a major axis of 0.15 μm constituting the lower layer of Medium Example 1 was replaced with 0.30 μm of major axis.
m, Al: A magnetic tape was obtained in the same manner as in Example 1, except that iron oxyhydroxide was used as a solid solution in an amount of 5% by weight.

【0093】〔媒体例6〕媒体例5の上層を構成する金
属磁性粉のCo量,Al量,Y量および長軸長をCo:
30at.%,Al:8at.%,Y:3at.%,長軸長:0.0
8μmのものに変え,他の条件は媒体例5と同一にして
磁気テープを得た。
[Medium Example 6] The Co amount, Al amount, Y amount, and long axis length of the metal magnetic powder constituting the upper layer of Medium Example 5 are represented by Co:
30 at.%, Al: 8 at.%, Y: 3 at.%, Major axis length: 0.0
A magnetic tape was obtained in the same manner as in the medium example 5 except that the magnetic tape was changed to 8 μm.

【0094】〔媒体例7〕媒体例1の下層を構成する長
軸長0.15μmのオキシ水酸化鉄を,長軸長0.10μ
m,Al:5重量%固溶のオキシ水酸化鉄に変え,他の
条件は媒体例1と同一にして磁気テープを得た。
[Medium Example 7] Iron oxyhydroxide having a major axis of 0.15 μm constituting the lower layer of Medium Example 1 was replaced with 0.10 μm of major axis.
m, Al: A magnetic tape was obtained in the same manner as in Example 1, except that iron oxyhydroxide was used as a solid solution in an amount of 5% by weight.

【0095】〔媒体例8〕媒体例5の上層を構成する金
属磁性粉のY量をLa:4at.%のものに変え,他の条件
は媒体例5と同一にして磁気テープを得た。
[Medium Example 8] A magnetic tape was obtained in the same manner as in Medium Example 5 except that the amount of Y in the metal magnetic powder constituting the upper layer of Medium Example 5 was changed to La: 4 at.%.

【0096】〔媒体例9〕媒体例5の上層を構成する金
属磁性粉のCo量,Al量,Y量および長軸長をCo:
10at.%,Al:10at.%,Y:4at.%,長軸長:0.
08μmのものに変え,他の条件は媒体例5と同一にし
て磁気テープを得た。
[Medium Example 9] The Co amount, Al amount, Y amount and major axis length of the metal magnetic powder constituting the upper layer of Medium Example 5 are represented by Co:
10 at.%, Al: 10 at.%, Y: 4 at.%, Major axis length: 0.1
The magnetic tape was obtained in the same manner as in Example 5 except that the magnetic tape was changed to 08 μm.

【0097】〔媒体例10〕媒体例5の上層を構成する
金属磁性粉のCo量,Al量,Y量および長軸長をC
o:20at.%,Al:10at.%,Y:4at.%,長軸長:
0.08μmのものに変え,他の条件は媒体例5と同一
にして磁気テープを得た。
[Medium Example 10] The amount of Co, the amount of Al, the amount of Y, and the major axis length of the metal magnetic powder constituting the upper layer of Medium Example 5 were expressed as C.
o: 20 at.%, Al: 10 at.%, Y: 4 at.%, major axis length:
A magnetic tape was obtained in the same manner as in Medium Example 5 except that the tape was changed to 0.08 μm.

【0098】〔媒体例11〕媒体例5の上層を構成する
金属磁性粉のCo量,Al量,Y量および長軸長をC
o:40at.%,Al:10at.%,Y:4at.%,長軸長:
0.08μmのものに変え,他の条件は媒体例5と同一
にして磁気テープを得た。
[Medium Example 11] The amount of Co, the amount of Al, the amount of Y, and the major axis length of the metal magnetic powder constituting the upper layer of Medium Example 5 were expressed as C.
o: 40 at.%, Al: 10 at.%, Y: 4 at.%, major axis length:
A magnetic tape was obtained in the same manner as in Medium Example 5 except that the tape was changed to 0.08 μm.

