JPH1050476A - Manufacture of thin-film el element - Google Patents

Manufacture of thin-film el element

Info

Publication number
JPH1050476A
JPH1050476A JP8206689A JP20668996A JPH1050476A JP H1050476 A JPH1050476 A JP H1050476A JP 8206689 A JP8206689 A JP 8206689A JP 20668996 A JP20668996 A JP 20668996A JP H1050476 A JPH1050476 A JP H1050476A
Authority
JP
Japan
Prior art keywords
heat treatment
film
substrate
emitting layer
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8206689A
Other languages
Japanese (ja)
Inventor
Shinichi Nakamata
伸一 仲俣
Yukinori Kawamura
幸則 河村
Takashi Tsuji
崇 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP8206689A priority Critical patent/JPH1050476A/en
Publication of JPH1050476A publication Critical patent/JPH1050476A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve and stabilize the brightness and the life properties of a thin-film EL element produced by forming a first electrode, a first insulating layer, an electroluminescent layer of a group II metal sulfide, a second insulating film, and a second electrode on an insulating substrate. SOLUTION: After an electroluminescent layer 4 is formed on an insulating substrate 1 by an electron beam evaporation method, the resultant substrate is inserted in a thermally treating apparatus, the apparatus is evacuated to 4 Pa or lower, a gas exchange is carried out, and heating treatment is carried out in an atmosphere containing sulfur. After that, a second insulating layer 5 and a second electrode 6 are successively formed. By the evacuation, harmful molecules absorbed on the surface of the electroluminescent layer are desorbed and the surface is stabilized by the treatment in the sulfur-containing atmosphere. Moreover, oxygen intake from adsorptive molecules is lessened, and the brightness property and the life property are improved. It is more preferable that the vacuum-evacuation and the gas exchange be repeated and that preheating of the treatment apparatus and a substrate holder be carried out.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、薄型表示装置に用
いる薄膜エレクトロルミネッセンス素子(以下薄膜EL
素子と記す)の製造方法、特にその発光層成膜後の熱処
理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film electroluminescent element (hereinafter referred to as a thin film EL) used for a thin display device.
(Hereinafter referred to as an element), and in particular, a heat treatment method after forming the light emitting layer.

【0002】[0002]

【従来の技術】電圧印加により、エレクトロルミネッセ
ンスを呈する薄膜EL素子は、高輝度発光、高速応答、
広視野角、薄型軽量、高解像度などの優れた特徴を有す
ることから、薄型表示装置として注目されている。薄膜
EL素子の発光色は、発光層を構成する硫化亜鉛(Zn
S)や硫化ストロンチウム(SrS)などのII族金属
硫化物の半導体母材と、添加される発光中心の組み合わ
せできまり、例えば黄橙色の発光はZnS母材に発光中
心としてマンガン(Mn)を添加して得られる。
2. Description of the Related Art A thin-film EL element exhibiting electroluminescence by applying a voltage has high luminance emission, high-speed response,
Because of its excellent features such as a wide viewing angle, thinness and light weight, and high resolution, it has attracted attention as a thin display device. The luminescent color of the thin-film EL element is zinc sulfide (Zn) constituting the luminescent layer.
S) or a semiconductor base material of a group II metal sulfide such as strontium sulfide (SrS) and a luminescent center to be added can be combined. For example, yellow-orange emission is obtained by adding manganese (Mn) as a luminescent center to a ZnS base material. Is obtained.

【0003】しかしながら、現在実用レベルの輝度に達
しているものは、ZnSにMnをドープしたZnS:M
nによる黄橙色発光のモノカラーディスプレイのみであ
る。このため、マルチカラー、フルカラー用の薄膜EL
素子の開発が強く望まれている。アルカリ土類金属硫化
物、なかでも硫化ストロンチウム(SrS)、硫化カル
シウム(CaS)は母体材料として有望であり、発光中
心として希土類であるセリウム(Ce)、ユーロピウム
(Eu)、プラセオジム(Pr)を添加することによ
り、それぞれ青緑色(SrS:Ce)、赤色(CaS:
Eu)、白色(SrS:Ce、Eu)、白色(SrS:
Pr)に発光することが知られている。
[0003] However, the one which has reached a practical level of luminance at present is ZnS: M, in which ZnS is doped with Mn.
n is a monocolor display that emits yellow-orange light. Therefore, thin-film EL for multi-color and full-color
The development of devices is strongly desired. Alkaline earth metal sulfides, especially strontium sulfide (SrS) and calcium sulfide (CaS), are promising base materials, and cerium (Ce), europium (Eu), and praseodymium (Pr), which are rare earths, are added as emission centers. By doing, respectively, blue-green (SrS: Ce) and red (CaS:
Eu), white (SrS: Ce, Eu), white (SrS:
It is known to emit light in Pr).

