JPH10503721A - Glulam structural members with synthetic fiber reinforcement - Google Patents

Glulam structural members with synthetic fiber reinforcement

Info

Publication number
JPH10503721A
JPH10503721A JP8505867A JP50586796A JPH10503721A JP H10503721 A JPH10503721 A JP H10503721A JP 8505867 A JP8505867 A JP 8505867A JP 50586796 A JP50586796 A JP 50586796A JP H10503721 A JPH10503721 A JP H10503721A
Authority
JP
Japan
Prior art keywords
structural member
wood
thin
timber
synthetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8505867A
Other languages
Japanese (ja)
Inventor
ダニエル エイ ティングレイ
Original Assignee
ダニエル エイ ティングレイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダニエル エイ ティングレイ filed Critical ダニエル エイ ティングレイ
Publication of JPH10503721A publication Critical patent/JPH10503721A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/08Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer the fibres or filaments of a layer being of different substances, e.g. conjugate fibres, mixture of different fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/06Making particle boards or fibreboards, with preformed covering layers, the particles or fibres being compressed with the layers to a board in one single pressing operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/0078Measures or configurations for obtaining anchoring effects in the contact areas between layers
    • B29C37/0082Mechanical anchoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/02Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising combinations of reinforcements, e.g. non-specified reinforcements, fibrous reinforcing inserts and fillers, e.g. particulate fillers, incorporated in matrix material, forming one or more layers and with or without non-reinforced or non-filled layers
    • B29C70/021Combinations of fibrous reinforcement and non-fibrous material
    • B29C70/025Combinations of fibrous reinforcement and non-fibrous material with particular filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/08Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/08Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
    • B29C70/083Combinations of continuous fibres or fibrous profiled structures oriented in one direction and reinforcements forming a two dimensional structure, e.g. mats
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/08Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
    • B29C70/086Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers and with one or more layers of pure plastics material, e.g. foam layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/08Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
    • B29C70/088Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers and with one or more layers of non-plastics material or non-specified material, e.g. supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die
    • B29C70/525Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/58Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising fillers only, e.g. particles, powder, beads, flakes, spheres
    • B29C70/64Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising fillers only, e.g. particles, powder, beads, flakes, spheres the filler influencing the surface characteristics of the material, e.g. by concentrating near the surface or by incorporating in the surface by force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B21/00Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board
    • B32B21/04Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board comprising wood as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B21/00Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board
    • B32B21/04Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board comprising wood as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B21/08Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board comprising wood as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B21/00Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board
    • B32B21/10Next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/12Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by the relative arrangement of fibres or filaments of different layers, e.g. the fibres or filaments being parallel or perpendicular to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H5/00Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length
    • D04H5/04Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length strengthened or consolidated by applying or incorporating chemical or thermo-activatable bonding agents in solid or liquid form
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H5/00Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length
    • D04H5/08Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of fibres or yarns
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/12Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of wood, e.g. with reinforcements, with tensioning members
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/12Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of wood, e.g. with reinforcements, with tensioning members
    • E04C3/17Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of wood, e.g. with reinforcements, with tensioning members with non-parallel upper and lower edges, e.g. roof trusses
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/12Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of wood, e.g. with reinforcements, with tensioning members
    • E04C3/18Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of wood, e.g. with reinforcements, with tensioning members with metal or other reinforcements or tensioning members
    • E04C3/185Synthetic reinforcements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/29Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/07Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/07Parts immersed or impregnated in a matrix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/08Reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2377/00Polyamides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/902High modulus filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S52/00Static structures, e.g. buildings
    • Y10S52/07Synthetic building materials, reinforcements and equivalents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/23Sheet including cover or casing
    • Y10T428/237Noninterengaged fibered material encased [e.g., mat, batt, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24132Structurally defined web or sheet [e.g., overall dimension, etc.] including grain, strips, or filamentary elements in different layers or components parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/249925Fiber-containing wood product [e.g., hardboard, lumber, or wood board, etc.]

Abstract

(57)【要約】 構造部材に対し横方向に作用する構造荷重(16)を支持する集成材構造部材(10)は、弾性係数に従って配置され、互いに接合された多数の薄板(12)を有する。代案の実施例では、この集成材構造部材はこの集成材構造部材の圧縮応力を受ける部分に位置する合成圧縮補強材(30)を有する。 (57) Abstract: A laminated timber structural member (10) supporting a structural load (16) acting laterally on the structural member has a number of thin plates (12) arranged according to a modulus of elasticity and joined together. . In an alternative embodiment, the laminated structural member has a composite compression stiffener (30) located at a portion of the laminated structural member that is subjected to compressive stress.