【0099】〔媒体例12〕媒体例5の上層を構成する
金属磁性粉のCo量,Al量,Y量および長軸長をC
o:50at.%,Al:10at.%,Y:4at.%,長軸長:
0.08μmのものに変え,他の条件は媒体例5と同一
にして磁気テープを得た。
[Medium Example 12] The amount of Co, the amount of Al, the amount of Y, and the length of the major axis of the magnetic metal powder constituting the upper layer of Medium Example 5 were expressed as C.
o: 50 at.%, Al: 10 at.%, Y: 4 at.%, major axis length:
A magnetic tape was obtained in the same manner as in Medium Example 5 except that the tape was changed to 0.08 μm.

【0100】〔媒体例13〕媒体例5の上層を構成する
金属磁性粉のCo量,Al量,Y量,Na量,Ca量お
よび長軸長をCo:30at.%,Al:10at.%,Y:4
at.%,Na:0.006重量%,Ca:0.12重量%,
長軸長:0.08μmのものに変え,他の条件は媒体例
5と同一にして磁気テープを得た。
[Medium Example 13] The Co amount, Al amount, Y amount, Na amount, Ca amount and major axis length of the metal magnetic powder constituting the upper layer of Medium Example 5 were Co: 30 at.%, Al: 10 at.%. , Y: 4
at.%, Na: 0.006% by weight, Ca: 0.12% by weight,
A magnetic tape was obtained in the same manner as in Medium Example 5 except that the major axis length was changed to 0.08 μm.

【0101】〔媒体例14媒体例1の下層を構成するオ
キシ水酸化鉄を,長軸長:0.30μm,Si:2.5重
量%含有のものに変え,他の条件は媒体例1と同一にし
て磁気テープを得た。
[Medium Example 14] The iron oxyhydroxide constituting the lower layer of Medium Example 1 was changed to a medium having a major axis length of 0.30 μm and a content of 2.5% by weight of Si. A magnetic tape was obtained in the same manner.

【0102】〔媒体例15〕媒体例1の下層を構成する
オキシ水酸化鉄を,長軸長:0.30μm,Al:5重
量%固溶,Si:2.5重量%含有のものに変え,他の
条件は媒体例1と同一にして磁気テープを得た。
[Medium Example 15] Iron oxyhydroxide constituting the lower layer of Medium Example 1 was changed to one having a major axis length of 0.30 μm, a solid solution of Al: 5% by weight, and a content of Si: 2.5% by weight. A magnetic tape was obtained under the same conditions as in Example 1 except for the above conditions.

【0103】〔媒体比較例1〕媒体例1の下層を構成す
るオキシ水酸化鉄を,長軸長が0.15μmのα−Fe2
3に変え,他の条件は媒体例1のものと実質的に同一
にして磁気テープを得た。
Medium Comparative Example 1 Iron oxyhydroxide constituting the lower layer of Medium Example 1 was replaced with α-Fe 2 having a major axis of 0.15 μm.
Changed to O 3, other conditions to obtain a magnetic tape in the substantially identical to that of the medium Example 1.

【0104】〔媒体比較例2〕媒体例1の下層を構成す
るのオキシ水酸化鉄を,平均粒径が0.035μmの酸
化チタンに変え,他の条件は媒体例1のものと実質的に
同一にして磁気テープを得た。
[Medium Comparative Example 2] The iron oxyhydroxide constituting the lower layer of Medium Example 1 was changed to titanium oxide having an average particle diameter of 0.035 μm, and other conditions were substantially the same as those of Medium Example 1. A magnetic tape was obtained in the same manner.

【0105】〔媒体比較例3〕媒体例1の下層を構成す
るオキシ水酸化鉄を,長軸長:0.30μm,Al:3
5重量%固溶のものに変え,他の条件は媒体例1と同一
にして磁気テープを得た。
[Medium Comparative Example 3] The iron oxyhydroxide constituting the lower layer of Medium Example 1 was prepared by changing the major axis to 0.30 μm and the Al to 3
A magnetic tape was obtained in the same manner as in Example 1 except that the solid solution was changed to a solid solution of 5% by weight.