【0004】[0004]

【発明が解決しようとする課題】アルカリ土類金属硫化
物をはじめとするEL発光層は、一般に輝度、及び寿命
特性の改善のため、成膜後の後処理として硫黄雰囲気で
の熱処理をおこなっている。この時、発光層成膜装置か
ら熱処理装置へ、さらに熱処理装置からその後の絶縁膜
成膜装置への基板の移動をおこなうために、大気中に基
板(素子基板)を取り出している。
The EL light emitting layer including the alkaline earth metal sulfide is generally subjected to a heat treatment in a sulfur atmosphere as a post-treatment after the film formation in order to improve the luminance and the life characteristics. I have. At this time, the substrate (element substrate) is taken out to the atmosphere in order to transfer the substrate from the light emitting layer film forming apparatus to the heat treatment apparatus and from the heat treatment apparatus to the subsequent insulating film forming apparatus.

【0005】しかし、アルカリ土類金属硫化物のEL発
光層は、一酸化炭素ガス(CO)、炭酸ガス(CO2
や水蒸気(H2 O)と非常に良く反応し、組成の変化を
起こし、硫黄雰囲気での熱処理をおこなっても、安定し
た発光特性を得ることができないことがある。また、発
光層表面に微量の水蒸気または炭酸ガス等による酸素が
吸着すると、発光層表面にある酸素原子が電圧印加によ
つて移動し、セリウム(Ce)等の発光中心の周りの結
晶場の変化をもたらし、素子特性(色表示等)の変化、
しきい電圧の上昇や寿命特性の低下を引き起こすことが
問題になっている。
[0005] However, the alkaline earth metal sulfide EL light emitting layer is composed of carbon monoxide gas (CO) and carbon dioxide gas (CO 2 ).
It reacts very well with water and water vapor (H 2 O) to cause a change in composition, and even when heat treatment is performed in a sulfur atmosphere, stable light emission characteristics may not be obtained. Further, when a small amount of oxygen such as water vapor or carbon dioxide gas is adsorbed on the surface of the light emitting layer, oxygen atoms on the surface of the light emitting layer move by applying a voltage, and the crystal field around the light emission center such as cerium (Ce) changes. Changes in device characteristics (color display, etc.),
The problem is that the threshold voltage rises and the life characteristics deteriorate.

【0006】装置間の素子基板の移動時に、水蒸気など
の吸着ガスが付着しないように、基板を装置外に取り出
さないインライン方式の製造装置を用いる方法もある
が、高額な設備が必要であり、製品のコストが高くな
る。本発明は、上記の問題点に着目してなされ、発光輝
度、寿命特性に優れ、しかも特性の安定したII族金属
硫化物の発光層をもつ薄膜EL素子が、高額な設備を必
要とせず、簡易に得られる製造方法を提供することにあ
る。
There is a method of using an in-line manufacturing apparatus in which the substrate is not taken out of the apparatus in order to prevent adsorbed gas such as water vapor from adhering when the element substrate is moved between apparatuses, but expensive equipment is required. Product costs are higher. The present invention has been made in view of the above-described problems, and a thin-film EL device having a light emitting layer of a Group II metal sulfide having excellent emission luminance and life characteristics and having stable characteristics does not require expensive equipment. An object of the present invention is to provide a manufacturing method which can be easily obtained.

【0007】[0007]

【課題を解決するための手段】これらの課題を解決する
ため本発明は、絶縁基板上に少なくとも第一の電極、第
一の絶縁層、II族金属硫化物からなる発光層、第二の
絶縁層および第二の電極を積層した薄膜EL素子の製造
方法において、電子ビーム蒸着により発光層を成膜した
基板を、熱処理装置内に挿入し、熱処理装置内を真空排
気した後、硫黄を含むガスでガス置換し、発光層の熱処
理をおこなうものとする。
In order to solve these problems, the present invention provides at least a first electrode, a first insulating layer, a light emitting layer made of a Group II metal sulfide, and a second insulating layer on an insulating substrate. In the method for manufacturing a thin-film EL element in which a layer and a second electrode are stacked, a substrate on which a light-emitting layer is formed by electron beam evaporation is inserted into a heat treatment apparatus, the inside of the heat treatment apparatus is evacuated, and then a gas containing sulfur. And heat-treats the light-emitting layer.