Description

【発明の詳細な説明】 合成繊維補強材を有する集成材構造部材 技術分野 本発明は木材構造部材、また特に改良された集成材構造部材に関するものであ る。 発明の背景 梁、トラス、ジョイスト、及び柱は建物、橋梁を含む建造物の重量、又は荷重 を支持する代表的な構造部材である。構造部材は構造設計、環境、及びコストに よって、鋼、コンクリート、木材を含む種々の材料から製作される。 今日、木材構造部材は通常、集成材、単板積層材、平行ストランドランバー、 及びI型梁におけるように互いに接合された多数の木材セグメントから製作され る。製作されたこれ等の木材構造部材は鋸引きされた製材、又は木材に代わり使 用されてきたが、これはこれ等の木材構造部材は検査や製作管理が一層良好なた め、設計限界値が一層高いからである。木材は多くの構造部材に使用するための 望ましい材料である。これは所定の重量当たりの強度、外観、周期的な負荷に対 する応答性、及び耐火性を含む種々の特性のためである。 いかなる用途においても、荷重はこの荷重によって構造部材の両側に誘起され るそれぞれの圧縮作用力と引張り作用力とに対応する圧縮応力と引張り応力とを 構造部材に加える。通常、圧縮力を受ける部分と引張り力を受ける部分との間に 中立平面、又は中立軸が延在する。構造部材は過大な歪を発生することなく、特 に最終的な破損を生ずることなく、圧縮応力と引張り応力とに耐えなければなら ない。 引張り応力を受ける帯域内の木材構造部材の補強材は既知である。例えばO′B rienの米国特許第5026593号は積層梁を補強するため薄い平坦なアルミニウムス トリップを使用することを記載している。樹脂マトリックス内に保持され、構造 部材の引張り部の木材セグメントの少なくとも1個に接着された多数のアラミド 繊維ストランドを有する合成引張り補強材を使用することにつき、1988年 のInternational Conference on Timber Englneeringに提供された「Reinforced Glued-Laminated Wood Beams(集成材梁)」に本願の発明者によって記載されて いる。しかし、木材構造部材も圧縮応力を受ける帯域を有しているから、引張り 補強材に適する補強材は通常、圧縮補強材に適さない。 アメリカ合衆国、コロラド州、EnglewoodのAmerican Institute of Timber Co nstruction(AITC)の製作基準117-93に従って多くの集成材が製作されている。 例えば、最大引張り力を受ける梁の高さの10%として引張り帯域を定義し、こ の引張り帯域内の木材薄板内の節が木材薄板の幅の25%を越えない直径を有す る視覚木材節等級をこれ等の製作基準が指定している。しかし、このような視覚 等級仕様は別として、集成材構造部材の通常の製作においては、種々の剛性、及 び強度の木材薄板を配置する位置には何の考慮も払われておらず、無作為である 。 AITCの製作基準、及び通常の製作技術は一般に高い設計限界値を有する一般に 高い品質の集成材部材を提供している。しかし、供給できる一層高い品質の木材 の入手は制約を受けているため、コストを増大し、又は集成材部材の品質を低下 させている。更に、鋼やコンクリートのような比較的安価な代わりの構造材料は 集成材部材にとって代わることはできず、集成材部材の品質と設計可能性とが向 上し、集成材が競争力を維持し、又は向上することを願っている状態である。 発明の要約 従って、本発明の目的は合成繊維補強材を有する集成材構造部材を得るにある 。 本発明の他の目的は圧縮応力を受ける帯域の補強材を有する集成材構造部材を 得るにある。 本発明の更に他の目的は品質に従って積層木材を特別に配置した集成材構造部 材を得るにある。 本発明のなお他の目的は一定の木材節寸法等級の木材構造部材を得るにある。 本発明集成材構造部材は多数の細長い木材セグメントを構造部材の長さ方向に ほぼ一線に長さに沿って合体接合する。好適な第1実施例では、圧縮応力を受け る木材構造部材の帯域内の木材セグメントの少なくとも1個に合成圧縮補強材を 接着する。この合成圧縮補強材は樹脂マトリックス内に保持され、圧縮力に対し て高い弾性係数を有する多数の合成繊維ストランド(例えば炭素繊維)を含む。 この合成圧縮補強材は木材部材の引張り応力を受ける部分の合成引張り補強材と 組み合わせて使用するのが好適である。 他の好適な実施例では、集成材構造部材の木材セグメント、又は薄板を薄板の 弾性係数に特に従って配置する。比較的高い弾性係数(例えばダグラス樅の場合 、1.27×105kg/cm2(1.8×106psi)より高い弾性係数を有する木材薄板を高い引張 り応力、又は高い圧縮応力、又はその両方の帯域に設置する。比較的低い弾性係 数(例えばダグラス樅の場合、1.05×105kg/cm2(1.5×106psi)より低い弾性係数 )を有する比較的安価で低い等級の木材薄板を低引張り力、又は低圧縮力の帯域 に設置する。木材薄板をこのように配置することによって、集成材構造部材の強 度と剛性とを別個に制御し、集成材構造部材を比較的低コストで製作することが できる。 更に他の好適な実施例においては、集成材構造部材の高い引張り応力の帯域内 の木材セグメント、又は薄板を強化された木材節等級に従って選択する。構造部 材の所定部の木材セグメント、又は薄板が絶対的な節寸法基準に適合する木材節 等級を使用することによって、種々の等級の木材について、このようにして得ら れる木材セグメントの評価を使用してその強度を改善することにより、このよう な集成材構造部材の競争力を向上させることができる。 本発明の付加的目的及び利点は添付図面を参照する好適な実施例の詳細な説明 によって明らかになるであろう。 図面の簡単な説明 図1は本発明合成繊維補強材を有する例示の集成材構造部材の正面図である。 図2は図1の集成材構造部材に使用する例示の木材薄板の一部の端部斜視図で ある。 図3A、及び図3Bは木材薄板をその弾性係数に従って配置した代案の集成材 構造部材の正面図である。 図4A、及び図4Bはそれぞれ補強材内の繊維の配列と方向とを示すため、一 部を切除した合成引張補強材と合成圧縮補強材との一部の斜視図である。 好適な実施例の詳細な説明 図1は多数の木材薄板12を有する集成材構造部材10を示す。これ等薄板は 互いに接合されており、細長い板であるのが好適である。この形態においては、 この集成材構造部材10はアメリカ合衆国、コロラド州、EnglewoodのAmerican Institute of Timber Construction(AITC)の製作基準117-93による集成材として の形態を有する。 集成材部材10の代表的な用途は梁として延在する場合と、そうでない開いた 区域に沿って負荷を支えることである。このような用途の単純化された代表的な 例として、集成材部材10の両端が1対のブロック14によって支持されていて 、このブロック間の中間に集中荷重16を支持している状態を示す。しかし、本 発明集成材部材10は他の状態(例えば片持梁)で分布されている負荷を支持す ることもでき、又はトラス、ジョイスト、又は柱として使用することもできる。 図1に示す状態において、最下位の薄板20はほぼ純粋の引張り応力を受け、 最上位の薄板22はほぼ純粋の圧縮応力を受ける。集成材部材10の引張り負荷 支持容量を増大するため、最下位の薄板20と次の隣接する薄板26との間に、 又は代案として最下位の薄板20の外面28のみに、少なくとも一層の合成引張 り補強材24を接着する。集成材部材10の圧縮負荷支持容量を増大するため、 最上位の薄板22と次の隣接する薄板32との間に、又は代案として最上位の薄 板22の外面34のみに、少なくとも一層の合成圧縮補強材30を接着する。合 成補強材24、30については以下に詳細に説明する。 図1の集成材構造部材10は簡単化して例示した多数の木材薄板12を有し、 例示の位置に補強材24、30を示す。本発明集成材部材は広範囲の数の木材薄 板12を有し、このような集成材部材内の補強材24、30の位置を広範囲に変 化させることができる。 合成引張補強部材24、及び合成圧縮補強部材30は負荷16の付近に中心を 占め、負荷16に応じて集成材構造部材10の全長の約2/5から3/5に沿っ て延在するのが好適である。このような部分的な長さの補強材24、30はコス トを減少させて、しかも全長にわたる補強材の強度と剛性との増大にほぼ匹敵す る効果を達成できる。薄板20、26間の剛性引張り補強材24の両端に1対の 木材スペーサ35を位置させて、薄板20、26間を均一に分離させる。同様に 、薄板22、32間の合成圧縮補強材30の両端に1対の木材スペーサ35を位 置させて、薄板22、32間を均一に分離させる。 木材スペーサ35は無垢材から成るのがよく、その厚さは合成補強材24、3 0の厚さより厚いのが好適である。木材スペーサ35は合成補強材24、30よ り一層圧縮性であり、木材スペーサ35を一層厚くすればその圧縮性と実質的に 相殺する。その結果、合成補強材24、30の隣接層と木材スペーサ35との厚 さの均一性が集成材部材10内に接合後、一層向上する。ダグラス樅の木材スペ ーサ35の場合には例えば合成補強材24、30の厚さより2〜4%厚い厚さに するのが好適である。他の品種の木材スペーサ35の場合にはその種々の圧縮性 に応じて種々の厚さにすることができる。 無垢の木材の木材スペーサ35は合板スペーサよりも優れている。これは合板 スペーサはローリング剪断力に対し非常に弱く、集成材部材10内に早く破損を 生ずるためである。合板スペーサの順次の層内の木材粒子の方向が相互に横切っ ているため、合板から成る木材スペーサ内にローリング剪断力が発生する。従っ て、或る合板スペーサの粒子は横方向にあって剪断応力を支持することができな い。 部分的な長さの補強材24、30の重要な点は負荷16が補強材の両端に比較 的高い応力を発生させることである。木材薄板12は一層小さな細長い木材セグ メント(図示せず)から製作されることが多く、これ等セグメントの両端を嵌着 し互いに接合する。通常、木材セグメントの両端をフィンガージョイントとして 嵌着する。このようなフィンガージョイントの接合は通常、比較的強力であるが 、大部分の木材薄板12はこのようなジョイントの付近では木材繊維が比較的不 連続になるため比較的最も弱い。 本発明によれば、薄板12のいずれのジョイントも補強材24、30の端部か ら少なくとも所定の最小距離にあるよう、木材薄板20、26、22、32のよ うに補強材24、30に密接する薄板12を位置させる。その結果、部分的な長 さの補強材24、30の両端の周りに局部的に位置する応力は隣接する薄板12 の比較的弱いジョイントには作用しない。部分的な長さの補強材24、30の両 端と、隣接する薄板12のジョイントとの間の好ましい最小距離は30.5cm、及び 61cm(12インチ、及び24インチ)の間にある。 合成引張り補強材24の直ぐ下に位置する木材薄板20(緩衝層と呼ばれるこ とがある)のジョイントは木材薄板12における通常のジョイントに比較し、十 分な接合が欠けるように接合されるのが好適である。木材薄板20は合成引張り 補強材24によって加わる歪を受けて破損し、クラックを生ずることがある。こ のようなことは集成材構造部材10の全体としての強度に殆ど影響はないが、こ のようなクラックはこの構造部材を見る人にとって、外観上不快であり、好まし くないものである。 好適な実施例においては、この分野で知られているように、最善のものよりも 接着剤適用のタイミングが狭い「乾燥接着法」により、薄板20のジョイントを 接合することができる。このようにして接合したジョイントは通常の方法で接合 されたジョイントの強度の25%しかないことが起こり得る。接合が一層弱いと 破損は薄板20の他の位置でなく、薄板20のジョイント(フィンガージョイン ト)に発生する。これにより破損を急激でなく一層平滑に発生させ、これにより 目立つ、外観の劣化を減少させることができる。 集成材構造部材10は、この分野で一般に知られている「ジュービナイルウッ ド(juvenile wood)」から形成された木材薄板20、26、22、32のように 、補強材24、30に密接する木材薄板12を含まないのが好適である。ジュー ビナイルウッドは成熟した木材に比較し、破壊モジュラスが50%と低いため、 補強材24、30に密接する木材薄板12に使用するのは望ましくない。補強材 24、30に密接する木材薄板12として使用されたジュービナイルウッドは、 補強材24、30に隣接して比較的応力が高いこと、及びこのような木材薄板1 2の破壊モジュラスが低いことに起因し、構造部材10内の破損の開始点となる 。このような局部的な破損は木材部材の最終的な破損となる。 例えばダグラス樅についてジュービナイルウッドとは成長の最初の15〜20 年間に形成されたものと一般に考えられている。しかし、この分野で知られてい るように、木材の種々の種類はジュービナイルウッドの特性である種々の樹齢を 有する。 図2を参照して、木材の髄、即ち中心年輪付近に形成されたジュービナイルウ ッドを区別する新規な方法を説明する。ジュービナイルウッドは木材薄板12の 主要面に対し30度のような所定の角度より大きい角度θを形成している年輪3 7として特徴づけられる。ジュービナイルウッドを識別するこの簡単な方法は高 強度を有する集成材構造部材10の製作を簡単化している。 合成圧縮補強材30は集成材構造部材10の圧縮応力支持容量を増大する。木 材薄板12の一部の代わりとしての合成圧縮補強材30は集成材構造部材10の コストと強度とを最適にするように材料の有効な選択を可能にする。以前は、構 造木材部材は引張り応力帯域で破損する傾向があるため、引張り応力補強材のみ が使用された。 図3A、及び図3Bは代案としての集成材構造部材10a、10bを示し、木 材薄板12a、12bをその弾性係数に従って配置している。このように木材薄 板12と共に合成補強材24a、24b、場合により合成補強材30を配置する ことによって集成材部材10の剛性のような強度、及びその他の特性を別個に制 御することができる。合成補強材24a、24b、及び場合により合成補強材3 0により、集成材構成部材10a、10bの実際上の全ての範囲において、一層 等級の低い、低コストの木材を使用することを可能とし、これにより一層材料の コストを低減することができる。 合成引張り補強材24a、24bは引張り強度を強化した集成材構成部材10 a、10bを提供する。同様に、任意の合成圧縮補強材30(図3A、及び図3 Bに図示せず)は圧縮強度を強化した集成材構成部材10a、10bを提供する 。比較的弾性係数が大きい(例えばダグラス樅の場合、1.27×105kg/cm2(1.8×1 06psi)より大きい)木材薄板12a、12bは比較的剛強であり、集成材構成部 材10a、10bの剛性を別個に強化するのに使用してもよい。 合成引張り補強材24a、24b、及び任意の合成圧縮補強材30(図示せず )によって得られる集成材構造部材10a、10bの強度の増加により、比較的 弾性係数が大きい木材薄板12a、12bをして集成材構成部材10a、10b の剛性を増大せしめる。この場合、補強材を有しない通常の集成材構造部材で通 常、必要になるように、木材薄板12a、12bも通常の強度に対する視覚木材 等級の要件を満たすことは必要がない。即ち、強度を増加しても低等級の、即ち 中間、又は低い弾性係数(例えばダグラス樅の場合に、1.05×105kg/cm2(1.5×1 06psi)と1.27×105kg/cm2(1.8×106psi)との間、又は1.05×105kg/cm2(1.5×106 psi)以下)を有する木材薄板12a、12bを使用することができ、このような 材料は通常比較的安価であり、比較的応力が小さい部分に使用されるものであり 、このため強度に悪影響を与えず集成材構造部材10のコストを減少させること ができる。更に、弾性係数が小さい或る種の木材薄板12bでも、破損前は大き な歪に耐えることができ、集成材構造部材10bの負荷支持容量を増大させるこ とができる。 図3Aは或る構造用途で必要になるような高い剛性を有する形態の集成材構造 部材を示す。合成繊維補強材を有する木材構造部材の製作方法の発明の名称で本 願の発明者により1994年6月30日に出願された米国特許出願第08/269004 号に記載されている木材構造部材の相対強度、及び剛性を選択し、変化させるこ とができる。 図3Aにおいて、集成材構造部材10aの少なくとも最下位薄板20a、20 b、及び最上位薄板22a、32aは比較的大きい弾性係数(例えばダグラス樅 の場合、1.27×105kg/cm2(1.8×106psi)より大きい弾性係数)を有する。中心区 域36aの木材薄板12aは低位の、未確定の弾性係数(例えばダグラス樅の場 合、1.05×105kg/cm2(1.5×106psi)と1.27×105kg/cm2(1.8×106psi)との間の弾 性係数)を有する。最下位の薄板20aと次の隣接する薄板26aとの間に合成 引張り補強材24aを接着する。代案の実施例として、最上位の薄板22aと次 の隣接する薄板32aとの間に接着された合成圧縮補強材30aを集成材構造部 材10aが有する。(図3Aは集成構造部材10aを簡単化した表示であり、通 常、中心区域36aは図示の2個の木材薄板12aより一層多い薄板を有する。 ) 図3Bは或る用途で受け入れられるように負荷を受けて集成材構造部材10b が変形できる弛緩剛強特性を有する形態に集成材構造部材10bを示す。集成材 構造部材10bの少なくとも最上位の薄板22b、32bは比較的大きな弾性係 数(例えばダグラス樅の場合、1.27×105kg/cm2(1.8×106psi)の弾性係数)を有 し、少なくとも必要最低剛性を有する集成材構造部材10bを得る。中心区域 36bの木材薄板12bは低位の、未確定の弾性係数(例えばダグラス樅の場合 、1.05×105kg/cm2(1.5×106psi)と1.27×105kg/cm2(1.8×106psi)との間の弾性 係数)を有する。最下位の薄板20b、26bは比較的小さい弾性係数(例えば ダグラス樅の場合、1.05×105kg/cm2(1.5×106psi)の弾性係数)を有し、破損前 に薄板20b、26bが相当に大きな歪を受けることができる付加的特性を有す る。 この実施例では、集成材構造部材10bは必然的に合成引張補強材24bを有 し、この補強材を最下位の薄板20bと次の隣接する薄板20bとの間に接着さ れた状態に示す。代案として、最下位の薄板20bの外面28bに合成引張り補 強材24bを接着させて十分な引張り強度を有する集成材構造部材を得てもよい 。最下位薄板20b、26bの弾性係数が比較的小さいことと、破損の開始を防 止する或る特性とが相俟って、破損前には比較的大きな歪に耐えることができ、 これによりこの集成材構造部材が対応する大きな負荷に耐えられるようにしても よい。「スーパーストレーン」を受けることができる最下位の薄板20b、26 bの好適な特性は、2.22cm(0.875インチ)より直径が大きい節が無いこと、傾斜 (即ち木の縦軸線からの方向の変化が1:16以上)が無い真っ直ぐな粒子であ ること、及び低密度である。 例えば、合成引張り補強材24aに隣接して位置し弾性係数が大きい木材薄板 12aは破損する前に約1%の歪に耐えることができる。弾性係数が小さく、十 分なスーパーストレーン特性を有し、合成引張り補強材24bに隣接して位置す る木材薄板12bは破損前に約1.5%の歪に耐えることができ、これにより集成 材構造部材10aよりも集成材構造部材10bの負荷支持容量を50%増大する ことができる。合成引張り補強材24bが集成材構造部材10b内の引張り応力 を実質的に支持することができるから、このような増大した負荷支持容量が可能 である。少なくとも最上位の薄板22b、32bの比較的大きな弾性係数によっ て、破損を防止するのに必要な少なくとも最低の剛性を有する集成材構造部材1 0bが得られる。 ここに比較的大きい、比較的小さい、及び中間のように表現された弾性係数の 値はダグラス樅の弾性係数に対する比較値である。他の種類の木材は弾性係数の 異なる値を有することは明らかである。各種の木材は特有な範囲の弾性係数を有 し、本発明を適用することができ、そのような範囲は当業者には明らかである。 弾性係数は、例えば試料を撓ませて、既知の撓み抵抗と比較する例えば機械式応 力測定機によって一般に測定することができる。 各木の種類に対する標準視覚等級も代表的に相違している。例えばダグラス樅 についてAITCによって公布された標準視覚等級はL−1、L−2、及びL−3と 表現されており、順次低等級の木を現している。ダグラス樅を参照する本発明の 上述の説明は視覚等級がその表現や基準において相違していても他の種類の木に も同様に適用することができる。 集成材構造部材10の木材薄板12の上述のような特殊な構成と相違し、通常 の集成材構造部材の木材薄板は単に平均的な弾性係数を有し、その弾性係数に関 し木材薄板を無作為に配置しているに過ぎない。従来の大部分の集成材構造部材 の木材薄板は、視覚等級に従って配置されており、単に欠陥のみに眼を向け、弾 性係数に偶然関わっているに過ぎない。若干の従来の集成材構造部材は視覚等級 の木材薄板を使用しているが、高応力帯域にも弾性係数が大きい木材薄板を使用 している。 しかし、このような従来の集成材構造部材は合成補強材を含んでおらず、本発 明の結合要旨によって得られる強度と剛性との間の選択バランスを達成すること ができない。強度と大きい弾性係数とを得るため個々の木材薄板に依存すること は非常に高価であり、高強度と低欠陥木材とを両立させることは互いに不可能な ため、この依存は正に不可能である。 図1において、所定の引張り帯域内の集成材構成部材10の木材薄板12はこ の構成部材10の寸法に関せず、定まった節等級基準を満足させるのが好適であ る。合成引張り補強材24と共にこのような強調された節等級基準であれば通常 の節等級基準の場合の補強された集成材構造部材よりも20%まで構成部材10 の強度を増大することができる。 集成材構造部材用の通常のAITC117-93の視覚節等級基準は、最大引張り力を受 ける梁の10%高さとして定義される引張り帯域にある木材薄板の節は薄板の幅 の25%を越えない直径を有することである。本発明によれば、定まった強調さ れた節等級基準を合成引張り補強材24の付近の引張り帯域40内の木材薄板1 2に適用する。引張り帯域40内の各木材薄板12には薄板12の長さの2/3 にわたり、2.25cm(7/8インチ)より直径が大きい節が無いことをこの強調された 節等級基準は述べている。引張り帯域40にはこの構造部材10の高さの12% 、又は15%に4個以上の木材薄板を含む。 この節等級基準は8cm(3-1/8 インチ)の幅の集成材構造部材にのみ適用が可能 であるとAITCによって指定されている。一層広い幅(例えば少なくとも32.4cm(1 2.75インチ)まで)の集成材構造部材にこの基準を適用することはこの節等級基 準を強調するように機能し、構成部材10内の節から始まる破損の傾向を減少さ せる。節のある木材はそれに匹敵する節の無い木材が破損する歪の10分の1と いう低い歪を受けて破損することも起こり得る。その結果、合成引張り補強材2 4の付近の木材薄板12の節は、補強材24に隣接する比較的高い歪に起因し、 構造部材10内に破損を開始することもあり得る。このような局部的な破損は木 材部材の根本的な破損になり得る。 図4A、及び図4Bは、合成引張り補強材24と、合成圧縮補強材30とのそ れぞれ一層の拡大斜視図である。引張り補強材24、及び圧縮補強材44は非常 に多くの合成繊維42、44を有する。これ等の合成繊維42、44は互いに平 行に補強材24、30の長さ方向に一線に配置されており、それぞれ引張り力と 圧縮力とに対して比較的大きな弾性係数を有する。 樹脂材料46によって合成繊維42、44を包囲すると共に、この樹脂材料を 合成繊維の間の間隙内に貫入させ、これ等合成繊維をその配置、配列内に保持す る。合成繊維42、44の木材薄板12への接着を容易にするため、米国特許第 5362545号に記載されているように補強材24、30を製作し、処理するのが好 適である。 従って、圧縮補強材30はこの圧縮補強材の接着を強化する合成繊維層48を 有する。また、補強材24、30の主要面を擦り減らし、又は「毛羽立たせ」、 隣接する繊維42、48を破り、その端部50、52をそれぞれ樹脂材料46か ら突出させる。 繊維42、44を平行に配置し縦方向に配列することによって合成引張り補強 材24と、合成圧縮補強材30とに最高強度を与える。合成引張り繊維42、及 び合成繊維層48として使用して適する繊維は、「KEVLAR」の商標名でデラウェ ヤー州のE.I.DuPont de Nemours & Co.から市販されているアラミド繊維、及 び「SPECTRA」の商標名でバージニヤ州、ピータースバーグ、アライドシグナル のAllied Fibersから市販されている高弾性ポリエチレンがある。好適な等級の 合成繊維42、及び繊維層48は「KEVLAR 49」として入手できるアラミド繊維 である。 合成繊維42は引張り力に対して比較的大きい弾性係数を有するのが好適であ る。例えば、商標名「KEVLAR」の合成繊維42は引張り力に対して約124000メガ パスカル(18×106psi)の弾性係数を有する。(容積で)約60%の合成繊維42 と、40%の樹脂材料46とを有する合成引張り補強材24は引張り力に対して 約75900 メガパスカル(11×106psi)の弾性係数を有する。 合成圧縮繊維44として使用して適するのは圧縮力に対して約206900メガパス カル(30×106psi)の弾性係数を有する市販の炭素繊維である。(容積で)約60 %の合成繊維44と40%の樹脂材料46とを有する合成圧縮補強材30は圧縮 力に対し約124000メガパスカル(18×106psi)の弾性係数を有する。補強材24、 30の両方を製造するのに使用する樹脂材料46はエポキシ樹脂が好適であるが 、ポリエステル、ビニルエステル、フェノール樹脂、ポリイミド、又はポリスチ リルピリジン(PSP)、又はポリエチレンテレフタレート(PET)のような熱可塑性樹 脂、及びナイロン66のような他の樹脂であってもよい。 或る構造上の用途では、集成材構造部材10に加わる負荷は方向が反転し得る から、或る瞬間に薄板20、22はそれぞれ引張り応力と圧縮応力とを受け、他 の瞬間に応力が逆になる。このような条件下では、通常、集成材部材10は引張 負荷と圧縮負荷とを支持する能力に関しバランスをとることが必要である。アラ ミドの合成繊維42を有する合成引張り補強材24は通常、この要件を満たすこ とはできず、合成補強材30を設けざるを得なくなる。 アラミドの合成繊維42を有する合成補強材24は実質的に強度が低く、引張 り力に対するより圧縮力に対してはるかに低い弾性係数を有する。アラミドの圧 縮特性と引張り特性とにおけるこの広範囲の不均衡は、バランスされた負荷状態 での使用について構成部材を不適当にしてしまう。これに反し、炭素繊維を主に 有する合成補強材30は圧縮力と引張り力とにおいてほぼ類似の強度と弾性係数 とを有する。その結果、炭素繊維44を主に有する合成補強材30は図1に示す ように位置させることができ、バランスされた負荷の用途では合成補強材24の 代わりに使用することができる。ガラス繊維を主に有する合成補強材も圧縮力と 引張り力とでほぼ類似する強度と弾性係数とを有し、バランスされた負荷状態で は合成補強材24、30の代わりに使用することができる。集成材構造部材10 のバランスされた負荷状態のためのこれ等の補強材の構成は、合成特性を強化し た構成、又は強化していない構成を含む木材薄板12の任意の矛盾しない構成と 共に使用してもよい。 本発明の上述の詳細な実施例は本発明の範囲を逸脱することなく多くの変更を 加えることができる。従って、本発明の範囲は次の請求の範囲によってのみ決定 される。DETAILED DESCRIPTION OF THE INVENTION                   Glulam structural members with synthetic fiber reinforcement   Technical field   The present invention relates to wood structural members, and in particular to improved glulam structural members. You.   Background of the Invention   Beams, trusses, joists, and columns are the weight or load of buildings and structures, including bridges It is a typical structural member that supports. Structural components contribute to structural design, environment and cost Therefore, it is manufactured from various materials including steel, concrete, and wood.   Today, timber structural members are usually glued, laminated veneer, parallel strand lumber, And made from multiple wood segments joined together as in an I-beam You. These manufactured timber structural members may be used in place of sawn sawn timber or wood. Have been used, but these timber structural members have been better inspected and controlled for production. This is because the design limit value is higher. Wood is used for many structural components It is a desirable material. This is for a given strength, appearance, and periodic load. Responsiveness and various properties including fire resistance.   In any application, the load is induced on both sides of the structural member by this load. Compressive and tensile stresses corresponding to the respective compressive and tensile forces Add to structural members. Usually between the part receiving the compressive force and the part receiving the tensile force A neutral plane or axis extends. Structural members are not subject to excessive strain Must withstand compressive and tensile stresses without ultimate failure Absent.   Reinforcements for wood structural members in zones subjected to tensile stress are known. For example, O'B Rien, U.S. Pat.No. 5,026,593, teaches thin flat aluminum strips to reinforce laminated beams. It states that a trip is used. Retained within the resin matrix, the structure Multiple aramids glued to at least one of the wood segments at the tension of the member 1988, Using synthetic tensile reinforcement with fiber strands. Reinforced provided to the International Conference on Timber Englneering  Glued-Laminated Wood Beams '' I have. However, since the timber structural member also has a zone that receives compressive stress, Reinforcements suitable for reinforcement are generally not suitable for compression reinforcement.   American Institute of Timber Co in Englewood, Colorado, United States Many glulams are manufactured according to the nstruction (AITC) manufacturing standard 117-93. For example, define the tension zone as 10% of the height of the beam subject to the maximum tension, Knots in the wood veneer in the tension zone have a diameter not exceeding 25% of the width of the wood veneer These production standards specify a visual wood knot grade. But such a visual Apart from grade specifications, in the normal production of glulam structural members, various rigidities and No consideration is given to the location of the high-strength timber sheets and they are random .   AITC's manufacturing standards and normal manufacturing techniques generally have high design limits. We provide high quality glulam members. However, we can supply higher quality wood Availability is limited, increasing costs or reducing the quality of glulam components Let me. In addition, relatively inexpensive alternative structural materials, such as steel and concrete, Glued lumber components cannot be replaced, and the quality and designability of And hopes that the glued lumber will maintain or improve its competitiveness.   Summary of the Invention   Accordingly, it is an object of the present invention to obtain a glulam structural member having a synthetic fiber reinforcement. .   Another object of the present invention is to provide a glulam structural member having a stiffener in a zone subjected to compressive stress. To get.   Yet another object of the present invention is a laminated timber structure in which laminated wood is specially arranged according to quality. To get the material.   Yet another object of the present invention is to obtain a wood structural member of a certain wood knot size grade.   The laminated timber structural member of the present invention allows for multiple elongated wood segments to extend in the longitudinal direction of the structural member. Combine and join along the length almost linearly. In a first preferred embodiment, the At least one of the timber segments in the zone of the timber structural member to be Glue. This composite compression stiffener is held in a resin matrix, A large number of synthetic fiber strands (e.g., carbon fibers) having a high modulus of elasticity. This composite compressive reinforcement is used as a composite tensile reinforcement for the part of a wooden member that receives tensile stress. It is preferable to use them in combination.   In another preferred embodiment, the wood segments, or lamina, of the glulam structural member are laminated. It is arranged according to the elastic modulus. Relatively high elastic modulus (eg Douglas fir , 1.27 × 10Fivekg / cmTwo(1.8 × 106psi) higher tensile strength of wood sheets with higher elastic modulus Or high compressive stress, or both. Relatively low elasticity Number (for example, 1.05 × 10Fivekg / cmTwo(1.5 × 106(psi) lower elastic modulus ) Having a relatively low cost, low grade wood sheet with low tensile or low compressive force Installed in By arranging the timber sheets in this way, the strength of the glulam structural members By controlling the degree and rigidity separately, it is possible to manufacture glulam structural members at relatively low cost. it can.   In yet another preferred embodiment, the glulam structural member has a high tensile stress band. Wood segments or sheets are selected according to reinforced wood knot grade. Structure A wood segment where the lumber of a given part of the timber, or a thin plate, meets absolute knot size standards By using grades, it is possible to obtain in this way for different grades of wood. By improving the strength of the wood segment using its assessment, It is possible to improve the competitiveness of a simple laminated timber structural member.   Additional objects and advantages of the invention will be set forth in the detailed description of the preferred embodiments with reference to the accompanying drawings. Will become apparent by:   BRIEF DESCRIPTION OF THE FIGURES   FIG. 1 is a front view of an exemplary glulam structural member having a synthetic fiber reinforcement of the present invention.   FIG. 2 is an end perspective view of a portion of an exemplary wood veneer used in the glulam structural member of FIG. is there.   FIGS. 3A and 3B show alternative glulams in which thin wood sheets are arranged according to their elastic modulus. It is a front view of a structural member.   FIGS. 4A and 4B show the arrangement and direction of the fibers in the reinforcing material, respectively. It is a partial perspective view of the synthetic | combination tension reinforcement and the synthetic | compression compression reinforcement which cut off the part.   Detailed Description of the Preferred Embodiment   FIG. 1 shows a glulam structural member 10 having a number of timber sheets 12. These thin plates are Suitably, they are joined together and are elongated plates. In this form, The glulam structural member 10 is manufactured by American of Englewood, Colorado, United States. As laminated wood according to the Institute of Timber Construction (AITC) production standard 117-93 It has the form of   Typical uses for the glulam member 10 are when extending as a beam and when not open. Is to support the load along the area. A simplified representative of such applications By way of example, both ends of the glulam member 10 are supported by a pair of blocks 14. And a state in which the concentrated load 16 is supported in the middle between the blocks. But the book Inventive glulam member 10 supports loads distributed in other states (eg, cantilevered). Or can be used as a truss, a joist, or a pillar.   In the state shown in FIG. 1, the lowest sheet 20 is subjected to almost pure tensile stress, The uppermost sheet 22 experiences substantially pure compressive stress. Tensile load of glulam member 10 In order to increase the supporting capacity, between the lowest sheet 20 and the next adjacent sheet 26, Or, alternatively, only at least one layer of synthetic tension is applied to the outer surface 28 of the lowest sheet 20 only. The reinforcing material 24 is bonded. In order to increase the compressive load carrying capacity of the glulam member 10, Between the top sheet 22 and the next adjacent sheet 32, or alternatively, the top sheet At least one layer of the composite compression stiffener 30 is adhered only to the outer surface 34 of the plate 22. Combination The reinforcing members 24 and 30 will be described in detail below.   The laminated timber structural member 10 of FIG. The stiffeners 24, 30 are shown in the illustrated positions. The laminated wood members of the present invention can be used in a wide range of wood Plate 12 and the position of the reinforcements 24, 30 in such a glued laminated member can be varied over a wide range. Can be changed.   The composite tension reinforcing member 24 and the composite compression reinforcing member 30 are centered near the load 16. Occupies approximately 2/5 to 3/5 of the total length of the glulam structural member 10 depending on the load 16 Preferably, it extends. Such partial length reinforcements 24, 30 are cost effective. Reduces the weight of the material and is almost comparable to the increase in strength and rigidity of the reinforcement over its entire length Effect can be achieved. A pair of rigid tensile reinforcement members 24 between the thin plates 20, 26 The wood spacers 35 are positioned to evenly separate the thin plates 20 and 26. Likewise , A pair of wood spacers 35 are placed at both ends of the composite compression reinforcing member 30 between the thin plates 22 and 32. To uniformly separate the thin plates 22 and 32 from each other.   The wood spacer 35 is preferably made of solid wood, and its thickness is Preferably, the thickness is greater than zero. The wood spacer 35 is a synthetic reinforcement 24, 30 It is more compressible, and the thicker the wood spacer 35, the more its compressibility cancel. As a result, the thickness between the adjacent layers of the synthetic reinforcements 24 and 30 and the wood spacer 35 The uniformity of the roughness is further improved after joining in the laminated wood member 10. Douglas fir wood spec In the case of the laser 35, for example, the thickness is 2 to 4% thicker than the thickness of the synthetic reinforcing members 24 and 30. It is preferred to do so. In the case of other types of wood spacer 35, its various compressibility Various thicknesses can be obtained depending on the conditions.   Solid wood wood spacers 35 are superior to plywood spacers. This is plywood The spacers are very weak to rolling shear forces and can break quickly in the glulam member 10. Because it will happen. The direction of wood particles in successive layers of plywood spacers cross each other Therefore, a rolling shear force is generated in the wood spacer made of plywood. Follow Therefore, some plywood spacer particles are laterally incapable of supporting shear stress. No.   The important point of the partial length reinforcements 24, 30 is that the load 16 is compared to both ends of the reinforcements Is to generate high stress. Timber sheet 12 is a smaller and thinner wood segment (Not shown), these segments are fitted at both ends And joined together. Usually, both ends of the wood segment are used as finger joints Fit. Such finger joints are usually relatively strong, Most timber sheets 12 are relatively free of wood fibers near such joints. The weakest because it is continuous.   According to the present invention, any joints of the sheet 12 may be at the ends of the stiffeners 24, 30. The timber sheets 20, 26, 22, 32 so that they are at least a predetermined minimum distance from them. The thin plate 12 that is in close contact with the reinforcing members 24 and 30 is positioned as described above. As a result, the partial length The stresses located locally around the ends of the stiffeners 24, 30 are adjacent to the sheet 12 Does not work on relatively weak joints. Partial length reinforcements 24, 30 The preferred minimum distance between the edge and the joint of the adjacent sheet 12 is 30.5 cm, and It is between 61 cm (12 inches and 24 inches).   The thin wood plate 20 (just called the buffer layer) is located immediately below the synthetic tensile reinforcement 24. The joint of (1) is compared with a normal joint of the thin wood sheet 12, and It is preferable that the joining is performed so as to lack a proper joining. Wood thin plate 20 is synthetic tension It may be damaged by the strain applied by the reinforcing member 24 and cause cracks. This Although this has almost no effect on the overall strength of the laminated timber structural member 10, Cracks like this are unsightly and unpleasant for the viewer of this structural member. Is not what you want.   In the preferred embodiment, as is known in the art, The joint of the thin plate 20 can be Can be joined. Joints joined in this way are joined in the usual way It can happen that there is only 25% of the strength of a given joint. If the bonding is weaker The damage is not at the other position of the thin plate 20 but at the joint (finger joint) of the thin plate 20. G). This causes the damage to occur more smoothly and not suddenly, Conspicuous appearance deterioration can be reduced.   The glulam structural member 10 is generally known in the art as a "juvinile wood". Wood sheets 20, 26, 22, 32 made from "juvenile wood" It is preferable not to include the thin wood plate 12 which is in close contact with the reinforcing members 24, 30. Juu Vinile wood has a 50% lower fracture modulus than mature wood, It is not desirable to use the wood sheet 12 in close contact with the reinforcements 24, 30. Reinforcement The juvinile wood used as the timber sheet 12 in close contact with 24, 30 The relatively high stresses adjacent to the stiffeners 24, 30; 2 is a starting point of failure in the structural member 10 due to a low fracture modulus. . Such localized damage will result in eventual damage of the wood member.   For example, Douglas Fir is the first 15-20 years of growth It is generally considered to have formed over the years. But known in this field As such, different types of wood have different ages, a property of juvinile wood. Have.   Referring to FIG. 2, the juvenile tree formed near the pulp of the wood, that is, the central annual ring A new method for distinguishing a code is described. Juvinile wood is made of timber 12 Annual ring 3 forming an angle θ larger than a predetermined angle such as 30 degrees with respect to the main surface 7 This easy way to identify juvinile wood is expensive The production of the laminated timber structural member 10 having strength is simplified.   The composite compression stiffener 30 increases the compressive stress bearing capacity of the glulam structural member 10. wood The composite compression stiffener 30 as a substitute for a portion of the laminated timber 12 is Enables efficient selection of materials to optimize cost and strength. Previously, Wood-made components tend to break in the tensile stress zone, so only tensile stress reinforcements Was used.   3A and 3B show alternative glulam structural members 10a, 10b, The material thin plates 12a and 12b are arranged according to their elastic coefficients. Wood thin The composite reinforcements 24a, 24b, and optionally the composite reinforcement 30, are arranged together with the plate 12. Thereby separately controlling the strength, such as stiffness, of the glulam member 10 and other properties. You can control. Synthetic stiffeners 24a, 24b and optionally synthetic stiffener 3 0 means that in all practical ranges of the laminated timber components 10a, 10b, It allows the use of low-grade, low-cost wood, which allows for more material Cost can be reduced.   The composite tensile reinforcements 24a, 24b are laminated timber components 10 with enhanced tensile strength. a and 10b are provided. Similarly, any composite compression stiffener 30 (FIGS. 3A and 3 B, not shown) provides glulam components 10a, 10b with enhanced compressive strength. . Relatively large elastic modulus (for example, 1.27 × 10Fivekg / cmTwo(1.8 × 1 06The timber sheets 12a, 12b (greater than psi) are relatively stiff, and the glulam components It may be used to separately enhance the stiffness of the members 10a, 10b.   Synthetic tensile reinforcements 24a, 24b and optional composite compression reinforcement 30 (not shown) ), The strength of the laminated timber structural members 10a and 10b is increased. Glue laminated members 10a, 10b are formed by thinning wood thin plates 12a, 12b having a large elastic modulus. To increase the rigidity. In this case, normal glulam structural members without reinforcements are used. As always required, the wood sheets 12a, 12b are also visible wood for normal strength. It is not necessary to meet the grade requirements. That is, even if the strength is increased, it is of low grade, that is, Medium or low elastic modulus (for example, 1.05 × 10Fivekg / cmTwo(1.5 × 1 06psi) and 1.27 × 10Fivekg / cmTwo(1.8 × 106psi) or 1.05 × 10Fivekg / cmTwo(1.5 × 106 psi) or less) can be used, and Materials are usually relatively inexpensive and are used for relatively low stress areas. Therefore, the cost of the laminated timber structural member 10 is reduced without adversely affecting the strength. Can be. Further, even a certain thin wood plate 12b having a small elastic modulus has a large size before being damaged. And can increase the load carrying capacity of the laminated timber structural member 10b. Can be.   FIG. 3A shows a glulam structure in a form having high rigidity as required for a certain structural application. The members are shown. The title of the invention of the method of manufacturing a wood structural member having a synthetic fiber reinforcement U.S. patent application Ser. No. 08 / 269,004, filed on Jun. 30, 1994 by the applicant's inventor. The relative strength and stiffness of the timber structural members described in Can be.   In FIG. 3A, at least the lowermost thin plate 20a, 20 b and the top thin plates 22a, 32a have a relatively large elastic modulus (eg, Douglas fir) In the case of 1.27 × 10Fivekg / cmTwo(1.8 × 106psi). Chuo Ward The timber sheet 12a in region 36a has a lower, undetermined modulus of elasticity (eg, Douglas fir field). 1.05 × 10Fivekg / cmTwo(1.5 × 106psi) and 1.27 × 10Fivekg / cmTwo(1.8 × 106psi) Sex coefficient). Combined between the lowest sheet 20a and the next adjacent sheet 26a The tensile reinforcement 24a is bonded. As an alternative embodiment, the top thin plate 22a and the next The composite compression reinforcing material 30a bonded between the adjacent thin plate 32a and the The material 10a has. (FIG. 3A is a simplified view of the structural member 10a. Usually, the central section 36a has more sheets than the two wood sheets 12a shown. )   FIG. 3B shows the laminated lumber structural member 10b under load to be acceptable for some applications. The laminated timber structural member 10b is shown in a form having a relaxed rigidity property that allows deformation. Glulam At least the uppermost thin plates 22b, 32b of the structural member 10b are relatively large elastic members. Number (for example, 1.27 × 10 for Douglas firFivekg / cmTwo(1.8 × 106psi) elastic modulus) Then, a laminated timber structural member 10b having at least the minimum required rigidity is obtained. Center area The 36b timber sheet 12b has a low, undetermined modulus of elasticity (eg, Douglas fir , 1.05 × 10Fivekg / cmTwo(1.5 × 106psi) and 1.27 × 10Fivekg / cmTwo(1.8 × 106elasticity between (psi) Coefficient). The lowermost thin plates 20b, 26b have a relatively small elastic modulus (for example, 1.05 × 10 for Douglas firFivekg / cmTwo(1.5 × 106psi) and before failure In addition, the thin plates 20b, 26b have the additional property of being able to receive considerable strain. You.   In this embodiment, the laminated timber structural member 10b necessarily has a synthetic tensile reinforcement 24b. Then, this reinforcing material is bonded between the lowermost thin plate 20b and the next adjacent thin plate 20b. It shows in the state where it was done. As an alternative, the outer surface 28b of the lowermost sheet 20b is The glued structural member having sufficient tensile strength may be obtained by bonding the strong member 24b. . The lowermost thin plates 20b and 26b have a relatively small elastic modulus and prevent the start of breakage. With certain properties to stop, it can withstand relatively large strains before breakage, This allows the glulam structural member to withstand the correspondingly large loads. Good. The lowest sheet 20b, 26 that can receive "Super Strain" The preferred properties of b are that there are no nodes larger than 0.875 inch (2.22 cm), (Ie, change in direction from the vertical axis of the tree is 1:16 or more) And low density.   For example, a thin wood plate located adjacent to the synthetic tensile reinforcement 24a and having a large elastic modulus. 12a can withstand about 1% strain before breaking. Small elastic modulus It has good superstrain characteristics and is located adjacent to the synthetic tensile reinforcement 24b. The thin wood sheet 12b can withstand about 1.5% strain before breaking, thereby The load carrying capacity of the laminated timber structural member 10b is increased by 50% as compared with the timber structural member 10a. be able to. The composite tensile reinforcement 24b has a tensile stress in the laminated structural member 10b. Can support such an increased load carrying capacity It is. At least the relatively large elastic modulus of the uppermost thin plates 22b, 32b Glue structural member 1 having at least the minimum rigidity required to prevent breakage. 0b is obtained.   Here the elastic modulus expressed as relatively large, relatively small, and intermediate The values are comparison values for the elastic modulus of Douglas fir. Other types of wood have different elastic moduli Clearly having different values. Each type of wood has a specific range of elastic modulus. However, the present invention can be applied, and such ranges will be apparent to those skilled in the art. The modulus of elasticity can be determined, for example, by mechanically comparing the sample with a known deflection resistance, for example by bending the sample. It can generally be measured by a force measuring device.   The standard visual grade for each tree type is also typically different. For example, Douglas fir The standard visual grades promulgated by the AITC for L-1, L-2, and L-3 Are represented and represent successively lower grade trees. Douglas fir referring to the present invention The above description applies to other types of trees, even if the visual grades differ in their expression and criteria. Can be similarly applied.   Unlike the special configuration as described above of the wood thin plate 12 of the glulam structural member 10, The timber sheets of the glulam structural members of this article only have an average elastic modulus, They are simply arranging thin wooden boards at random. Most conventional glulam structural members Timber slabs are arranged according to visual grade, simply looking at the defect It is only involved in the sex coefficient by chance. Some conventional glulam structural members are visual grade Uses a thin wood plate that has a large elastic modulus even in high stress zones doing.   However, such conventional laminated timber structural members do not include a synthetic reinforcement, and Achieving a selective balance between strength and stiffness provided by the bright joint gist Can not. Relying on individual wood sheets for strength and high elastic modulus Are very expensive, and it is impossible for high strength and low defect wood So this dependence is simply not possible.   In FIG. 1, the wood sheet 12 of the glulam component 10 in a given tension zone is Regardless of the dimensions of the component 10 of the present invention, it is preferable to satisfy a predetermined knot grade standard. You. Such an enhanced knot grade standard along with the synthetic tensile reinforcement 24 is usually Up to 20% of the reinforced glulam structural component in the case of the nodal grade standard Can be increased.   The normal AITC 117-93 visual knuckle grading standard for glulam structural members is subject to maximum tensile forces. The knots of the wood sheet in the tension zone, defined as 10% height of the beam to be cut, are the width of the sheet Having a diameter not exceeding 25%. According to the present invention, fixed emphasis The wood knot 1 in the tensile zone 40 near the composite tensile reinforcement 24 Apply to 2. Each lumber 12 in the tension zone 40 has two thirds of the length of the lumber 12 Overemphasized that there are no nodes larger than 2.25 cm (7/8 inch) in diameter The clause grade criteria state. The tension zone 40 has 12% of the height of the structural member 10 Or 15% contains 4 or more wood sheets.   This knotting criterion is only applicable to glulam structural members 8cm (3-1 / 8 inch) wide Is specified by the AITC. Wider width (for example, at least 32.4 cm (1 Applying this standard to glulam structural members (up to 2.75 inches) It functions to emphasize the criterion and reduces the tendency for breakage starting from nodes in component 10. Let Knotted wood has one-tenth of the distortion that comparable knotless wood would break It can also be damaged by receiving such low strain. As a result, the synthetic tensile reinforcement 2 The knots in the timber sheet 12 near 4 are due to the relatively high strain adjacent to the reinforcement 24, It is possible that breakage may begin in the structural member 10. Such local damage is caused by the tree This can result in fundamental damage to the member.   FIGS. 4A and 4B show the composite tensile reinforcement 24 and the composite compression reinforcement 30. It is each one layer expansion perspective view. Tensile reinforcement 24 and compression reinforcement 44 are very Has many synthetic fibers 42 and 44. These synthetic fibers 42, 44 are flat with each other. The reinforcements 24, 30 are arranged in a line in the length direction of the reinforcements, and each has a tensile force and It has a relatively large elastic modulus with respect to compressive force.   The synthetic fibers 42 and 44 are surrounded by the resin material 46, and this resin material is Penetrate into the gaps between the synthetic fibers and retain these synthetic fibers in their arrangement and arrangement You. To facilitate the bonding of the synthetic fibers 42, 44 to the wood veneer 12, US Pat. It is preferred to make and process the reinforcements 24, 30 as described in 5362545. Suitable.   Accordingly, the compression stiffener 30 includes a synthetic fiber layer 48 that enhances the adhesion of the compression stiffener. Have. Further, the main surfaces of the reinforcing members 24 and 30 are rubbed or reduced, or “fluffed”, The adjacent fibers 42 and 48 are broken, and the ends 50 and 52 are respectively To protrude.   Synthetic tensile reinforcement by arranging the fibers 42 and 44 in parallel and arranging them vertically The maximum strength is given to the member 24 and the composite compression reinforcing member 30. Synthetic tensile fiber 42, and Suitable fibers for use as the synthetic fiber layer 48 are Delaware under the trade name "KEVLAR". Y.E.I. DuPont de Nemours & Co. Aramid fiber commercially available from Allied Signal, Petersburg, Virginia, under the brand name `` SPECTRA '' There is a high modulus polyethylene commercially available from Allied Fibers. Suitable grade Synthetic fiber 42 and fiber layer 48 are aramid fibers available as "KEVLAR 49" It is.   Preferably, the synthetic fibers 42 have a relatively large modulus of elasticity to tensile forces. You. For example, a synthetic fiber 42 having a trade name of “KEVLAR” has a tensile force of about 124,000 megabytes. Pascal (18 × 106psi). About 60% synthetic fiber 42 (by volume) And the composite tensile reinforcement 24 having 40% resin material 46 with respect to the tensile force. Approx. 75900 megapascal (11 × 106psi).   Suitable for use as synthetic compressed fiber 44 is about 206900 megapaths for compressive force Cal (30 × 106It is a commercially available carbon fiber having a modulus of elasticity (psi). About 60 (by volume) % Synthetic fiber 44 and 40% resin material 46 About 124000 megapascals (18 × 106psi). Reinforcement material 24, The resin material 46 used to manufacture both 30 is preferably an epoxy resin. , Polyester, vinyl ester, phenolic resin, polyimide, or polystyrene Thermoplastic resin such as Lil pyridine (PSP) or polyethylene terephthalate (PET) And other resins such as nylon 66.   In some structural applications, the load on the glulam structural member 10 may reverse direction. Therefore, at a certain moment, the thin plates 20 and 22 receive the tensile stress and the compressive stress, respectively, At the moment, the stress is reversed. Under these conditions, the glued laminated member 10 is usually in tension. It is necessary to balance the ability to support loads and compression loads. Ara Synthetic tensile reinforcement 24 with mid synthetic fibers 42 typically meets this requirement. Cannot be achieved, and the synthetic reinforcement 30 must be provided.   Synthetic reinforcement 24 having aramid synthetic fibers 42 has substantially low strength and tensile strength. It has a much lower modulus of elasticity for compressive forces than for compressive forces. Aramid pressure This widespread imbalance in shrinkage and tensile properties is a result of balanced loading conditions. Makes the components unsuitable for use in On the contrary, mainly carbon fiber The composite reinforcing material 30 has almost the same strength and elastic modulus in compressive force and tensile force. And As a result, the synthetic reinforcing material 30 mainly having the carbon fibers 44 is shown in FIG. In a balanced load application. Can be used instead. Synthetic reinforcements mainly composed of glass fibers are also It has almost the same strength and elastic modulus as the tensile force, and in a balanced load state Can be used in place of the synthetic reinforcements 24, 30. Glulam structural member 10 These stiffener configurations for balanced loading conditions enhance the composite properties And any consistent configuration of the wood slab 12, including unreinforced or unreinforced configurations. They may be used together.   The above detailed embodiments of the present invention may be modified in many ways without departing from the scope of the present invention. Can be added. Therefore, the scope of the present invention should be determined only by the following claims. Is done.

【手続補正書】 【提出日】1997年8月22日 【補正内容】 1.請求の範囲を次の通りに訂正する。 「 請求の範囲 1.一定長さを有し、構造荷重を支持する木材薄板接合構造部材において、 互いに接合された複数個の木材薄板と、 樹脂マトリックス内に囲まれた複数個の繊維ストランドを有し、前記構造部 材より長さが短く、2個の前記木材薄板間に接合された補強材とを具えることを 特徴とする木材薄板接合構造部材。 2.樹脂に囲まれ互いに接合された繊維の複数個の層を前記補強材が有する請求 項1の木材薄板接合構造部材。 3.前記構造部材が圧縮部と引張り部とを有し、この引張り部内に前記補強材を 配置した請求項1の木材薄板接合構造部材。 4.前記構造部材の引張り部内に配置された前記補強材の前記繊維がアラミド繊 維を含む請求項3の木材薄板接合構造部材。 5.前記構造部材の圧縮部内に補強材を配置した請求項3の木材薄板接合構造部 材。 6.前記構造部材の圧縮部内に配置された前記補強材の繊維が圧縮繊維を含む請 求項5の木材薄板接合構造部材。 7.前記構造部材の圧縮部内に配置された前記補強材の繊維が炭素繊維を含む請 求項6の木材薄板接合構造部材。 8.前記補強材の両側に位置するスペーサを更に有する請求項1の木材薄板接合 構造部材。 9.前記スペーサが木材から製造されたものである請求項8の木材薄板接合構造 部材。 10.引張り部に引張り応力を発生させ、圧縮部に圧縮応力を発生させる構造荷重 を支持する木材薄板接合構造部材において、 互いに接合された複数個の木材薄板と、 樹脂ケーシング内に囲まれた複数個の繊維ストランドを有し、前記構造部材 より長さが短く、この構造部材の前記圧縮部内の前記木材薄板の少なくと も1個に接合された補強材とを具えることを特徴とする木材薄板接合構造部材。 11.前記構造部材の圧縮部に配置された前記補強材の繊維が圧縮繊維を含む請求 項10の木材薄板接合構造部材。 12.前記構造部材の圧縮部に配置された前記補強材の繊維が炭素繊維を含む請求 項11の木材薄板接合構造部材。 13.樹脂で囲まれ互いに接合された複数個の層を前記補強材が有する請求項10 の木材薄板接合構造部材。 14.頂部の薄板の頂面に前記補強材を接合した請求項10の木材薄板接合構造部 材。」[Procedure amendment] [Submission date] August 22, 1997 [Correction contents] 1. The claims are amended as follows.   " The scope of the claims 1. In the wood thin plate joining structural member having a certain length and supporting the structural load,     A plurality of wood sheets joined together,     A plurality of fiber strands surrounded by a resin matrix; And a reinforcing member which is shorter in length than the timber and which is joined between the two timber sheets. Characterized wood thin plate joining structural member. 2. The reinforcing material has a plurality of layers of fibers surrounded by a resin and bonded to each other. Item 2. A thin wooden sheet joining structural member according to Item 1. 3. The structural member has a compression part and a tension part, and the reinforcing material is provided in the tension part. The structural member for joining thin wooden boards according to claim 1, wherein the structural members are arranged. 4. The fiber of the reinforcing member disposed in the tension portion of the structural member may be aramid fiber. 4. The structural member as set forth in claim 3 including fibers. 5. 4. The thin wooden board joining structure according to claim 3, wherein a reinforcing material is disposed in a compression section of the structural member. Wood. 6. The fiber of the reinforcing member disposed in the compression section of the structural member includes a compression fiber. 6. The thin wooden sheet joining structural member according to claim 5. 7. The fiber of the reinforcing member disposed in the compression section of the structural member includes carbon fiber. 7. The thin wooden sheet joining structural member according to claim 6. 8. The wood thin sheet joint of claim 1, further comprising spacers located on both sides of the reinforcement. Structural members. 9. 9. The thin plate joining structure according to claim 8, wherein the spacer is made of wood. Element. Ten. Structural load that generates tensile stress in the tensile part and compressive stress in the compressive part In the thin wood joined structural member supporting the     A plurality of wood sheets joined together,     A plurality of fiber strands surrounded by a resin casing; A shorter length, at least a portion of the timber sheet in the compression section of the structural member. And a reinforcing member joined to one piece. 11. The fibers of the reinforcing member disposed in a compression section of the structural member include compressed fibers. Item 11. A thin wooden sheet joining structural member according to item 10. 12. The fibers of the reinforcing member disposed in the compression section of the structural member include carbon fibers. Item 12. A thin wooden sheet joining structural member according to item 11. 13. The reinforcing material has a plurality of layers surrounded by a resin and joined to each other. Wood thin plate joining structural member. 14. 11. The joint structure for a thin wood plate according to claim 10, wherein the reinforcing material is joined to a top surface of the thin plate at the top. Wood. "

───────────────────────────────────────────────────── フロントページの続き (81)指定国 EP(AT,BE,CH,DE, DK,ES,FR,GB,GR,IE,IT,LU,M C,NL,PT,SE),OA(BF,BJ,CF,CG ,CI,CM,GA,GN,ML,MR,NE,SN, TD,TG),AP(KE,MW,SD,SZ,UG), AM,AT,AU,BB,BG,BR,BY,CA,C H,CN,CZ,DE,DK,EE,ES,FI,GB ,GE,HU,IS,JP,KE,KG,KP,KR, KZ,LK,LR,LT,LU,LV,MD,MG,M N,MW,MX,NO,NZ,PL,PT,RO,RU ,SD,SE,SG,SI,SK,TJ,TM,TT, UA,UG,US,UZ,VN────────────────────────────────────────────────── ─── Continuation of front page    (81) Designated countries EP (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, M C, NL, PT, SE), OA (BF, BJ, CF, CG , CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), AP (KE, MW, SD, SZ, UG), AM, AT, AU, BB, BG, BR, BY, CA, C H, CN, CZ, DE, DK, EE, ES, FI, GB , GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LT, LU, LV, MD, MG, M N, MW, MX, NO, NZ, PL, PT, RO, RU , SD, SE, SG, SI, SK, TJ, TM, TT, UA, UG, US, UZ, VN

Claims (1)

【特許請求の範囲】 1.構造部材の中立軸線の両側のそれぞれ圧縮部と引張り部とに圧縮応力と引張 り応力とを発生させる構造荷重を支持する積層木材構造部材において、 この構造部材の縦軸線にほぼ一線をなし、全長にわたり互いに接合された複 数個の細長い木材薄板と、 樹脂マトリックス内に保持される複数個の引張り繊維ストランドを有し、前 記構造部材の引張り部内の木材薄板の少なくとも1個に接合された合成引張り補 強材と、 樹脂マトリックス内に保持され、炭素のストランドを含む複数個の圧縮繊維 ストランドを有し、前記構造部材の圧縮部内の木材薄板の少なくとも1個に接合 された合成圧縮補強材とを具えることを特徴とする積層木材構造部材。 2.一定長さを有し、構造荷重を支持する木材薄板接合構造部材において、 互いに接合された複数個の木材薄板と、 樹脂マトリックス内に囲まれた複数個の繊維ストランドを有し、前記構造部 材より長さが短く、2個の前記木材薄板間に接合された合成補強材とを具えるこ とを特徴とする木材薄板接合構造部材。 3.樹脂に囲まれ互いに接合された繊維の複数個の層を前記合成補強材が有する 請求項2の木材薄板接合構造部材。 4.前記構造部材が圧縮部と引張り部とを有し、この引張り部内に前記合成補強 材を配置した請求項2の木材薄板接合構造部材。 5.前記構造部材の引張り部内に配置された前記合成補強材の前記繊維がアラミ ド繊維を含む請求項4の木材薄板接合構造部材。 6.前記構造部材の引張り部内に配置された前記合成補強材の前記繊維が専らア ラミド繊維を含む請求項5の木材薄板接合構造部材。 7.前記木材薄板が最下位置から最上位置まで配置され、前記合成補強材が2個 の最下位の木材薄板間に配置され、一方の最下位の木材薄板がフィンガージョイ ントによって縦方向に互いに接合された少なくとも2個の木材セグメントを含ん でおり、前記フィンガージョイントの強度が通常のように接合されたフィ ンガージョイントの強度より有意義に弱くなるよう前記フィンガージョイントが 意識的に形成されている請求項4の木材薄板接合構造部材。 8.前記補強材が両端を有し、前記薄板の少なくとも1個がフィンガージョイン トによって互いに縦に接合された少なくとも2個の木材セグメントを含み、前記 合成補強材に接合された前記薄板のフィンガージョイントのいずれかが前記補強 材の両端のそれぞれから所定距離にある請求項4の木材薄板接合構造部材。 9.前記構造部材の圧縮部内に合成補強材を配置した請求項4の木材薄板接合構 造部材。 10.前記構造部材の圧縮部内に配置された前記合成補強材の繊維が圧縮繊維を含 む請求項9の木材薄板接合構造部材。 11.前記構造部材の圧縮部内に配置された前記合成補強材の繊維が炭素繊維を含 む請求項10の木材薄板接合構造部材。 12.前記構造部材の圧縮部内に配置された前記合成補強材の繊維が専ら炭素繊維 を含む請求項11の木材薄板接合構造部材。 13.前記合成補強材の両側に位置するスペーサを更に有する請求項2の木材薄板 接合構造部材。 14.前記スペーサが木材から製造されたものである請求項13の木材薄板接合構 造部材。 15.前記木材スペーサが前記合成補強材より一層厚く、一層圧縮可能である請求 項14の木材薄板接合構造部材。 16.前記木材スペーサが無垢の木材から製造されたものである請求項14の木材 薄板接合構造部材。 17.引張り部に引張り応力を発生させ、圧縮部に圧縮応力を発生させる構造荷重 を支持する木材薄板接合構造部材において、 互いに接合された複数個の木材薄板と、 樹脂マトリックス内に囲まれた複数個の繊維ストランドを有し、前記構造部 材より長さが短く、この構造部材の前記圧縮部内の前記木材薄板の少なくとも1 個に接合された合成補強材とを具えることを特徴とする木材薄板接合構造部材 18.前記構造部材の圧縮部に配置された前記合成補強材の繊維が圧縮繊維を含む 請求項17の木材薄板接合構造部材。 19.前記構造部材の圧縮部に配置された前記合成補強材の繊維が炭素繊維を含む 請求項18の木材薄板接合構造部材。 20.前記構造部材の圧縮部に配置された前記合成補強材の繊維が専ら炭素繊維を 含む請求項19の木材薄板接合構造部材。 21.樹脂で囲まれ互いに接合された複数個の層を前記合成補強材が有する請求項 17の木材薄板接合構造部材。 22.頂部の薄板の頂面に前記合成補強材を接合した請求項17の木材薄板接合構 造部材。 23.構造部材のそれぞれ圧縮部と引張部とにこの構造部材内の圧縮応力と引張り 応力とを発生させる構造荷重を支持する積層木材構造部材において、 互いに接合された複数個の木材薄板と、 樹脂マトリックス内に囲まれた複数個の繊維ストランドを有し、前記構造部 材の前記引張部内の前記木材薄板の少なくとも1個に接合された合成補強材とを 具え、この合成補強材に接合された木材薄板が大きい破壊係数を有する木材で製 造されていることを特徴とする積層木材構造部材。 24.前記合成補強材に接合された各木材薄板が有する表面が所定部分にわたり所 定寸法より大きい節の無い表面である請求項23の積層木材構造部材。 25.前記構成部材の引張り部内に所定組の木材薄板を有し、この所定組のいずれ の木材薄板もその表面の所定部分にわたり所定寸法より大きい節を有していない 請求項23の積層木材構造部材。 26.前記合成補強材に接合された木材薄板はジュービナイルウッド以外の木材で 製造されている請求項23の積層木材構造部材。 27.前記ジュービナイルウッド以外の木材は木材の主要な表面の平面について所 定の鋭角より小さい角度を形成している年輪を有するものと定義される請求項2 6の積層木材構造部材。 28.前記合成補強材に接合された木材薄板が傾斜の無い真っ直ぐな粒子を有する 木材で製造されている請求項23の積層木材構造部材。 29.前記合成補強材に接合された木材薄板が使用された木材の種類としては比較 的低密度の木材で製造されている請求項23の積層木材構造部材。 30.構造部材のそれぞれ圧縮部と引張部とにこの構造部材内の圧縮応力と引張り 応力とを発生させる構造荷重を支持する積層木材構造部材において、 或る範囲内にある弾性係数を有し、互いに接合された複数個の木材薄板を設 け、最大の圧縮応力の帯域には一層大きい弾性係数を有する木材薄板が位置し、 最大の引張り応力の帯域には一層小さい弾性係数を有する木材薄板が位置するよ う弾性係数に従ってほぼ弾性係数の階級に依るように前記構造部材内に前記木材 薄板を配置し、 前記構造部材の引張り部内の木材薄板の1個、又はそれ以上の個数に接合さ れた合成補強材を設けたことを特徴とする積層木材構造部材。 31.前記構造部材の前記圧縮部内の木材薄板の少なくとも1個に接合された合成 補強材を更に具えた請求項30の積層木材構造部材。 32.頂部と底部とを有する積層木材構造部材において、 この構造部材の前記底部から頂部まで通る軸線の横方向に存在する平面内に 方向を定めた主要面を有し、互いに接合された複数個の木材薄板と、 前記構造部材の前記頂部から下方に、及び前記底部から上方に等しい距離に あって、それぞれ圧縮力、及び引張り力について、等しい弾性係数を有する第1 合成補強材と第2合成補強材とを有することを特徴とする積層木材構造部材。 33.構造部材のそれぞれ圧縮部と引張部とにこの構造部材内の圧縮応力と引張り 応力とを発生させる構造荷重を支持する積層木材構造部材において、 互いに接合された複数個の木材薄板と、 樹脂マトリックス内に囲まれた複数個の繊維ストランドを有し、前記構造部 材の前記引張部内の前記木材薄板の少なくとも1個に接合された合成補強材とを 具え、この合成補強材に接合された木材薄板が小さい弾性係数を有する木材で製 造されていることを特徴とする積層木材構造部材。 34.前記合成補強材に接合された各木材薄板が有する表面が所定部分にわたり所 定寸法より大きい節の無い表面である請求項33の積層木材構造部材。 35.前記合成補強材に接合された木材薄板が傾斜の無い真っ直ぐな粒子を有する 木材で製造されている請求項33の積層木材構造部材。 36.前記合成補強材に接合された木材薄板が使用された木材の種類としては比較 的低密度の木材で製造されている請求項33の積層木材構造部材。[Claims] 1. Compressive stress and tension are applied to the compression part and the tension part on both sides of the neutral axis of the structural member, respectively. Laminated timber structural members that support structural loads that generate stress     This structural member is substantially aligned with the longitudinal axis, and is A few long thin wood plates,     Having a plurality of tensile fiber strands held in a resin matrix, A composite tensile joint joined to at least one of the thin wooden sheets in the tensile section of the structural member; With strong wood     Multiple compressed fibers held in a resin matrix and containing carbon strands A strand, joined to at least one of the thin wood plates in the compression section of the structural member A laminated timber structural member, comprising: 2. In the wood thin plate joining structural member having a certain length and supporting the structural load,     A plurality of wood sheets joined together,     A plurality of fiber strands surrounded by a resin matrix; A composite reinforcement member, which is shorter in length than the timber, and is joined between the two timber slabs. And a thin wooden sheet joining structural member. 3. The synthetic reinforcement has a plurality of layers of fibers surrounded by a resin and joined together. The structural member for joining thin wooden boards according to claim 2. 4. The structural member has a compression portion and a tension portion, and the synthetic reinforcement is provided in the tension portion. 3. The thin wooden sheet joining structural member according to claim 2, wherein a member is disposed. 5. The fibers of the synthetic reinforcement disposed within the tensile portion of the structural member may be aramid. 5. The thin wooden board joined structural member according to claim 4, wherein the structural member includes a fiber. 6. The fibers of the synthetic reinforcement located within the tension of the structural member are exclusively 6. The structural member as set forth in claim 5, wherein the structural member includes a lamid fiber. 7. The thin wooden boards are arranged from the lowermost position to the uppermost position, and two pieces of the synthetic reinforcing material are provided. Are placed between the lowest timber strips, while one bottom timber strip is At least two wood segments longitudinally joined to each other by And the strength of the finger joint is The finger joint is significantly weaker than the strength of the finger joint 5. The thin wooden sheet joining structural member according to claim 4, which is consciously formed. 8. The stiffener has both ends and at least one of the thin plates is finger-joined. At least two wood segments longitudinally joined to each other by One of the thin plate finger joints joined to the synthetic reinforcement is the reinforcement 5. The timber-joined structural member according to claim 4, which is at a predetermined distance from each of both ends of the timber. 9. 5. The thin wooden board joining structure according to claim 4, wherein a synthetic reinforcing material is disposed in a compression portion of the structural member. Construction members. Ten. The fibers of the synthetic reinforcing material disposed in the compression section of the structural member include compressed fibers. The thin wooden sheet joining structural member according to claim 9. 11. The fibers of the synthetic reinforcing material disposed in the compression section of the structural member include carbon fibers. The thin wooden board joining structural member according to claim 10. 12. The fibers of the synthetic reinforcing material disposed in the compression section of the structural member are exclusively carbon fibers 12. The structural member as claimed in claim 11, comprising: 13. 3. The thin wood board of claim 2 further comprising spacers located on both sides of said composite reinforcement. Joining structural members. 14. 14. The thin wooden board joining structure according to claim 13, wherein the spacer is manufactured from wood. Construction members. 15. The wood spacer is thicker and more compressible than the synthetic reinforcement Item 15. A thin wooden sheet joining structural member according to item 14. 16. 15. The wood of claim 14, wherein said wood spacer is made from solid wood. Thin plate joining structural member. 17. Structural load that generates tensile stress in the tensile part and compressive stress in the compressive part In the thin wood joined structural member supporting the     A plurality of wood sheets joined together,     A plurality of fiber strands surrounded by a resin matrix; At least one of the timber sheets in the compression section of the structural member, the length being shorter than the timber. Wood bonded structural members, characterized in that they comprise a composite reinforcement joined to the individual pieces 18. The fibers of the synthetic reinforcement disposed in the compression section of the structural member include compressed fibers The thin wooden board joining structural member according to claim 17. 19. The fibers of the synthetic reinforcing material disposed in the compression section of the structural member include carbon fibers 19. The structural member for joining thin wooden boards according to claim 18. 20. The fibers of the synthetic reinforcing material disposed in the compression section of the structural member exclusively use carbon fibers. 20. The timber-joined structural member according to claim 19, comprising: twenty one. The composite reinforcing material has a plurality of layers surrounded by a resin and joined to each other. 17. Timber thin plate joining structural members. twenty two. 18. The wood thin plate joining structure according to claim 17, wherein the synthetic reinforcing material is joined to a top surface of a top thin plate. Construction members. twenty three. The compressive and tensile stresses in this structural member are applied to the compressive and tensile parts, respectively, of the structural member. In a laminated timber structural member that supports a structural load that generates stress,     A plurality of wood sheets joined together,     A plurality of fiber strands surrounded by a resin matrix; A synthetic reinforcement bonded to at least one of the wood slats in the tensile portion of the material. The thin wood sheet bonded to this synthetic reinforcement is made of wood with a high modulus of rupture. A laminated timber structural member characterized by being made. twenty four. The surface of each wood thin plate joined to the synthetic reinforcing material has a portion 24. The laminated timber structural member of claim 23, having a knotless surface larger than a fixed dimension. twenty five. A predetermined set of thin wood plates is provided in the tension portion of the component, and any of the predetermined sets Also has no knots larger than a certain dimension over a certain part of its surface A laminated wood structural member according to claim 23. 26. The thin wood plate bonded to the synthetic reinforcement is made of wood other than juvinile wood. 24. The laminated timber structural member of claim 23 being manufactured. 27. Timber other than the above-mentioned juvinile wood is subject to the principal plane of the wood. 3. A method as defined in claim 2 wherein the rings have an angle forming less than a fixed acute angle. 6. The laminated timber structural member. 28. Wood sheet bonded to the synthetic reinforcement has straight particles without slope 24. The laminated timber structural member of claim 23, made of wood. 29. Compared as the type of wood used wood thin plate joined to the synthetic reinforcement 24. The laminated timber structural member of claim 23, wherein the structural member is made of very low density wood. 30. The compressive and tensile stresses in this structural member are applied to the compressive and tensile parts, respectively, of the structural member. In a laminated timber structural member that supports a structural load that generates stress,     A plurality of timber sheets joined together with a modulus of elasticity in a range. In the zone of maximum compressive stress, a thin wood plate with a higher elastic modulus is located, In the zone of maximum tensile stress, a thin wood plate with a smaller elastic modulus is located. The timber in the structural member so as to substantially depend on the class of elastic modulus according to the elastic modulus. Place the thin plate,     Joined to one or more pieces of wood veneer in the tensile part of said structural member A laminated timber structural member comprising a synthetic reinforcing material provided. 31. A composite joined to at least one of the thin wood plates in the compression section of the structural member 31. The laminated timber structural member of claim 30, further comprising a reinforcement. 32. In a laminated timber structural member having a top and a bottom,     In a plane lying transversely of the axis passing from the bottom to the top of this structural member A plurality of thin wood plates having oriented main surfaces and joined together,     At equal distances down from the top and up from the bottom of the structural member The first having the same elastic modulus for the compressive force and the tensile force, respectively. A laminated timber structural member comprising a synthetic reinforcement and a second synthetic reinforcement. 33. The compressive and tensile stresses in this structural member are applied to the compressive and tensile parts, respectively, of the structural member. In a laminated timber structural member that supports a structural load that generates stress,     A plurality of wood sheets joined together,     A plurality of fiber strands surrounded by a resin matrix; A synthetic reinforcement bonded to at least one of the wood slats in the tensile portion of the material. The thin wood plate bonded to this synthetic reinforcement is made of wood having a small elastic modulus. A laminated timber structural member characterized by being made. 34. The surface of each wood thin plate joined to the synthetic reinforcing material has a portion 34. The laminated timber structural member of claim 33, having a knotless surface larger than a fixed dimension. 35. Wood sheet bonded to the synthetic reinforcement has straight particles without slope 34. The laminated timber structural member of claim 33, wherein the structural member is made of wood. 36. Compared as the type of wood used wood thin plate joined to the synthetic reinforcement 34. The laminated timber structural member of claim 33, wherein the structural member is made of very low density wood.
JP8505867A 1994-07-22 1995-07-21 Glulam structural members with synthetic fiber reinforcement Pending JPH10503721A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/279,177 US5547729A (en) 1993-03-24 1994-07-22 Glue-laminated wood structural member with synthetic fiber reinforcement
US08/279,177 1994-07-22
PCT/US1995/009205 WO1996003280A1 (en) 1994-07-22 1995-07-21 Glue-laminated wood structural member with synthetic fiber reinforcement

Publications (1)

Publication Number Publication Date
JPH10503721A true JPH10503721A (en) 1998-04-07

Family

ID=23067957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8505867A Pending JPH10503721A (en) 1994-07-22 1995-07-21 Glulam structural members with synthetic fiber reinforcement

Country Status (8)

Country Link
US (1) US5547729A (en)
EP (1) EP0772520A4 (en)
JP (1) JPH10503721A (en)
AU (1) AU702344B2 (en)
CA (1) CA2195553A1 (en)
NO (1) NO970271L (en)
NZ (1) NZ290990A (en)
WO (1) WO1996003280A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101238837B1 (en) * 2012-05-17 2013-03-04 성원목재 주식회사 Moulding device for arch shaped glulam

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5974760A (en) * 1993-03-24 1999-11-02 Tingley; Daniel A. Wood I-beam with synthetic fiber reinforcement
US6173550B1 (en) 1993-03-24 2001-01-16 Daniel A. Tingley Wood I-beam conditioned reinforcement panel
US5720143A (en) * 1994-03-01 1998-02-24 The United States Of America As Represented By The Secretary Of Agriculture Localized notch reinforcement for wooden beams
US5744228A (en) * 1994-03-04 1998-04-28 Tingley; Daniel A. Use of synthetic fibers in a glueline to increase resistance to sag in wood and wood composite structures
US5891550A (en) * 1996-02-05 1999-04-06 Tingley; Daniel A. Structural member with increased shear resistance
US5725929A (en) * 1996-08-20 1998-03-10 Fiber Technologies, Inc. Reinforced wood
US6641893B1 (en) 1997-03-14 2003-11-04 Massachusetts Institute Of Technology Functionally-graded materials and the engineering of tribological resistance at surfaces
US6174483B1 (en) 1997-05-07 2001-01-16 Hexcel Cs Corporation Laminate configuration for reinforcing glulam beams
EP1105591A1 (en) * 1998-08-13 2001-06-13 Markus Lehmann Method for producing a fibre-reinforced laminate, especially a wood laminate, and said wood laminate
US6265482B1 (en) 1998-09-22 2001-07-24 Borden Chemical, Inc. Resole resin system for pultrusion composites
US6159405A (en) * 1998-09-22 2000-12-12 Borden Chemical, Inc. Phenolic resin system for pultrusion composites
US6592962B2 (en) 2000-06-09 2003-07-15 Dow Global Technologies Inc. Fiber-reinforced thermoplastic composite bonded to wood
US20030148085A1 (en) * 2001-12-28 2003-08-07 Edwards Christopher M. Fiber-reinforced thermoset composite rods bonded to wood
US20040048055A1 (en) * 2002-09-11 2004-03-11 Alfonso Branca Continuous fiber composite reinforced synthetic wood elements
US7875337B2 (en) * 2003-01-24 2011-01-25 Glastic Corporation Fiber and resin composite reinforcement
US6893524B2 (en) * 2003-01-24 2005-05-17 Glastic Corporation Method and apparatus for manufacturing a reinforcement
US20060127633A1 (en) * 2004-12-10 2006-06-15 Dimakis Alkiviadis G Reinforced wood product and methods for reinforcing a wood product
ES2559120T3 (en) * 2008-02-01 2016-02-10 Loggo Ip Pty Ltd. In Its Capacity As Trustee For Thornton Ip Trust Wood structural member
US11084268B1 (en) * 2019-07-31 2021-08-10 Bryan Thompson Engineered wood product and method of making same

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2536183A (en) * 1944-03-20 1951-01-02 Union Carbide & Carbon Corp Preparation of surfaces for adhesion
CH398023A (en) * 1962-04-03 1965-08-31 Kengeter Kurt Wood construction element and its use
US3413188A (en) * 1963-06-14 1968-11-26 Westinghouse Electric Corp Glass fiber-wood laminates and methods of producing such laminates
US3890077A (en) * 1973-01-05 1975-06-17 John A Holman Apparatus for manufacturing artificial boards and shapes
GB1550363A (en) * 1975-05-08 1979-08-15 Ici Ltd Envelope
US4242406A (en) * 1979-04-30 1980-12-30 Ppg Industries, Inc. Fiber reinforced composite structural laminate composed of two layers tied to one another by embedded fibers bridging both layers
US4312162A (en) * 1979-08-15 1982-01-26 Jonas Medney Reinforced pole
NO162124C (en) * 1984-06-22 1989-11-08 Arne Engebretsen TREATED BENCH OF WOODWOOD.
US4615163A (en) * 1984-10-04 1986-10-07 Curtis Albert B Reinforced lumber
US5000808A (en) * 1988-05-13 1991-03-19 Deviney George L Application of continuous strand material to planar substrates
US5026593A (en) * 1988-08-25 1991-06-25 Elk River Enterprises, Inc. Reinforced laminated beam
US5006390A (en) * 1989-06-19 1991-04-09 Allied-Signal Rigid polyethylene reinforced composites having improved short beam shear strength
US5135793A (en) * 1990-05-24 1992-08-04 The Standard Oil Company Fiberglass reinforced polyester laminated hardboard panels
JP2931068B2 (en) * 1990-10-11 1999-08-09 住友林業株式会社 Reinforced wood
US5362545A (en) * 1993-03-24 1994-11-08 Tingley Daniel A Aligned fiber reinforcement panel for structural wood members

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101238837B1 (en) * 2012-05-17 2013-03-04 성원목재 주식회사 Moulding device for arch shaped glulam

Also Published As

Publication number Publication date
EP0772520A1 (en) 1997-05-14
AU3197895A (en) 1996-02-22
NO970271L (en) 1997-03-21
NZ290990A (en) 1998-03-25
US5547729A (en) 1996-08-20
AU702344B2 (en) 1999-02-18
EP0772520A4 (en) 1998-08-26
NO970271D0 (en) 1997-01-21
CA2195553A1 (en) 1996-02-08
WO1996003280A1 (en) 1996-02-08

Similar Documents

Publication Publication Date Title
JPH10503721A (en) Glulam structural members with synthetic fiber reinforcement
US5974760A (en) Wood I-beam with synthetic fiber reinforcement
US5565257A (en) Method of manufacturing wood structural member with synthetic fiber reinforcement
Wei et al. Flexural performance of bamboo scrimber beams strengthened with fiber-reinforced polymer
Manalo et al. Flexural behaviour of glue-laminated fibre composite sandwich beams
US6173550B1 (en) Wood I-beam conditioned reinforcement panel
US5456781A (en) Method of manufacturing glue-laminated wood structural member with synthetic fiber reinforcement
Ribeiro et al. Study of strengthening solutions for glued-laminated wood beams of maritime pine wood
US5744228A (en) Use of synthetic fibers in a glueline to increase resistance to sag in wood and wood composite structures
US5736220A (en) Surface treated synthetic reinforcement for structural wood members
Shang et al. Experimental study of the bending performance of hollow glulam beams
EP0079761B1 (en) A sturdy i-girder
US20030148085A1 (en) Fiber-reinforced thermoset composite rods bonded to wood
US5891550A (en) Structural member with increased shear resistance
JP2001138305A (en) Laminated wood reinforced with bamboo material
CN105235026A (en) Method for manufacturing fiber bamboo bunch veneer composite board coupled beam
SU947349A1 (en) Wooden beam
AU715968B2 (en) Method of manufacturing glue-laminated wood structural member with synthetic fiber reinforcement
Chajes et al. Experimental testing of composite wood beams for use in timber bridges
Winistorfer et al. Bending performance of spliced, nailed-laminated posts
JPH09220707A (en) Prestressed laminated wood and its production
JPH1034613A (en) Structure of laminated wood
JP3043313B2 (en) Steel stiffened glulam
Raftery et al. Repair of glulam beams using GFRP rods
AU724723B2 (en) Structural wood systems and synthetic reinforcement for structural wood members