【0106】〔媒体比較例4〕媒体例5の上層を構成す
る金属磁性粉のCo量,Al量,Y量および長軸長をC
o:3at.%,Al:10at.%,Y:4at.%,長軸長0.
08μmのものに変え,他の条件は媒体例5と同一にし
て磁気テープを得た。
[Medium Comparative Example 4] The amount of Co, the amount of Al, the amount of Y, and the major axis length of the metal magnetic powder constituting the upper layer of Medium Example 5 were expressed as C
o: 3 at.%, Al: 10 at.%, Y: 4 at.%, major axis length 0.
The magnetic tape was obtained in the same manner as in Example 5 except that the magnetic tape was changed to 08 μm.

【0107】〔媒体比較例5〕媒体例5の上層を構成す
る金属磁性粉のCo量,Al量,Y量および長軸長をC
o:55at.%,Al:10at.%,Y:4at.%,長軸長
0.08μmのものに変え,他の条件は媒体例5と同一
にして磁気テープを得た。
[Medium Comparative Example 5] The amount of Co, the amount of Al, the amount of Y, and the length of the major axis of the metallic magnetic powder constituting the upper layer of Medium Example 5 were expressed as C.
o: 55 at.%, Al: 10 at.%, Y: 4 at.%, major axis length was changed to 0.08 μm, and the other conditions were the same as in Medium Example 5 to obtain a magnetic tape.

【0108】〔媒体比較例6〕媒体例5の上層を構成す
る金属磁性粉のCo量,Al量,Y量および長軸長をC
o:30at.%,Al:0at.%,Y:4at.%,長軸長0.
08μmのものに変え,他の条件は媒体例5と同一にし
て磁気テープを得た。
[Medium Comparative Example 6] The amount of Co, the amount of Al, the amount of Y, and the major axis length of the metal magnetic powder constituting the upper layer of Medium Example 5 were represented by C
o: 30 at.%, Al: 0 at.%, Y: 4 at.%, major axis length: 0.
The magnetic tape was obtained in the same manner as in Example 5 except that the magnetic tape was changed to 08 μm.

【0109】〔媒体比較例7〕媒体例5の上層を構成す
る金属磁性粉のCo量,Al量,Y量および長軸長をC
o:30at.%,Al:35at.%,Y:4at.%,長軸長
0.08μmのものに変え,他の条件は媒体例5と同一
にして磁気テープを得た。
[Medium Comparative Example 7] The amount of Co, the amount of Al, the amount of Y, and the major axis length of the metal magnetic powder constituting the upper layer of Medium Example 5 were expressed as C.
o: 30 at.%, Al: 35 at.%, Y: 4 at.%, major axis length: 0.08 μm, and the other conditions were the same as in Medium Example 5 to obtain a magnetic tape.

【0110】〔媒体比較例8〕媒体例5の上層を構成す
る金属磁性粉のCo量,Al量,Y量および長軸長をC
o:30at.%,Al:10at.%,Y:0at.%,長軸長
0.08μmのものに変え,他の条件は媒体例5と同一
にして磁気テープを得た。
[Medium Comparative Example 8] The amount of Co, the amount of Al, the amount of Y, and the length of the major axis of the metal magnetic powder constituting the upper layer of Medium Example 5 were represented by C
o: 30 at.%, Al: 10 at.%, Y: 0 at.%, major axis length: 0.08 μm, and the other conditions were the same as in Medium Example 5 to obtain a magnetic tape.

【0111】〔媒体比較例9〕媒体例5の上層を構成す
る金属磁性粉のCo量,Al量,Y量および長軸長をC
o:30at.%,Al:10at.%,Y:15at.%,長軸長
0.08μmのものに変え,他の条件は媒体例5と同一
にして磁気テープを得た。
[Medium Comparative Example 9] The amount of Co, the amount of Al, the amount of Y, and the length of the major axis of the metallic magnetic powder constituting the upper layer of Medium Example 5 were expressed as C.
o: 30 at.%, Al: 10 at.%, Y: 15 at.%, major axis length was changed to 0.08 μm, and the other conditions were the same as in Medium Example 5 to obtain a magnetic tape.