【0008】そのようにすれば、基板を大気に晒した際
に吸着した炭酸ガスや水蒸気は真空排気によって離脱
し、その後、硫黄を含んだ雰囲気中で熱処理することに
よって、硫黄が反応して素子表面が安定化し、また硫黄
が結晶中に取り込まれる。特に、真空排気時の熱処理装
置内の到達真空度を4Pa以下にすれば、熱処理装置内
の残留大気が1ppm以下になり、硫黄雰囲気の熱処理
が妨害されない。
In this case, carbon dioxide and water vapor adsorbed when the substrate is exposed to the atmosphere are released by vacuum evacuation, and then heat-treated in an atmosphere containing sulfur, whereby the sulfur reacts and the device The surface is stabilized and sulfur is incorporated into the crystals. In particular, if the ultimate vacuum in the heat treatment apparatus during evacuation is set to 4 Pa or less, the residual air in the heat treatment apparatus becomes 1 ppm or less, and heat treatment in a sulfur atmosphere is not hindered.

【0009】真空排気とガス置換とを2回以上繰り返し
ておこなうこともよい。そのようにすれば、吸着した炭
酸ガスや水蒸気は真空排気によってより一層離脱が進
み、熱処理装置内の残留大気濃度が、一層低くなって硫
黄の雰囲気処理が完全におこなわれる。また、真空排気
前のガス置換を希ガスでおこなってもよい。
The evacuation and gas replacement may be repeated twice or more. By doing so, the adsorbed carbon dioxide and water vapor are further desorbed by vacuum evacuation, the residual atmospheric concentration in the heat treatment apparatus is further reduced, and the sulfur atmosphere treatment is completely performed. Further, gas replacement before evacuation may be performed with a rare gas.

【0010】希ガスであれば、有毒の硫化水素ガスなど
より取扱が容易である。そして、基板の挿入、取り出し
をおこなう際に、熱処理装置の中にある基板ホルダーな
どの装置部品および装置内壁を60〜200℃の温度範
囲で予備加熱しておくものとする。そのようにすれば、
熱処理装置内への吸着ガスの持ち込みを少なくすること
でき、EL素子への酸素の取り込みも少なくできる。
[0010] A rare gas is easier to handle than a toxic hydrogen sulfide gas or the like. When inserting and removing the substrate, the apparatus components such as the substrate holder in the heat treatment apparatus and the inner wall of the apparatus are preheated in a temperature range of 60 to 200 ° C. If you do that,
The amount of adsorbed gas brought into the heat treatment apparatus can be reduced, and the amount of oxygen taken into the EL element can be reduced.

【0011】[0011]

【発明の実施の形態】本発明は、II族金属硫化物の発
光層をもつ薄膜EL素子の製造工程において吸着する有
害分子を真空排気により離脱せしめた後、硫黄の雰囲気
処理をすることによって、発光輝度、寿命特性に優れ、
しかも特性の安定した薄膜EL素子が、簡易に得られる
製造方法を提供するものである。以下図面を参照しなが
ら説明する。 [実施例1]発光層としてセリウム(Ce)をドープし
た硫化ストロンチウム(SrS)を用いたEL素子を作
製した。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention provides a method of manufacturing a thin film EL device having a group II metal sulfide light-emitting layer, which comprises removing harmful molecules adsorbed by vacuum evacuation and then treating the atmosphere with sulfur. Excellent luminous brightness and life characteristics,
Moreover, the present invention provides a manufacturing method in which a thin-film EL element having stable characteristics can be easily obtained. This will be described below with reference to the drawings. [Example 1] An EL device using strontium sulfide (SrS) doped with cerium (Ce) as a light emitting layer was manufactured.