【0112】〔媒体比較例10〕媒体例5の上層を構成
する金属磁性粉のCo量,Al量,Y量,Na量,Ca
量および長軸長をCo:30at.%,Al:10at.%,
Y:4at.%,Na:0.16重量%,Ca:0.12重量
%,長軸長:0.08μmのものに変え,他の条件は媒
体例5と同一にして磁気テープを得た。
[Medium Comparative Example 10] The amount of Co, the amount of Al, the amount of Y, the amount of Na, and the amount of Ca in the metallic magnetic powder constituting the upper layer of Medium Example 5
Co and 30 at.%, Al: 10 at.%,
Y: 4 at.%, Na: 0.16% by weight, Ca: 0.12% by weight, major axis length: 0.08 μm, and the other conditions were the same as in Medium Example 5 to obtain a magnetic tape. .

【0113】〔媒体比較例11〕媒体例1の下層を構成
するオキシ水酸化鉄を,長軸長:0.30μm,Al:
5重量%固溶,Si:35重量%含有のものに変え,他
の条件は媒体例1と同一にして磁気テープを得た。
[Medium Comparative Example 11] The iron oxyhydroxide constituting the lower layer of Medium Example 1 was prepared with a major axis length of 0.30 μm and Al:
A magnetic tape was obtained in the same manner as in Example 1 except that the content was changed to 5% by weight solid solution and 35% by weight of Si.

【0114】〔媒体比較例12〕媒体比較例11の上層
を構成する金属磁性粉の水分量を,100℃で3.5重
量%,300℃で5.5重量%のものに変え,他の条件
は媒体比較例11と同一にして磁気テープを得た。
[Medium Comparative Example 12] The water content of the metal magnetic powder constituting the upper layer of the medium comparative example 11 was changed to 3.5% by weight at 100 ° C. and 5.5% by weight at 300 ° C. The magnetic tape was obtained under the same conditions as in the medium comparative example 11.

【0115】〔媒体比較例13〕媒体比較例11の下層
を構成するオキシ水酸化鉄の水分量を,100℃で3.
5重量%のものに変え,たの条件は媒体比較例11と同
一にして磁気テープを得た。
[Medium Comparative Example 13] The water content of the iron oxyhydroxide constituting the lower layer of the medium comparative example 11 was adjusted to 100.degree.
A magnetic tape was obtained in the same manner as in Comparative Example 11 except that the weight was changed to 5% by weight.

【0116】[0116]

【表2】 [Table 2]

【0117】[0117]

【表3】 [Table 3]

【0118】表2〜3より,本発明に従うオキシ水酸化
鉄からなる下層用粉体を用いた重層構造の磁気記録媒体
は,強度,表面粗度,磁気変換特性,耐候性がともに優
れたものとなることがわかる。また,上層の金属磁性粉
としては,可溶成分となる周期律表第1a族及び第2a
族元素のNa,Caの多いものは分散しにくくかつ分散
されてもテープ耐久性が低く60℃,90RHで1週間
保存したものはテープの表面を観察すると結晶が析出し
保存安定性の悪いものとなった。そして,金属磁性粉に
Co,Y,Al量を共存させた場合には一層磁気特性が
向上し,本発明に従う下層を用いるとこの磁気特性を有
利に引き出せることがわかる。
From Tables 2 and 3, it can be seen that a magnetic recording medium having a multilayer structure using the lower layer powder of iron oxyhydroxide according to the present invention has excellent strength, surface roughness, magnetic conversion characteristics, and weather resistance. It turns out that it becomes. In addition, as the metal magnetic powder in the upper layer, the 1a group and 2a
Those containing a large amount of group elements Na and Ca are difficult to disperse, and the tape durability is low even when dispersed, and those stored for 1 week at 60 ° C. and 90 RH have poor storage stability when crystals are precipitated by observing the tape surface. It became. Further, it can be seen that when the amounts of Co, Y and Al coexist in the metal magnetic powder, the magnetic properties are further improved, and that the use of the lower layer according to the present invention makes it possible to advantageously bring out these magnetic properties.