【0012】図3は、この発明の実施例に係る薄膜EL
素子の断面図である。ガラス基板1上に第一電極2とな
る透明なITO(インジウム錫酸化物)、第一絶縁層3
となる酸化シリコン(SiO2 )膜、酸化窒化シリコン
(SiON)膜、発光層4、第二絶縁層となる酸化シリ
コン(SiO2 )膜、酸化窒化シリコン(SiON)膜
が順に積層され、その表面に、第二電極6となるアルミ
ニウム電極が設けられている。第一電極2と第二電極6
との間に駆動電源7から交流電圧を印加して発光させ
る。
FIG. 3 shows a thin film EL according to an embodiment of the present invention.
It is sectional drawing of an element. Transparent ITO (indium tin oxide) serving as a first electrode 2 on a glass substrate 1, a first insulating layer 3
A silicon oxide (SiO 2 ) film, a silicon oxynitride (SiON) film, a light emitting layer 4, a silicon oxide (SiO 2 ) film as a second insulating layer, and a silicon oxynitride (SiON) film are sequentially laminated, and the surface thereof is formed. In addition, an aluminum electrode serving as the second electrode 6 is provided. First electrode 2 and second electrode 6
An AC voltage is applied from the drive power supply 7 during the period to emit light.

【0013】まず、ガラス基板にスパッタ法で膜厚約2
00nmのITO(酸化インジウム錫)膜を形成し、第
一電極とする。続いて、スパッタ法で膜厚30nmのS
iO 2 と膜厚180nmのSi3 4 とを順に成膜し、
第一絶縁層とした。次に、セリウム(Ce)を0.2mo
l %ドープした硫化ストロンチウム(SrS)ペレット
を用い、電子ビーム蒸着法により、基板温度500℃で
膜厚1000nmの発光層を形成した。次に、発光層ま
で成膜した基板を熱処理する。
First, a glass substrate having a film thickness of about 2
A 00 nm ITO (indium tin oxide) film is formed,
One electrode. Subsequently, a 30 nm-thick S
iO TwoAnd 180 nm thick SiThreeNFourAre formed in order,
The first insulating layer was used. Next, cerium (Ce) was
l% doped strontium sulfide (SrS) pellets
At a substrate temperature of 500 ° C. by electron beam evaporation.
A light emitting layer with a thickness of 1000 nm was formed. Next, the light emitting layer
Is subjected to a heat treatment.

【0014】発光層の熱処理に用いた熱処理装置を図4
に示す。赤外線ヒータで加熱される石英管の熱処理炉1
0の図示されない挿入口から、発光層まで成膜した薄膜
EL素子8を基板ホルダ9に載せ挿入する。ガス導入用
バルブ11aと排気用バルブ11bを閉じ、真空引き用
バルブ11cを開いて、真空ポンプ12で熱処理炉10
内を4Paまで真空排気する。真空引き用バルブ11c
を閉じ、ガス導入用バルブ11aを開いて、10%硫化
水素(H2 S)/アルゴン(Ar)ガスでガス置換した
後、排気用バルブ11bを開いてガスを流しながら、1
気圧(1×105 Pa)、630℃で30分間熱処理を
おこなった。
FIG. 4 shows a heat treatment apparatus used for heat treatment of the light emitting layer.
Shown in Quartz tube heat treatment furnace 1 heated by infrared heater
The thin-film EL element 8 formed up to the light-emitting layer is placed on the substrate holder 9 and inserted from an insertion opening (not shown) of the substrate 0. The gas introduction valve 11a and the exhaust valve 11b are closed, the evacuation valve 11c is opened, and the heat treatment furnace 10 is
The inside is evacuated to 4 Pa. Vacuum evacuation valve 11c
Is closed, the gas introduction valve 11a is opened, and the gas is replaced with 10% hydrogen sulfide (H 2 S) / argon (Ar) gas.
Heat treatment was performed at 630 ° C. for 30 minutes at an atmospheric pressure (1 × 10 5 Pa).

【0015】その後、再びスパッタ法により、厚さ18
0nmのSi3 4 と厚さ30nmのSiO2 とを順次
形成して第二絶縁層とし、更にアルミニウムを電子ビー
ム蒸着法により蒸着して第二電極とした。このような製
造工程を経た実施例1のEL素子と、比較例として熱処
理前に真空排気をおこなわなかったものとの輝度特性を
図1に示す。横軸は駆動電圧、縦軸は発光輝度である。
Thereafter, the thickness 18 is again formed by the sputtering method.
0 nm Si 3 N 4 and 30 nm thick SiO 2 were sequentially formed to form a second insulating layer, and aluminum was further deposited by electron beam evaporation to form a second electrode. FIG. 1 shows the luminance characteristics of the EL element of Example 1 having undergone such a manufacturing process and of a comparative example in which vacuum evacuation was not performed before heat treatment. The horizontal axis is the driving voltage, and the vertical axis is the light emission luminance.