【0119】[0119]

【発明の効果】以上説明したように,本発明の下層用粉
末は,重層構造の塗布型磁気記録媒体の高品質化,具体
的には表面平滑性,強度,磁気特性,耐候性等の向上に
寄与するところが大きいので,電磁変換特性の良好な高
密度磁気記録媒体を得ることができる。
As described above, the lower layer powder of the present invention improves the quality of a coating type magnetic recording medium having a multilayer structure, specifically, improves the surface smoothness, strength, magnetic properties, weather resistance, etc. Therefore, a high-density magnetic recording medium having good electromagnetic conversion characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に従う針状オキシ水酸化鉄からなる下層
用粉体の個々の粒子の形状(枝分かれ状態)を写した電
子顕微鏡写真である。
FIG. 1 is an electron micrograph showing the shape (branched state) of individual particles of a lower layer powder composed of acicular iron oxyhydroxide according to the present invention.

【図2】オキシ水酸化鉄中のAl含有量とオキシ水酸化
鉄の分解温度との関係を示す図である。
FIG. 2 is a diagram showing the relationship between the Al content in iron oxyhydroxide and the decomposition temperature of iron oxyhydroxide.

フロントページの続き (72)発明者 紺野 慎一 東京都千代田区丸の内1丁目8番2号 同 和鉱業株式会社内 (72)発明者 堀川 義史 東京都千代田区丸の内1丁目8番2号 同 和鉱業株式会社内 (72)発明者 粟飯原 靖彦 東京都千代田区丸の内1丁目8番2号 同 和鉱業株式会社内Continuing from the front page (72) Inventor Shinichi Konno 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Dowa Mining Co., Ltd. (72) Inventor Yoshifumi Horikawa 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Dowa Mining Co., Ltd. In-company (72) Inventor Yasuhiko Awaihara 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Dowa Mining Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 平均長軸長0.01〜0.5μmの針状
粒子からなり且つ100℃で放出するH2Oの量が2重
量%以下のオキシ水酸化鉄粉からなる塗布型磁気記録媒
体用の下層用粉末。
[Claim 1] amount of H 2 O released at will and 100 ° C. acicular particles having an average major axis length 0.01~0.5μm consists of 2 wt% or less of the iron oxyhydroxide powder coating type magnetic recording Lower layer powder for media.
【請求項2】 枝分かれ方向が二次元方向に偏りをもつ
平均長軸長0.01〜0.5μmの針状粒子からなり且
つ100℃で放出するH2Oの量が2重量%以下のオキ
シ水酸化鉄粉からなる塗布型磁気記録媒体用の下層用粉
末。
2. Oxygen consisting of needle-like particles having an average major axis length of 0.01 to 0.5 μm having a two-dimensional branching direction and having an amount of H 2 O released at 100 ° C. of 2% by weight or less. Lower layer powder for coating type magnetic recording media consisting of iron hydroxide powder.
【請求項3】 平均長軸長0.01〜0.5μmの針状
粒子からなり,0.1〜30重量%のAlを含有し且つ
100℃で放出するH2Oの量が2重量%以下のオキシ
水酸化鉄粉からなる塗布型磁気記録媒体用の下層用粉
末。
3. The composition of needle-like particles having an average major axis length of 0.01 to 0.5 μm, containing 0.1 to 30% by weight of Al and releasing 2 % by weight of H 2 O at 100 ° C. Lower layer powder for a coating type magnetic recording medium comprising the following iron oxyhydroxide powder.
【請求項4】 平均長軸長0.01〜0.5μmの針状
粒子からなり,0.1〜30重量%のSiを含有し且つ
100℃で放出するH2Oの量が2重量%以下のオキシ
水酸化鉄粉からなる塗布型磁気記録媒体用の下層用粉
末。
4. It is composed of needle-shaped particles having an average major axis length of 0.01 to 0.5 μm, contains 0.1 to 30% by weight of Si, and releases 2 % by weight of H 2 O at 100 ° C. Lower layer powder for a coating type magnetic recording medium comprising the following iron oxyhydroxide powder.
【請求項5】 平均長軸長0.01〜0.5μmの針状
粒子からなり,AlとSiを合計で0.1〜30重量%
含有し且つ100℃で放出するH2Oの量が2重量%以
下のオキシ水酸化鉄粉からなる塗布型磁気記録媒体用の
下層用粉末。
5. Consisting of acicular particles having an average major axis length of 0.01 to 0.5 μm, wherein Al and Si are contained in a total amount of 0.1 to 30% by weight.
A lower layer powder for a coating type magnetic recording medium, comprising an iron oxyhydroxide powder containing and having an amount of H 2 O released at 100 ° C. of 2% by weight or less.
【請求項6】 平均長軸長0.01〜0.5μmの針状
粒子からなり,タップ密度が0.4以上で且つ100℃
で放出するH2Oの量が2重量%以下のオキシ水酸化鉄
粉からなる塗布型磁気記録媒体用の下層用粉末。
6. A needle-like particle having an average major axis length of 0.01 to 0.5 μm, a tap density of 0.4 or more and 100 ° C.
Powder for a coating type magnetic recording medium comprising iron oxyhydroxide powder in which the amount of H 2 O released in step 2 is 2% by weight or less.
【請求項7】 平均長軸長0.01〜0.5μmの針状
粒子からなり,0.1〜30重量%のAlを含有し且つ
大気中での分解温度が210℃以上で100℃で放出す
るH2Oの量が2重量%以下のオキシ水酸化鉄粉からな
る塗布型磁気記録媒体用の下層用粉末。
7. It is composed of acicular particles having an average major axis length of 0.01 to 0.5 μm, contains 0.1 to 30% by weight of Al, and has a decomposition temperature in the air of 210 ° C. or higher and 100 ° C. A lower layer powder for a coating type magnetic recording medium comprising an iron oxyhydroxide powder having an amount of H 2 O to be released of 2% by weight or less.
JP22074696A 1996-03-21 1996-08-05 Powder for coating type magnetic recording media Expired - Fee Related JP4139873B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP22074696A JP4139873B2 (en) 1996-08-05 1996-08-05 Powder for coating type magnetic recording media
US08/952,438 US6040043A (en) 1996-03-21 1997-03-21 Particles for lower layer of coating type magnetic recording medium
EP97907409A EP0842901A4 (en) 1996-03-21 1997-03-21 Powder for lower layer of coating type magnetic recording medium
PCT/JP1997/000927 WO1997034830A1 (en) 1996-03-21 1997-03-21 Powder for lower layer of coating type magnetic recording medium
US09/501,993 US6171692B1 (en) 1996-03-21 2000-02-11 Particle for lower layer of coating type magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22074696A JP4139873B2 (en) 1996-08-05 1996-08-05 Powder for coating type magnetic recording media

Publications (2)

Publication Number Publication Date
JPH1053421A true JPH1053421A (en) 1998-02-24
JP4139873B2 JP4139873B2 (en) 2008-08-27

Family

ID=16755895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22074696A Expired - Fee Related JP4139873B2 (en) 1996-03-21 1996-08-05 Powder for coating type magnetic recording media

Country Status (1)

Country Link
JP (1) JP4139873B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000038181A1 (en) * 1998-12-18 2000-06-29 Dowa Mining Co., Ltd. Underlayer powder for coating-type magnetic recording media and process for producing the same
WO2003088218A1 (en) * 2002-04-03 2003-10-23 Dowa Mining Co., Ltd. Powder for sublayer of coating type magnetic recording medium
WO2003088219A1 (en) * 2002-04-03 2003-10-23 Dowa Mining Co., Ltd. Powder for sublayer of coating type magnetic recording medium and magnetic recording medium comprising the same
KR100606586B1 (en) * 1998-12-18 2006-08-01 도와 마이닝 가부시끼가이샤 Underlayer powder for coating-type magnetic recording media and process for producing the same
JP2007194666A (en) * 2007-04-09 2007-08-02 Dowa Holdings Co Ltd Precursor for use in manufacturing ferromagnetic metal powder