【0016】実施例1のEL素子は比較例に対して、同
一輝度の得られる電圧が約25V低下している。また、
同一駆動電圧で比較すると、輝度が桁違いに向上してい
る。また、図2にそれぞれの寿命特性を示す。印加電圧
の周波数を上げて加速試験をおこなうことができるので
横軸は相対時間で表したエージング時間、縦軸は発光輝
度である。実際には500Hzで試験した。
In the EL element of Example 1, the voltage for obtaining the same luminance is lower than that of the comparative example by about 25 V. Also,
When compared at the same drive voltage, the luminance is improved by orders of magnitude. FIG. 2 shows the life characteristics. Since the acceleration test can be performed by increasing the frequency of the applied voltage, the abscissa indicates the aging time expressed in relative time, and the ordinate indicates the light emission luminance. The test was actually performed at 500 Hz.

【0017】実施例1のEL素子は、輝度レベルの低下
が少なく、大幅な、寿命の延長が認められる。この場合
も、発光層成膜後の基板を大気中に取り出し、熱処理
し、また大気中に取り出して第二絶縁膜の形成をおこな
っているわけである。しかし、本発明の方法によれば、
真空排気によって吸着した炭酸ガスや水蒸気は離脱し、
その後、硫黄を含んだ雰囲気中で熱処理することによっ
て、硫黄が反応して素子特性が安定化されるのである。
In the EL device of Example 1, a decrease in the luminance level is small, and a remarkable extension of the life is recognized. In this case as well, the substrate after the formation of the light emitting layer is taken out into the air, heat-treated, and taken out into the air to form the second insulating film. However, according to the method of the present invention,
Carbon dioxide gas and water vapor adsorbed by evacuation are released,
Thereafter, by performing a heat treatment in an atmosphere containing sulfur, the sulfur reacts to stabilize the element characteristics.

【0018】また発光層表面に吸着した酸素も、硫黄に
よつて置換されてCe等の発光中心の周りの結晶場の変
化を防ぎ、しきい電圧値の低電圧化や寿命特性の向上な
どが実現されたと考えられる。なお、熱処理時の真空引
きは4Pa以下が好適である。この程度の真空引きをす
ると、その後の不活性ガス等の導入により1気圧にした
とき、残留大気は1ppm以下になり、硫黄雰囲気での
熱処理に悪影響を与えることがなくなる。また、熱処理
時の雰囲気としては、硫黄の蒸気が存在することが重要
であり、硫化水素の添加以外に、硫黄を加熱してその蒸
気を送っても良い。 [実施例2]実施例1と同じ条件と手順で、発光層熱処
理時に4Paまでの真空排気と、10%H2 S/Arガ
ス置換を2回おこない、大気圧(1×105 Pa)でガ
スフローをおこない、630℃で熱処理をおこなった。
これを実施例2とした。この時の輝度特性を図1に、寿
命特性を図2に示した。
Oxygen adsorbed on the surface of the light-emitting layer is also replaced by sulfur to prevent a change in the crystal field around the light-emitting center such as Ce, thereby lowering the threshold voltage and improving the life characteristics. It is considered to have been realized. The evacuation during the heat treatment is preferably 4 Pa or less. With this degree of vacuum evacuation, when the pressure is reduced to 1 atm by introduction of an inert gas or the like, the residual air becomes 1 ppm or less, and the heat treatment in the sulfur atmosphere is not adversely affected. Further, it is important that the atmosphere of the heat treatment contains sulfur vapor. In addition to the addition of hydrogen sulfide, the sulfur may be heated and the vapor may be sent. [Embodiment 2] Under the same conditions and procedures as in Embodiment 1, vacuum evacuation up to 4 Pa and substitution of 10% H 2 S / Ar gas were performed twice at the time of heat treatment of the light emitting layer, and at atmospheric pressure (1 × 10 5 Pa). A gas flow was performed, and a heat treatment was performed at 630 ° C.
This was designated as Example 2. The luminance characteristics at this time are shown in FIG. 1, and the life characteristics are shown in FIG.

【0019】実施例2のEL素子は、実施例1のEL素
子よりも更に同一輝度の得られる電圧が低下し、また同
一駆動電圧で比較すると、輝度が向上している。図2に
おいても実施例2のEL素子は、実施例1のEL素子よ
り輝度レベルの低下が少なく、寿命の延長が認められ
る。このように真空引きとガス置換を繰り返せば、それ
だけ更に特性が向上することがわかる。また、最終的な
熱処理時の雰囲気は硫黄を含んでいることが必要である
が、真空引き前のガス置換は、アルゴン等の希ガスでも
よいことがわかった。 [実施例3]実施例1と同じような手順で発光層の成膜
をおこなった後、120℃で基板を取り出し、予め12
0℃に加熱した基板ホルダー等を用いて同じ温度に加熱
した熱処理装置に挿入し、実施例1と同様に真空排気と
ガス置換をおこなった後熱処理をおこない、また120
℃で基板を取り出し、予め120℃に加熱した絶縁膜成
膜装置にとりつけ成膜した。
In the EL element of Example 2, the voltage at which the same luminance is obtained is lower than that of the EL element of Example 1, and the luminance is improved when compared with the same driving voltage. In FIG. 2 as well, the EL element of Example 2 has a smaller decrease in luminance level than the EL element of Example 1 and has an extended life. It is understood that the characteristics are further improved by repeating the evacuation and the gas replacement. Further, it was found that the atmosphere during the final heat treatment needs to contain sulfur, but the gas replacement before vacuuming may be a rare gas such as argon. Example 3 After forming a light emitting layer in the same procedure as in Example 1, the substrate was taken out at 120 ° C.
It is inserted into a heat treatment apparatus heated to the same temperature using a substrate holder or the like heated to 0 ° C., and after performing evacuation and gas replacement as in Example 1, heat treatment is performed.
The substrate was taken out at a temperature of 100 ° C., and attached to an insulating film forming apparatus heated to 120 ° C. in advance to form a film.

【0020】この実施例3のEL素子の輝度特性をも図
1に示した。実施例3のEL素子は、実施例1のEL素
子よりも更に同一輝度の得られる電圧が低下し、また同
一駆動電圧で比較すると、輝度が向上している。実施例
3のEL素子のエージング試験の結果は、図面が煩雑に
なるのを避けるため、図2には示していないが、実施例
1のEL素子よりも輝度レベルの低下が少なく、寿命の
延長が認められた。
FIG. 1 also shows the luminance characteristics of the EL device of the third embodiment. In the EL element of Example 3, the voltage at which the same luminance is obtained is lower than that of the EL element of Example 1, and the luminance is improved when compared with the same driving voltage. Although the results of the aging test of the EL element of Example 3 are not shown in FIG. 2 to avoid complicating the drawing, the decrease in the luminance level is smaller than that of the EL element of Example 1 and the life is prolonged. Was observed.

【0021】このように、基板の挿入、取り出し時に発
光層成膜装置、熱処理装置、絶縁膜成膜装置の基板、基
板ホルダー、装置内壁、および付属部品を予備加熱する
ことにより、熱処理装置に持ち込まれる吸着ガスを減ら
し、その悪影響を避けることができる。なお、予備加熱
温度は60〜200℃の範囲が好適である。60℃より
低い温度では水分の脱離が殆どおこらず、予備加熱の効
果が見られない。また200℃を越える高温では、基板
の取り出し、挿入の取扱が難しいことによる。
As described above, when the substrate is inserted and removed, the substrate of the light emitting layer film forming apparatus, the heat treating apparatus, the substrate of the insulating film forming apparatus, the substrate holder, the inner wall of the apparatus, and the accessory parts are pre-heated to be brought into the heat treating apparatus. Adsorbed gas can be reduced and its adverse effects can be avoided. The preheating temperature is preferably in the range of 60 to 200C. At a temperature lower than 60 ° C., almost no desorption of water occurs, and the effect of preheating is not seen. At a high temperature exceeding 200 ° C., it is difficult to take out and insert the substrate.

【0022】以上の実施例にはSrSの例を上げたが、
本発明のEL素子に用いられる発光層としては、上記実
施例に限定されるものではない。例えば、発光層は、他
にCaS、BaS、MgSなどや、これらの混合膜、ま
たはこれらとZnSなどを積層した膜などをあげること
ができる。また、発光中心としての希土類金属は上記実
施例のCeに限定されるものではない。例えば、Eu、
Pr等の化合物やこれらの混合物などがあげられる。
In the above embodiment, an example of SrS has been given.
The light emitting layer used in the EL device of the present invention is not limited to the above embodiment. For example, the light-emitting layer can also be CaS, BaS, MgS, or the like, a mixed film thereof, or a film in which ZnS or the like is stacked therewith. Further, the rare earth metal as the luminescent center is not limited to Ce in the above embodiment. For example, Eu,
Examples include compounds such as Pr and mixtures thereof.

【0023】発光層の成膜方法としても、電子ビーム蒸
着法に限らず、スパッタ法や原子層エピタキシャル法
(ALE)等によっても成膜できる。更に、絶縁層は上
記実施例に限定されるものではない。例えば、Si
2 、SiON、Y2 3 、TiO2 、Al2 3 、H
fO2 、Ta2 5 、BaTa25 、SrTiO3
PbTiO3 、ZrO2 などやこれらの混合膜または積
層膜をあげることができる。
The method of forming the light emitting layer is not limited to the electron beam evaporation method, but may be a sputtering method or an atomic layer epitaxial method (ALE). Further, the insulating layer is not limited to the above embodiment. For example, Si
O 2 , SiON, Y 2 O 3 , TiO 2 , Al 2 O 3 , H
fO 2 , Ta 2 O 5 , BaTa 2 O 5 , SrTiO 3 ,
Examples include PbTiO 3 , ZrO 2 , and a mixed film or a laminated film thereof.

【0024】[0024]

【発明の効果】以上説明したように本発明の薄膜EL素
子の製造方法によれば、発光層を成膜した基板を、熱処
理装置内に挿入し、熱処理装置内を真空排気した後、硫
黄を含むガスでガス置換し、発光層の熱処理をおこなう
ことによって、吸着ガスを離脱させ、またEL素子への
酸素原子の取り込みを少なくして、しきい電圧や寿命等
の特性の向上し、しかも安定した薄膜EL素子を得るこ
とができる。
As described above, according to the method for manufacturing a thin-film EL device of the present invention, the substrate on which the light emitting layer is formed is inserted into the heat treatment apparatus, and the inside of the heat treatment apparatus is evacuated. By performing gas replacement with a gas containing and heat-treating the light-emitting layer, the adsorbed gas is desorbed, and the incorporation of oxygen atoms into the EL element is reduced, improving characteristics such as threshold voltage and lifetime, and stabilizing A thin-film EL element can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明実施例1、2、3の薄膜EL素子および
比較例の発光輝度特性図
FIG. 1 is a diagram showing light emission luminance characteristics of thin film EL devices of Examples 1, 2, and 3 of the present invention and a comparative example.

【図2】本発明実施例1、2の薄膜EL素子および比較
例の発光寿命特性図
FIG. 2 is a luminescence lifetime characteristic diagram of the thin film EL devices of Examples 1 and 2 of the present invention and a comparative example.

【図3】薄膜EL素子の断面図FIG. 3 is a sectional view of a thin film EL element.

【図4】本発明の製造方法を実施した熱処理装置の構成
FIG. 4 is a configuration diagram of a heat treatment apparatus that implements the manufacturing method of the present invention.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 第一電極 3 第一絶縁層 4 発光層 5 第二絶縁層 6 第二電極 7 駆動電源 8 薄膜EL素子 9 基板ホルダ 10 加熱炉 11a、b、c バルブ 12 真空ポンプ 13 置換用ガスまたは雰囲気用ガス 14 排気 DESCRIPTION OF SYMBOLS 1 Glass substrate 2 First electrode 3 First insulating layer 4 Light emitting layer 5 Second insulating layer 6 Second electrode 7 Drive power supply 8 Thin film EL element 9 Substrate holder 10 Heating furnace 11a, b, c Valve 12 Vacuum pump 13 Replacement gas Or atmosphere gas 14 Exhaust

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】絶縁基板上に少なくとも第一の電極、第一
の絶縁層、II族金属硫化物からなる発光層、第二の絶
縁層および第二の電極を積層した薄膜EL素子の製造方
法において、電子ビーム蒸着により発光層を成膜した基
板を、熱処理装置内に挿入し、熱処理装置内を真空排気
した後、硫黄を含むガスでガス置換し、発光層の熱処理
をおこなうことを特徴とする薄膜EL素子の製造方法。
1. A method of manufacturing a thin-film EL device in which at least a first electrode, a first insulating layer, a light emitting layer made of a Group II metal sulfide, a second insulating layer and a second electrode are laminated on an insulating substrate. In the method, the substrate on which the light-emitting layer is formed by electron beam evaporation is inserted into a heat treatment apparatus, the inside of the heat treatment apparatus is evacuated, and then the gas is replaced with a gas containing sulfur, and the heat treatment of the light-emitting layer is performed. Of manufacturing a thin-film EL element.
【請求項2】熱処理装置内の残留大気が1ppm以下に
なるように、真空排気時の熱処理装置内の到達真空度を
4Pa以下にすることを特徴とする請求項1記載の薄膜
EL素子の製造方法。
2. The method according to claim 1, wherein the ultimate degree of vacuum in the heat treatment apparatus during evacuation is set to 4 Pa or less so that the residual air in the heat treatment apparatus is 1 ppm or less. Method.
【請求項3】真空排気とガス置換とを2回以上繰り返し
ておこなうことを特徴とする請求項1または2に記載の
薄膜EL素子の製造方法。
3. The method according to claim 1, wherein the evacuation and the gas replacement are repeated at least twice.
【請求項4】真空排気前のガス置換を希ガスでおこなう
ことを特徴とする請求項3記載の薄膜EL素子の製造方
法。
4. The method according to claim 3, wherein gas replacement before evacuation is performed with a rare gas.
【請求項5】基板の挿入、取り出しをおこなう際に、熱
処理装置の中にある基板ホルダーなどの装置部品および
装置内壁を60〜200℃の温度範囲で予備加熱してお
くことを特徴とする薄膜EL素子の製造方法。
5. A thin film wherein a device part such as a substrate holder in a heat treatment device and an inner wall of the device are preheated in a temperature range of 60 to 200 ° C. when inserting and removing a substrate. Manufacturing method of EL element.
JP8206689A 1996-08-06 1996-08-06 Manufacture of thin-film el element Withdrawn JPH1050476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8206689A JPH1050476A (en) 1996-08-06 1996-08-06 Manufacture of thin-film el element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8206689A JPH1050476A (en) 1996-08-06 1996-08-06 Manufacture of thin-film el element

Publications (1)

Publication Number Publication Date
JPH1050476A true JPH1050476A (en) 1998-02-20

Family

ID=16527491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8206689A Withdrawn JPH1050476A (en) 1996-08-06 1996-08-06 Manufacture of thin-film el element

Country Status (1)

Country Link
JP (1) JPH1050476A (en)

Similar Documents

Publication Publication Date Title
JP2795194B2 (en) Electroluminescence device and method of manufacturing the same
US20060267484A1 (en) Oxygen substituted barium thioaluminate phosphor materials
JP2000104059A (en) Luminescent material, alternating current thin-film electroluminescent device, and thin electroluminescent emitter
US7622149B2 (en) Reactive metal sources and deposition method for thioaluminate phosphors
KR20050053653A (en) Silicon oxynitride passivated rare earth activated thioaluminate phosphors for electroluminescent displays
US7534504B2 (en) Fine-grained rare earth activated zinc sulfide phosphors for electroluminescent displays
EP0209668B1 (en) Thin film electroluminescence devices and process for producing the same
KR20040088035A (en) Sputter deposition process for electroluminescent phosphors
JPH1050476A (en) Manufacture of thin-film el element
US7556721B2 (en) Thiosilicate phosphor compositions and deposition methods using barium-silicon vacuum deposition sources for deposition of thiosilicate phosphor films
JPH0935869A (en) Manufacture of electroluminescence element
JP3750199B2 (en) Method for manufacturing thin-film electroluminescence device
JPH0439893A (en) Manufacturing selenium-including compound semiconductor thin film and electroluminescence element
JP3726134B2 (en) Electroluminescent light emitting layer thin film, inorganic thin film electroluminescent element, and method for producing light emitting layer thin film
JP2605570B2 (en) Inorganic thin film EL device
JP3769124B2 (en) Thin film EL device and method for manufacturing the same
JP2001297877A (en) Manufacturing method and apparatus of thin film electroluminescence element
JP2005076024A (en) Method for preparing thin film of rare earth element-doped gallium oxide-tin oxide multicomponent oxide fluorescent material for electroluminescent element
JPH10199676A (en) Manufacture and device of thin film electroluminescence element
JP3865122B2 (en) Sulfur oxide phosphor for electroluminescence device and electroluminescence device
JP3599356B2 (en) Electroluminescence element
JPH08203672A (en) Manufacture of thin film electroluminescent element, and manufacturing device thereof
JPH0883684A (en) Manufacture of electroluminescence thin film and manufacturing device therefor
JPH11126690A (en) Manufacture of thin film electroluminescent element
JPH08330069A (en) Manufacture of thin film electroluminescence element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20051017