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000038181A1 (en) * 1998-12-18 2000-06-29 Dowa Mining Co., Ltd. Underlayer powder for coating-type magnetic recording media and process for producing the same
US6440545B1 (en) 1998-12-18 2002-08-27 Dowa Mining Co., Ltd. Powder for use in lower layer of coating type magnetic recording medium
KR100606586B1 (en) * 1998-12-18 2006-08-01 도와 마이닝 가부시끼가이샤 Underlayer powder for coating-type magnetic recording media and process for producing the same
WO2003088218A1 (en) * 2002-04-03 2003-10-23 Dowa Mining Co., Ltd. Powder for sublayer of coating type magnetic recording medium
WO2003088219A1 (en) * 2002-04-03 2003-10-23 Dowa Mining Co., Ltd. Powder for sublayer of coating type magnetic recording medium and magnetic recording medium comprising the same
US7238438B2 (en) 2002-04-03 2007-07-03 Dowa Mining Co., Ltd. Powder for underlayer of coating-type magnetic recording medium
US7357997B2 (en) 2002-04-03 2008-04-15 Dowa Electronics Materials Co., Ltd. Powder for underlayer of coating-type magnetic recording medium and magnetic recording medium comprising the same
JP2007194666A (en) * 2007-04-09 2007-08-02 Dowa Holdings Co Ltd Precursor for use in manufacturing ferromagnetic metal powder

Also Published As

Publication number Publication date
JP4139873B2 (en) 2008-08-27

Similar Documents

Publication Publication Date Title
JP3886969B2 (en) Magnetic recording medium and magnetic recording cartridge
JP5058889B2 (en) Magnetic recording medium
US5645652A (en) Spindle-shaped magnetic iron-based alloy particles containing cobalt and iron as the main ingredients and process for producing the same
JP4534059B2 (en) Iron nitride magnetic powder and method for producing the same
JPH1069629A (en) Coating type magnetic recording medium having double layer structure
JP4139873B2 (en) Powder for coating type magnetic recording media
JP3903139B2 (en) Powder for coating type magnetic recording media
JP4182232B2 (en) Ferromagnetic powder
US7074281B2 (en) Magnetic powder for magnetic recording
US6171692B1 (en) Particle for lower layer of coating type magnetic recording medium
JP4009701B2 (en) Iron oxyhydroxide and multilayer magnetic recording medium using the same
JP4203560B2 (en) Multi-layer coating type magnetic recording medium
US5041307A (en) Process for producing magnetic iron oxide particles for magnetic recording
US5989516A (en) Spindle-shaped geothite particles
JPH11251122A (en) Precursor for manufacturing magnetic powder and ferromagnetic metal power obtained from the same
JP2001176058A (en) Powder for lower layer of coating type magnetic recording medium, and method of producing the same
JPH09255341A (en) Powder for base layer of coating type magnetic recording medium
JP2007318149A (en) Ferromagnetic powder
JP2008181916A (en) Magnetic powder and manufacturing method thereof, and magnetic recording medium
JPH1025115A (en) Iron oxide-base magnetic powder and magnetic recording medium using the same
JP2965606B2 (en) Method for producing metal magnetic powder
JP4268628B2 (en) Magnetic recording medium and magnetic recording cartridge
JP3661733B2 (en) Magnetic recording medium
JP2002146404A (en) Composite metal magnetic grain powder and magnetic recording medium
JPH06263449A (en) Non-magnetic blackish brown hydrated iron oxide particle powder, production thereof and substrate for magnetic recording medium using the powder

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080513

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees