JPH1050294A - Power storage element with thermosensitive resistor layer - Google Patents

Power storage element with thermosensitive resistor layer

Info

Publication number
JPH1050294A
JPH1050294A JP8206167A JP20616796A JPH1050294A JP H1050294 A JPH1050294 A JP H1050294A JP 8206167 A JP8206167 A JP 8206167A JP 20616796 A JP20616796 A JP 20616796A JP H1050294 A JPH1050294 A JP H1050294A
Authority
JP
Japan
Prior art keywords
heat
sensitive resistor
storage element
resistor layer
power storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8206167A
Other languages
Japanese (ja)
Inventor
Koji Nagaki
浩司 長木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP8206167A priority Critical patent/JPH1050294A/en
Publication of JPH1050294A publication Critical patent/JPH1050294A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power storage element with no fear of rupture or fire of the power storage element even if high current caused by accidental short circuit of the power storage element flows, high safety, and high energy density. SOLUTION: By using conductive microbeads obtained by covering Ni or Cu on the surface of a hollow balloon formed with the partition of thermoplastic resin having a melting point of 120-170 deg.C as a thermosensitive resistor 3, even if a power storage element is accidentally short-circuited, high current flows, and temperature is raised, the resin partition of the conductive microbeads is melted, and the conductive microbeads are electrically separated each other. Resistance value of a thermosensitive resistor layer mainly comprising the thermosensitive resistors is sharply increased, resistance value between an electrode current collector and an electrode layer is increased, and energy in the electrode layer is instantaneously released.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、蓄電素子に関する
もので、特に蓄電素子の安全性の改良に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power storage device, and more particularly to an improvement in safety of a power storage device.

【0002】[0002]

【従来の技術】近年、電子機器の高性能化や電気自動車
の開発に際し、これらに搭載される蓄電素子に対して高
エネルギー化の要求が強まっている。これらの蓄電素子
には、従来のNi−Cd電池や鉛電池、Ni−MH電
池、電気二重層コンデンサーもしくは、負極活物質に金
属リチウムやリチウム合金、リチウムイオンを吸蔵放出
可能な炭素材料を用い、正極活物質にリチウムコバルト
酸化物、リチウムニッケル酸化物、リチウムマンガンス
ピネル、二酸化マンガン等の遷移金属酸化物や塩化チオ
ニル、SO2等の硫化物を用いたリチウム電池等の開発
がなされている。
2. Description of the Related Art In recent years, in the development of high-performance electronic devices and electric vehicles, there has been an increasing demand for higher energy storage elements mounted thereon. For these energy storage devices, conventional Ni-Cd batteries, lead batteries, Ni-MH batteries, electric double layer capacitors, or a negative electrode active material using metallic lithium, a lithium alloy, or a carbon material capable of inserting and extracting lithium ions, Development of lithium batteries and the like using transition metal oxides such as lithium cobalt oxide, lithium nickel oxide, lithium manganese spinel, and manganese dioxide and sulfides such as thionyl chloride and SO 2 as the positive electrode active material has been made.

【0003】これらの高性能電池は、高エネルギー密度
を有しており、電池に対する高エネルギー化や小型軽量
化の要求に沿うものと期待されている。しかしその反
面、誤って短絡すると非常に高い熱量を発し、最悪の場
合、電池が破裂、炎上するという安全性の問題があっ
た。従来の安全性への対応としては、一定温度以上にな
ると正極と負極を隔てるセパレータの微細孔が溶融閉塞
する機構やサーミスタもしくは温度ヒューズ等の安全機
構を蓄電素子と直列接続する方法、または蓄電素子内の
電池端子と電気エネルギーを蓄積する電極とを上記の安
全素子を介して電気的に接続する方法が用いられてき
た。しかし、これら従来の方法では、例えばセパレータ
の溶断や電極の膨潤、振動によるずれによって蓄電素子
内部で電極同士が直接接触し内部短絡が発生した場合
に、短絡電流を効果的に抑制することができなかった。
このため、高エネルギー密度を有するものは安全対策が
非常に難しく、特に大型化は極めて困難であった。
[0003] These high-performance batteries have a high energy density and are expected to meet the demands for higher energy and smaller and lighter batteries. However, on the other hand, there is a problem of safety such that if a short circuit occurs accidentally, a very large amount of heat is generated, and in the worst case, the battery explodes and burns. In response to conventional safety, a mechanism that melts and closes the micropores of the separator that separates the positive electrode and the negative electrode when the temperature exceeds a certain temperature, a method of connecting a safety mechanism such as a thermistor or thermal fuse in series with the power storage element, or a power storage element A method of electrically connecting a battery terminal in the inside and an electrode for storing electric energy via the above-described safety element has been used. However, these conventional methods can effectively suppress the short-circuit current when, for example, the electrodes are directly in contact with each other inside the power storage element due to displacement due to fusing of the separator, swelling of the electrodes, and vibration, causing an internal short circuit. Did not.
For this reason, those having a high energy density are very difficult to take safety measures, and especially, it is extremely difficult to increase the size.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、蓄電
素子を誤って短絡し大電流が流れても、蓄電素子が破
裂、炎上する危険のない安全性の高い、高エネルギー密
度の蓄電素子を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a high-energy-density energy storage device having a high safety without a risk of the energy storage device exploding or burning even if a large current flows due to an erroneous short circuit of the energy storage device. Is to provide.

【0005】[0005]

【課題を解決するための手段】本発明は、熱敏感性抵抗
体に120〜170℃の範囲に融点をもつ熱可塑性樹脂
の隔壁で形成された中空バルーンの表面にNiもしくは
Cuを被覆した導電性マイクロビーズを用いることで、
蓄電素子において誤って短絡し、大電流が流れ温度が上
昇すると、導電性マイクロビーズの樹脂隔壁が溶融し、
それまで接触して導通していた導電性マイクロビーズ同
士が離れることで、熱敏感性抵抗体を主成分とする熱敏
感性抵抗体層の抵抗値が急激に上昇して、電極集電体
(正極活物質層、負極活物質層)と電極層(正極、負
極)との間の抵抗値が上昇し、その結果、電極層のエネ
ルギーが一気に解放されることを抑制できるという知見
を得たことで完成するに至った。
According to the present invention, there is provided a conductive balloon in which the surface of a hollow balloon formed of a thermoplastic resin having a melting point in the range of 120 to 170 ° C. is coated with Ni or Cu. By using conductive micro beads,
When a short circuit occurs accidentally in the storage element, a large current flows and the temperature rises, the resin partition walls of the conductive microbeads melt,
When the conductive microbeads that have been in contact with the conductive microbeads are separated from each other, the resistance value of the thermosensitive resistor layer mainly composed of the thermosensitive resistor rapidly increases, and the electrode current collector ( It has been found that the resistance between the positive electrode active material layer and the negative electrode active material layer) and the electrode layer (the positive electrode and the negative electrode) increases, and as a result, the energy of the electrode layer can be prevented from being released at once. It was completed in.

【0006】即ち、一定温度以上になると不可逆的に抵
抗値が上昇する熱敏感性抵抗体を主成分とする熱敏感性
抵抗体層が電極集電体の表面に形成され、その上に電気
エネルギーを蓄積する電極層が積層形成されてなる熱敏
感性抵抗体層付き蓄電素子であり、更に好ましい態様
は、該熱敏感性抵抗体層が、少なくとも該熱敏感性抵抗
体とマトリックス樹脂からなり、該熱敏感性抵抗体層が
導電助剤を含み、該熱敏感性抵抗体が、樹脂隔壁からな
る中空バルーンの表面を導電性金属で被覆した導電性マ
イクロビーズであり、該中空バルーンの樹脂隔壁が、1
20〜170℃の範囲に融点をもつ熱可塑性樹脂から選
択され、該中空バルーンの被覆金属が、NiもしくはC
uである熱敏感性抵抗体層付き蓄電素子である。
That is, a heat-sensitive resistor layer mainly composed of a heat-sensitive resistor whose resistance value increases irreversibly when the temperature exceeds a certain temperature is formed on the surface of the electrode current collector, and electric energy is formed thereon. Is a power storage element with a heat-sensitive resistor layer formed by laminating an electrode layer that accumulates, more preferably, the heat-sensitive resistor layer comprises at least the heat-sensitive resistor and a matrix resin, The heat-sensitive resistor layer contains a conductive auxiliary, and the heat-sensitive resistor is conductive microbeads in which the surface of a hollow balloon made of a resin partition is coated with a conductive metal. But 1
Selected from thermoplastic resins having a melting point in the range of 20 to 170 ° C., wherein the coating metal of the hollow balloon is Ni or C;
u is a power storage element with a heat-sensitive resistor layer.

【0007】[0007]

【発明の実施の形態】まず、本発明で用いる熱敏感性抵
抗体を詳細に述べる。使用する熱敏感性抵抗体は、12
0〜170℃の範囲に融点をもつ熱可塑性樹脂の隔壁で
形成された粒径0.5〜20μmの中空バルーンの表面
に、メッキ、蒸着等の従来公知の方法で、Niもしくは
Cuを被覆した導電性マイクロビーズからなる。中空バ
ルーンは、低沸点の親油性の溶媒を適当な界面活性剤を
用いて水中でO/W型エマルジョン化した後、液中重合
法で樹脂隔壁を形成するという従来公知のマイクロカプ
セル製造方法で作製したものを分級、乾燥した後、適当
な方法で内部の低沸点溶媒を除去して得られる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the heat-sensitive resistor used in the present invention will be described in detail. The heat sensitive resistor used is 12
Ni or Cu was coated on the surface of a hollow balloon having a particle size of 0.5 to 20 μm formed by a partition wall of a thermoplastic resin having a melting point in the range of 0 to 170 ° C. by a conventionally known method such as plating and vapor deposition. It consists of conductive microbeads. Hollow balloons are prepared by a conventionally known method for producing microcapsules, in which a low-boiling lipophilic solvent is O / W-emulsified in water using an appropriate surfactant, and then a resin partition is formed by a submerged polymerization method. After the produced product is classified and dried, it is obtained by removing the internal low boiling point solvent by an appropriate method.

【0008】樹脂隔壁成分としては、PMMA系樹脂、
ポリアクリロニトリル、塩化ビニリデン−ポリアクリロ
ニトリル共重合体樹脂等が好ましく使用されるが、融点
が120〜170℃の範囲にあるものを使用する必要が
ある。これらの中で特に好ましいのは、融点を120〜
170℃の範囲に設定することが比較的容易なPMMA
系樹脂と塩化ビニリデン−ポリアクリロニトリル共重合
体樹脂である。
[0008] As the resin partition wall component, PMMA resin,
Polyacrylonitrile, vinylidene chloride-polyacrylonitrile copolymer resin or the like is preferably used, but it is necessary to use a resin having a melting point in the range of 120 to 170 ° C. Particularly preferred among these are those having a melting point of 120 to
PMMA relatively easy to set in the range of 170 ° C
Resin and vinylidene chloride-polyacrylonitrile copolymer resin.

【0009】樹脂隔壁の融点が120℃未満の中空バル
ーンを使用すると、蓄電素子が破裂、炎上する恐れが全
くない低い温度でも、熱敏感性抵抗体層の抵抗値が上昇
することがあるため好ましくない。また、170℃以上
の融点をもつ樹脂隔壁の中空バルーンを使用すると、マ
トリックス樹脂の方が先に溶融して抵抗値の上昇が発現
しなかったり、電池内の電解液成分の方が先に沸騰蒸発
して蓄電素子が破裂、炎上する恐れがあるため好ましく
ない。また、中空バルーンの粒径は0.5〜20μm程
度が好ましく使用され、更に好ましくは1〜10μm程
度である。粒径が0.5μm以下の中空バルーンは実際
上作製することは困難であり、20μm以上になると熱
敏感性抵抗体層の厚みを勘案すると大きすぎて好ましく
ない。
It is preferable to use a hollow balloon having a melting point of less than 120 ° C. since the resistance value of the heat-sensitive resistor layer may increase even at a low temperature at which there is no possibility that the power storage element will burst or burn. Absent. Further, when a hollow balloon having a resin partition wall having a melting point of 170 ° C. or more is used, the matrix resin is melted first, so that the resistance value does not increase, or the electrolyte component in the battery boils first. It is not preferable because the power storage element may evaporate and burst or burn. The particle diameter of the hollow balloon is preferably about 0.5 to 20 μm, more preferably about 1 to 10 μm. It is difficult to actually produce a hollow balloon having a particle diameter of 0.5 μm or less, and if it is 20 μm or more, it is not preferable because the thickness of the heat-sensitive resistor layer is too large in consideration of the thickness.

【0010】上記のようにして得られた中空バルーンの
表面に、無電解メッキ法や蒸着法等の従来公知の方法
で、NiもしくはCuを被覆させ、導電性マイクロビー
ズを作製する。得られた導電性マイクロビーズの抵抗値
は10〜1×10-4Ω・cmが好ましく、導電性金属の
被覆厚みで調整することができる。導電性マイクロビー
ズの抵抗値が10Ω・cm以上になると、熱敏感性抵抗
体層の抵抗値が必要以上に高くなり実用上問題がある。
また1×10-4Ω・cm以下の抵抗値にすることは過剰
の特性を付与することになり好ましくない。
The surface of the hollow balloon obtained as described above is coated with Ni or Cu by a conventionally known method such as an electroless plating method or a vapor deposition method to produce conductive microbeads. The resistance value of the obtained conductive microbeads is preferably 10 to 1 × 10 −4 Ω · cm, and can be adjusted by the coating thickness of the conductive metal. When the resistance value of the conductive microbeads is 10 Ω · cm or more, the resistance value of the heat-sensitive resistor layer becomes unnecessarily high, and there is a practical problem.
Further, it is not preferable to set the resistance value to 1 × 10 −4 Ω · cm or less, since an excessive property is given.

【0011】次に本発明の熱敏感性抵抗体層の作製方法
を述べる。熱敏感性抵抗体層の形成方法としては、熱敏
感性抵抗体の導電性マイクロビーズとマトリックス樹脂
と適当な溶媒とを混合スラリー化したペーストを集電体
上に従来公知の方法で塗布乾燥して作製する方法が最も
好ましい。層の厚みとしては3〜30μm程度が好まし
く、特に好ましくは5〜20μm程度である。層厚が3
μm未満では抵抗値が上昇した場合、膜が破壊され抵抗
値制御の効果が無くなる可能性があるため好ましくな
い。また30μm以上の厚みでは体積や重量を取りすぎ
るため電池の小型軽量化の要求を勘案すると好ましくな
い。
Next, a method for manufacturing the heat-sensitive resistor layer of the present invention will be described. As a method of forming the heat-sensitive resistor layer, a paste obtained by mixing conductive microbeads of a heat-sensitive resistor, a matrix resin, and a suitable solvent into a slurry is applied onto a current collector by a conventionally known method and dried. Is most preferable. The thickness of the layer is preferably about 3 to 30 μm, particularly preferably about 5 to 20 μm. Layer thickness 3
If the thickness is less than μm, when the resistance value increases, the film may be broken and the effect of controlling the resistance value may be lost, which is not preferable. On the other hand, if the thickness is 30 μm or more, the volume and the weight are excessively increased, which is not preferable in view of the demand for reducing the size and weight of the battery.

【0012】使用されるマトリックス樹脂は、銅箔やア
ルミ箔等の集電体との密着性に優れ、かつ電極層の結着
剤に好んで使用されるポリフッ化ビニリデン(PVD
F)との密着性に優れたものが好ましい。具体的には、
PVDF、フッ素ゴム等のフッ素系樹脂やポリイミド樹
脂、ポリアミドイミド樹脂、ポリアミド樹脂等の熱可塑
性樹脂やフェノール樹脂、エポキシ樹脂等の熱硬化性樹
脂が挙げられる。この中で、電解液に対する耐性や電極
層結着剤のPVDFとの密着性を勘案すると、同じフッ
素系樹脂のPVDFやフッ素ゴムの使用が特に好まし
い。
The matrix resin used is polyvinylidene fluoride (PVD) which has excellent adhesion to a current collector such as a copper foil or an aluminum foil and is preferably used as a binder for an electrode layer.
Those excellent in adhesion to F) are preferable. In particular,
Thermoplastic resins such as PVDF, fluorocarbon resins such as fluororubber, polyimide resins, polyamide imide resins, and polyamide resins, and thermosetting resins such as phenol resins and epoxy resins. Among them, the use of the same fluororesin, PVDF or fluororubber, is particularly preferable in consideration of the resistance to the electrolytic solution and the adhesion of the electrode layer binder to PVDF.

【0013】マトリックス樹脂に熱可塑性樹脂を使用し
た場合、その融点が導電性マイクロビーズの隔壁樹脂の
融点より高いものを選定するのが好ましい。導電性マイ
クロビーズの隔壁樹脂の融点より低い融点の樹脂を使用
すると、導電性マイクロビーズの樹脂隔壁が溶融する前
にマトリックス樹脂が溶融して流動性が発現し、却って
熱敏感性抵抗体層抵抗値が減少してしまう恐れがあるの
で好ましくない。マトリックス樹脂は、熱敏感性抵抗体
である導電性マイクロビーズ100重量部に対して、3
〜20重量部添加され、特に好ましくは5〜15重量部
添加される。3重量部未満の添加では、集電体との密着
性が乏しくなり好ましくない。また20重量部以上の添
加は抵抗値が高くなりすぎて好ましくない。
When a thermoplastic resin is used as the matrix resin, it is preferable to select a resin having a melting point higher than that of the partition resin of the conductive microbeads. If a resin with a melting point lower than the melting point of the conductive microbead partition resin is used, the matrix resin will melt before the conductive microbead resin partition melts and fluidity will develop, and on the contrary, the heat-sensitive resistor layer resistance This is not preferable because the value may decrease. The matrix resin is 3 parts per 100 parts by weight of the conductive microbeads as the heat-sensitive resistor.
-20 parts by weight, particularly preferably 5-15 parts by weight. Addition of less than 3 parts by weight is not preferred because adhesion to the current collector is poor. Addition of more than 20 parts by weight is not preferable because the resistance value becomes too high.

【0014】尚、熱敏感性抵抗体層には黒鉛、カーボ
ン、金属粒子等の導電剤を導電助剤として添加すること
もできる。添加量は必要な導電性を勘案して選択すれば
よい。こうして得られた熱敏感性抵抗体層上に、電気エ
ネルギーを蓄積する電極層を従来公知の方法で積層形成
して、本発明の蓄電素子を得ることができる。
Incidentally, a conductive agent such as graphite, carbon, metal particles or the like can be added to the heat-sensitive resistor layer as a conductive assistant. The amount of addition may be selected in consideration of the required conductivity. An electrode layer for accumulating electric energy is formed on the thus obtained heat-sensitive resistor layer by a conventionally known method, whereby the electric storage element of the present invention can be obtained.

【0015】[0015]

【実施例】以下に本発明の蓄電素子がリチウム電池であ
る場合についての実施例を述べるが、本発明はこれらに
限定されるものではなく、かつ鉛電池やNi−Cd電
池、Ni−MH電池、電気二重層コンデンサー等に適用
しても良い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments in which the electric storage element of the present invention is a lithium battery will be described below, but the present invention is not limited to these, and lead batteries, Ni-Cd batteries, Ni-MH batteries And an electric double layer capacitor.

【0016】《実施例1》 <実施例1の熱敏感性抵抗体層の形成>熱敏感性抵抗体
として、粒径2〜8μmの塩化ビニリデン−ポリアクリ
ロニトリル共重合体樹脂隔壁(樹脂隔壁軟化点130
℃)の中空バルーンに無電解メッキでNiを被覆し、抵
抗値1×10-3Ω・cmの導電性マイクロビーズを得
た。この導電性マイクロビーズ100重量部とマトリッ
クス樹脂としてPVDF粉末10重量部とをN−メチル
ピロリドン中で混合スラリー化して得たペーストを、正
極の集電体に使用する20μm厚のアルミ箔と負極の集
電体に使用する12μmの銅箔のそれぞれに、片面乾燥
後厚さが10μmになるように両面に塗布乾燥して熱敏
感性抵抗体層を形成した。
Example 1 <Formation of Heat-Sensitive Resistor Layer of Example 1> As a heat-sensitive resistor, a vinylidene chloride-polyacrylonitrile copolymer resin partition wall having a particle size of 2 to 8 μm (resin partition softening point) 130
° C) was coated with Ni by electroless plating to obtain conductive microbeads having a resistance value of 1 × 10 −3 Ω · cm. A paste obtained by mixing and slurrying 100 parts by weight of the conductive microbeads and 10 parts by weight of PVDF powder as a matrix resin in N-methylpyrrolidone was used as a 20 μm-thick aluminum foil used for a current collector of a positive electrode and a negative electrode. Each of the 12 μm copper foils used for the current collector was dried on one side and dried on both sides so that the thickness became 10 μm to form a heat-sensitive resistor layer.

【0017】<実施例1の正極の作製>正極活物質とし
て平均粒径5μmのリチウムマンガンスピネル88重量
部と導電助剤のケッチェンブラック2重量部と結着剤の
PVDF粉末10重量部とをN−メチルピロリドン中で
混合スラリー化して得たペーストを、正極の集電体用の
熱敏感性抵抗体層上に乾燥後の片面厚みが100μmに
なるように両面に塗布乾燥し正極活物質層を形成した
後、ロールプレス機で圧延して密度を調整して正極を得
た。
<Preparation of Positive Electrode of Example 1> As a positive electrode active material, 88 parts by weight of lithium manganese spinel having an average particle diameter of 5 μm, 2 parts by weight of Ketjen black as a conductive additive, and 10 parts by weight of PVDF powder as a binder were used. A paste obtained by mixing and slurrying in N-methylpyrrolidone is coated on the heat-sensitive resistor layer for the current collector of the positive electrode and dried on both sides such that the thickness on one side after drying is 100 μm, and the positive electrode active material layer is dried. Was formed and then rolled with a roll press to adjust the density to obtain a positive electrode.

【0018】<実施例1の負極の作製>負極活物質とし
て平均粒径25μmの人造黒鉛90重量部と結着剤のP
VDF10重量部とをN−メチルピロリドン中で混合ス
ラリー化して得たペーストを、負極の集電体用の熱敏感
性抵抗体層上に乾燥後の片面厚みが100μmになるよ
うに両面に塗布乾燥し負極活物質層を形成した後、ロー
ルプレス機で圧延して密度を調整して負極を得た。
<Preparation of Negative Electrode of Example 1> 90 parts by weight of artificial graphite having an average particle size of 25 μm as a negative electrode active material and P of a binder were used.
A paste obtained by mixing and slurrying 10 parts by weight of VDF in N-methylpyrrolidone is applied on a heat-sensitive resistor layer for a current collector of a negative electrode and dried on both sides so that the thickness on one side after drying becomes 100 μm. After forming the negative electrode active material layer, the negative electrode was obtained by adjusting the density by rolling with a roll press.

【0019】《実施例2》 <実施例2の熱敏感性抵抗体層の形成>熱敏感性抵抗体
として、粒径5〜15μmのPMMA系樹脂隔壁(樹脂
隔壁軟化点160℃)の中空バルーンに無電解メッキで
Cuを被覆し、抵抗値1×10-2Ω・cmの導電性マイ
クロビーズを得た。この導電性マイクロビーズ100重
量部とマトリックス樹脂としてPVDF粉末10重量部
とをN−メチルピロリドン中で混合スラリー化して得た
ペーストを、正極の集電体に使用する20μm厚のアル
ミ箔と負極の集電体に使用する12μmの銅箔のそれぞ
れに、片面乾燥後厚さが20μmになるように両面に塗
布乾燥して熱敏感性抵抗体層を形成した。正極及び負極
については、実施例1と同様にして正極、負極を作製し
た。
Example 2 <Formation of Heat-Sensitive Resistor Layer of Example 2> A hollow balloon having a particle size of 5 to 15 μm and a PMMA-based resin partition wall (softening point of resin partition wall: 160 ° C.) was used as the heat-sensitive resistor. Was coated with Cu by electroless plating to obtain conductive microbeads having a resistance value of 1 × 10 −2 Ω · cm. A paste obtained by mixing and slurrying 100 parts by weight of the conductive microbeads and 10 parts by weight of PVDF powder as a matrix resin in N-methylpyrrolidone was used as a 20 μm-thick aluminum foil used for a current collector of a positive electrode and a negative electrode. Each of the 12 μm copper foils used for the current collector was dried on one side and dried on both sides so that the thickness became 20 μm to form a heat-sensitive resistor layer. About the positive electrode and the negative electrode, the positive electrode and the negative electrode were produced in the same manner as in Example 1.

【0020】《実施例3》 <実施例3の熱敏感性抵抗体層の形成>熱敏感性抵抗体
として、粒径3〜10μmのPMMA系樹脂隔壁(樹脂
隔壁軟化点140℃)の中空バルーンに無電解メッキで
Cuを被覆し、抵抗値1×10-2Ω・cmの導電性マイ
クロビーズを得た。この導電性マイクロビーズ100重
量部とマトリックス樹脂としてPVDF粉末10重量部
と導電助剤としてケッチェンブラック2重量部をN−メ
チルピロリドン中で混合スラリー化して得たペースト
を、正極の集電体に使用する20μm厚のアルミ箔と負
極の集電体に使用する12μmの銅箔のそれぞれに、片
面乾燥後厚さが15μmになるように両面に塗布乾燥し
て熱敏感性抵抗体層を形成した。正極及び負極について
は、実施例1と同様にして正極、負極を作製した。
Example 3 <Formation of Heat-Sensitive Resistor Layer of Example 3> As a heat-sensitive resistor, a hollow balloon having a particle diameter of 3 to 10 μm and a PMMA-based resin partition wall (softening point of resin partition wall: 140 ° C.) Was coated with Cu by electroless plating to obtain conductive microbeads having a resistance value of 1 × 10 −2 Ω · cm. A paste obtained by mixing and slurrying 100 parts by weight of the conductive microbeads, 10 parts by weight of PVDF powder as a matrix resin, and 2 parts by weight of Ketjen black as a conductive aid in N-methylpyrrolidone was used as a current collector for a positive electrode. A 20 μm thick aluminum foil to be used and a 12 μm copper foil to be used as a current collector for the negative electrode were coated on both sides so that the thickness became 15 μm after drying on one side, and then dried to form a heat-sensitive resistor layer. . About the positive electrode and the negative electrode, the positive electrode and the negative electrode were produced in the same manner as in Example 1.

【0021】《比較例1》 <比較例1の正極の作製>正極活物質として平均粒径5
μmのリチウムマンガンスピネル88重量部と導電助剤
のケッチェンブラック2重量部と結着剤のPVDF粉末
10重量部とをN−メチルピロリドン中で混合スラリー
化して得たペーストを、集電体の20μm厚のアルミ箔
上に乾燥後の片面厚みが100μmになるように両面に
塗布乾燥し正極活物質層を形成した後、ロールプレス機
で圧延して密度を調整して正極を得た。
Comparative Example 1 <Preparation of Positive Electrode of Comparative Example 1>
A paste obtained by mixing and slurrying 88 parts by weight of lithium manganese spinel having a thickness of 2 μm, 2 parts by weight of Ketjen black as a conductive additive, and 10 parts by weight of PVDF powder as a binder in N-methylpyrrolidone was used as a current collector. A positive electrode active material layer was formed by coating and drying both sides of a 20-μm-thick aluminum foil so that the single-sided thickness after drying was 100 μm to form a positive electrode active material layer, and then rolling by a roll press to adjust the density to obtain a positive electrode.

【0022】<比較例1の負極の作製>負極活物質とし
て平均粒径25μmの人造黒鉛90重量部と結着剤のP
VDF10重量部とをN−メチルピロリドン中で混合ス
ラリー化して得たペーストを、集電体の12μm厚の銅
箔上に乾燥後の片面厚みが100μmになるように両面
に塗布乾燥し負極活物質層を形成した後、ロールプレス
機で圧延して密度を調整して負極を得た。
<Preparation of Negative Electrode of Comparative Example 1> 90 parts by weight of artificial graphite having an average particle size of 25 μm as a negative electrode active material and P
A paste obtained by mixing and slurrying 10 parts by weight of VDF in N-methylpyrrolidone was coated on a 12 μm thick copper foil of a current collector, dried and coated on both sides such that the thickness on one side was 100 μm, and then dried. After the layer was formed, the density was adjusted by rolling with a roll press to obtain a negative electrode.

【0023】《比較例2》 <比較例2の熱敏感性抵抗体層の形成>熱敏感性抵抗体
として、粒径2〜8μmの塩化ビニリデン−ポリアクリ
ロニトリル共重合体樹脂隔壁(樹脂隔壁軟化点90℃)
の中空バルーンに無電解メッキでNiを被覆し、抵抗値
1×10-3Ω・cmの導電性マイクロビーズを得た。こ
の導電性マイクロビーズ100重量部とマトリックス樹
脂としてPVDF粉末10重量部とをN−メチルピロリ
ドン中で混合スラリー化して得たペーストを、正極の集
電体に使用する20μm厚のアルミ箔と負極の集電体に
使用する12μmの銅箔のそれぞれに、片面乾燥後厚さ
が20μmになるように両面に塗布乾燥して熱敏感性抵
抗体層を形成した。正極及び負極については、実施例1
と同様にして正極、負極を作製した。
Comparative Example 2 <Formation of Heat-Sensitive Resistor Layer of Comparative Example 2> As the heat-sensitive resistor, a vinylidene chloride-polyacrylonitrile copolymer resin partition wall having a particle size of 2 to 8 μm (softening point of resin partition wall) 90 ° C)
Was coated with Ni by electroless plating to obtain conductive microbeads having a resistance value of 1 × 10 −3 Ω · cm. A paste obtained by mixing and slurrying 100 parts by weight of the conductive microbeads and 10 parts by weight of PVDF powder as a matrix resin in N-methylpyrrolidone was used as a 20 μm-thick aluminum foil used for a current collector of a positive electrode and a negative electrode. Each of the 12 μm copper foils used for the current collector was dried on one side and dried on both sides so that the thickness became 20 μm to form a heat-sensitive resistor layer. For the positive electrode and the negative electrode, see Example 1
In the same manner as in the above, a positive electrode and a negative electrode were produced.

【0024】《比較例3》 <比較例3の熱敏感性抵抗体層の形成>熱敏感性抵抗体
として、粒径3〜10μmのPMMA系樹脂隔壁(樹脂
隔壁軟化点190℃)の中空バルーンに無電解メッキで
Cuを被覆し、抵抗値1×10-2Ω・cmの導電性マイ
クロビーズを得た。この導電性マイクロビーズ100重
量部とマトリックス樹脂としてPVDF粉末10重量部
とをN−メチルピロリドン中で混合スラリー化して得た
ペーストを、正極の集電体に使用する20μm厚のアル
ミ箔と負極の集電体に使用する12μmの銅箔のそれぞ
れに、片面乾燥後厚さが15μmになるように両面に塗
布乾燥して熱敏感性抵抗体層を形成した。正極及び負極
については、実施例1と同様にして正極、負極を作製し
た。
<Comparative Example 3><Formation of Heat-Sensitive Resistor Layer of Comparative Example 3> As a heat-sensitive resistor, a hollow balloon having a particle diameter of 3 to 10 μm and a PMMA-based resin partition wall (softening point of resin partition wall: 190 ° C.) Was coated with Cu by electroless plating to obtain conductive microbeads having a resistance value of 1 × 10 −2 Ω · cm. A paste obtained by mixing and slurrying 100 parts by weight of the conductive microbeads and 10 parts by weight of PVDF powder as a matrix resin in N-methylpyrrolidone was used as a 20 μm-thick aluminum foil used for a current collector of a positive electrode and a negative electrode. Each of the 12 μm copper foils used for the current collector was dried on one side and then dried on both sides to a thickness of 15 μm to form a heat-sensitive resistor layer. About the positive electrode and the negative electrode, the positive electrode and the negative electrode were produced in the same manner as in Example 1.

【0025】《電池の作製》実施例及び比較例で作製し
た電極を微多孔性ポリプロピレンフィルム製セパレータ
を介して円筒状に巻き回して図1に示す電極群を形成し
た。この電極群を鋼板製の電池缶に挿入した後、エチレ
ンカーボネート、ジメチルカーボネートとジエチルカー
ボネートを2:2:1の体積比で混合した溶媒に、六フ
ッ化燐酸リチウムを1モル/リットル溶解させた電解液
を注入した後、かしめ方式により封口して電池を作製し
た。
<< Preparation of Battery >> The electrodes prepared in Examples and Comparative Examples were wound into a cylindrical shape via a microporous polypropylene film separator to form an electrode group shown in FIG. After inserting this electrode group into a battery can made of steel plate, 1 mol / l of lithium hexafluorophosphate was dissolved in a solvent in which ethylene carbonate, dimethyl carbonate and diethyl carbonate were mixed at a volume ratio of 2: 2: 1. After injecting the electrolytic solution, the battery was sealed by caulking to produce a battery.

【0026】《安全性の確認》作製した電池をオーブン
中に投入し、室温から200℃まで昇温させたときの抵
抗値の変化を測定した。その結果を図2に示す。実施例
の電池は、いずれも熱敏感性抵抗体の隔壁樹脂の融点前
後から抵抗値が急上昇しているが、比較例1及び3の電
池は200℃近辺でも殆ど抵抗値の変化が見られない。
また、比較例2の電池は室温でも既に抵抗値が高い。こ
の理由として熱敏感性抵抗体の隔壁樹脂の融点が90℃
しかないため、層を形成するときの乾燥温度で、既に中
空バルーンが変形して良好な導通がとれていないためで
あると考えられる。
<< Confirmation of Safety >> The prepared battery was put into an oven, and the change in resistance value when the temperature was raised from room temperature to 200 ° C. was measured. The result is shown in FIG. In all of the batteries of the examples, the resistance value sharply increased from around the melting point of the partition resin of the heat-sensitive resistor, but the batteries of Comparative Examples 1 and 3 showed almost no change in the resistance value even at around 200 ° C. .
The resistance of the battery of Comparative Example 2 is already high even at room temperature. The reason is that the melting point of the partition resin of the heat-sensitive resistor is 90 ° C.
This is considered to be because the hollow balloon was already deformed at the drying temperature at the time of forming the layer, and good conduction was not achieved.

【0027】次に、作製した電池に故意に内部短絡を発
生させ、電解液の温度変化を測定した結果を図3に示
す。実施例の電池は、いずれも熱敏感性抵抗体の隔壁樹
脂の融点前後までは電解液温度が上昇するが、その後は
緩やかに温度が下がる。これに対して比較例1及び3の
電池は200℃を超えても昇温し続けるため、途中で測
定を打ち切った。また、比較例2の電池は緩やかに昇温
し急激には温度が上昇しなかった。この理由も前述した
ように初期からの導通不良が考えられる。
Next, FIG. 3 shows the result of intentionally causing an internal short circuit in the manufactured battery and measuring the temperature change of the electrolytic solution. In each of the batteries of the examples, the temperature of the electrolytic solution rises up to around the melting point of the partition resin of the heat-sensitive resistor, but thereafter the temperature gradually falls. On the other hand, since the batteries of Comparative Examples 1 and 3 continued to heat up even when the temperature exceeded 200 ° C., the measurement was stopped halfway. The temperature of the battery of Comparative Example 2 rose slowly and did not rise sharply. The reason for this may be a conduction failure from the beginning as described above.

【0028】[0028]

【発明の効果】本発明の蓄電素子は、短絡時に集電体と
電極層との間の抵抗値が急激に上昇し、短絡電流を抑制
するので、短絡に起因する発熱による蓄電素子の破裂、
炎上を防止でき、且つ安全性の高い、高エネルギー密度
の蓄電素子を提供することができる。
According to the power storage device of the present invention, the resistance value between the current collector and the electrode layer sharply increases at the time of short-circuit, and the short-circuit current is suppressed.
It is possible to provide a high-energy-density power storage element that can prevent burning and has high safety.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の蓄電素子がリチウム二次電池である場
合の電極群を示した。
FIG. 1 shows an electrode group when a power storage element of the present invention is a lithium secondary battery.

【図2】実施例、比較例で作製した電池をオーブン中に
投入し、室温から200℃まで昇温させたときの抵抗値
の変化を示した。
FIG. 2 shows a change in resistance value when the batteries prepared in Examples and Comparative Examples were put into an oven and heated from room temperature to 200 ° C.

【図3】実施例、比較例で作製した電池に故意に内部短
絡を発生させた時の電解液の温度変化を示した。
FIG. 3 shows a change in temperature of an electrolytic solution when an internal short circuit is intentionally generated in the batteries prepared in Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

1・・・正極 2・・・負極 3・・・熱敏感性抵抗体層 4・・・正極活物質層 5・・・負極活物質層 6・・・微多孔性セパレータ 7・・・電極群 8・・・電極端子 DESCRIPTION OF SYMBOLS 1 ... Positive electrode 2 ... Negative electrode 3 ... Heat sensitive resistor layer 4 ... Positive electrode active material layer 5 ... Negative electrode active material layer 6 ... Microporous separator 7 ... Electrode group 8 ... electrode terminal

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 一定温度以上になると不可逆的に抵抗値
が上昇する熱敏感性抵抗体を主成分とする熱敏感性抵抗
体層が電極集電体の表面に形成され、その上に電気エネ
ルギーを蓄積する電極層が積層形成されてなることを特
徴とする熱敏感性抵抗体層付き蓄電素子。
1. A heat-sensitive resistor layer mainly composed of a heat-sensitive resistor whose resistance value increases irreversibly when the temperature exceeds a certain temperature is formed on the surface of the electrode current collector, and electric energy is formed thereon. An energy storage device with a heat-sensitive resistor layer, wherein an electrode layer that accumulates heat is laminated.
【請求項2】 該熱敏感性抵抗体層が、少なくとも該熱
敏感性抵抗体とマトリックス樹脂からなることを特徴と
する請求項1記載の熱敏感性抵抗体層付き蓄電素子。
2. The power storage element with a heat-sensitive resistor layer according to claim 1, wherein the heat-sensitive resistor layer comprises at least the heat-sensitive resistor and a matrix resin.
【請求項3】 該熱敏感性抵抗体層が導電助剤を含むこ
とを特徴とする請求項1または2記載の熱敏感性抵抗体
層付き蓄電素子。
3. The storage element with a heat-sensitive resistor layer according to claim 1, wherein the heat-sensitive resistor layer contains a conductive auxiliary.
【請求項4】 該熱敏感性抵抗体が、樹脂隔壁からなる
中空バルーンの表面を導電性金属で被覆した導電性マイ
クロビーズであることを特徴とする請求項1、2または
3記載の熱敏感性抵抗体層付き蓄電素子。
4. The heat-sensitive resistor according to claim 1, wherein the heat-sensitive resistor is a conductive microbead having a surface of a hollow balloon formed of a resin partition wall coated with a conductive metal. Storage element with resistive resistive layer.
【請求項5】 該中空バルーンの樹脂隔壁が、120〜
170℃の範囲に融点をもつ熱可塑性樹脂から選択され
ることを特徴とする請求項1、2、3または4記載の熱
敏感性抵抗体層付き蓄電素子。
5. The hollow balloon having a resin partition wall having a thickness of 120 to 120.
5. The storage element with a heat-sensitive resistor layer according to claim 1, wherein the storage element is selected from a thermoplastic resin having a melting point in a range of 170 [deg.] C.
【請求項6】 該中空バルーンの被覆金属が、Niもし
くはCuであることを特徴とする請求項1、2、3、4
または5記載の熱敏感性抵抗体層付き蓄電素子。
6. The method according to claim 1, wherein the coating metal of the hollow balloon is Ni or Cu.
Or a power storage element with a heat-sensitive resistor layer according to item 5.
JP8206167A 1996-08-05 1996-08-05 Power storage element with thermosensitive resistor layer Pending JPH1050294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8206167A JPH1050294A (en) 1996-08-05 1996-08-05 Power storage element with thermosensitive resistor layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8206167A JPH1050294A (en) 1996-08-05 1996-08-05 Power storage element with thermosensitive resistor layer

Publications (1)

Publication Number Publication Date
JPH1050294A true JPH1050294A (en) 1998-02-20

Family

ID=16518926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8206167A Pending JPH1050294A (en) 1996-08-05 1996-08-05 Power storage element with thermosensitive resistor layer

Country Status (1)

Country Link
JP (1) JPH1050294A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2002054524A1 (en) * 2000-12-28 2004-05-13 松下電器産業株式会社 Non-aqueous electrolyte secondary battery
JP2004253146A (en) * 2002-12-27 2004-09-09 Matsushita Electric Ind Co Ltd Electrochemical element
JP2006179432A (en) * 2004-12-24 2006-07-06 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
WO2008087814A1 (en) * 2007-01-16 2008-07-24 Panasonic Corporation Nonaqueous electrolyte secondary battery
WO2010103874A1 (en) * 2009-03-12 2010-09-16 日産自動車株式会社 Bipolar battery current collector and bipolar battery
JP2010244788A (en) * 2009-04-03 2010-10-28 Sharp Corp Nonaqueous secondary battery
WO2011062065A1 (en) * 2009-11-20 2011-05-26 日産自動車株式会社 Current collector for bipolar secondary battery
WO2013172257A1 (en) * 2012-05-15 2013-11-21 古河スカイ株式会社 Collector, electrode structure, nonaqueous electrolyte battery and power storage component, and method for producing collector
WO2014050653A1 (en) * 2012-09-28 2014-04-03 古河電気工業株式会社 Collector, electrode structure, nonaqueous electrolyte battery, conductive filler, and electricity storage component
WO2015046469A1 (en) * 2013-09-30 2015-04-02 日立化成株式会社 Lithium ion secondary battery cathode and lithium ion secondary battery using same
WO2020098770A1 (en) * 2018-11-16 2020-05-22 宁德时代新能源科技股份有限公司 Positive electrode piece and electrochemical device
US10944126B2 (en) 2014-12-08 2021-03-09 Showa Denko Materials Co., Ltd. Positive electrode for lithium ion secondary battery, and lithium ion secondary battery using the same

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2002054524A1 (en) * 2000-12-28 2004-05-13 松下電器産業株式会社 Non-aqueous electrolyte secondary battery
JP2004253146A (en) * 2002-12-27 2004-09-09 Matsushita Electric Ind Co Ltd Electrochemical element
US7547489B2 (en) 2002-12-27 2009-06-16 Panasonic Corporation Electrochemical device
JP2006179432A (en) * 2004-12-24 2006-07-06 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
WO2008087814A1 (en) * 2007-01-16 2008-07-24 Panasonic Corporation Nonaqueous electrolyte secondary battery
US8673498B2 (en) 2007-01-16 2014-03-18 Panasonic Corporation Nonaqueous electrolyte secondary battery
JP5387672B2 (en) * 2009-03-12 2014-01-15 日産自動車株式会社 Bipolar battery current collector and bipolar battery
WO2010103874A1 (en) * 2009-03-12 2010-09-16 日産自動車株式会社 Bipolar battery current collector and bipolar battery
US10177387B2 (en) 2009-03-12 2019-01-08 Nissan Motor Co., Ltd. Bipolar battery current collector that contracts to interrupt a flow of electric current in a direction thereof and bipolar battery
CN102349181A (en) * 2009-03-12 2012-02-08 日产自动车株式会社 Bipolar battery current collector and bipolar battery
KR101484433B1 (en) * 2009-03-12 2015-01-19 닛산 지도우샤 가부시키가이샤 Bipolar battery current collector and bipolar battery
JP2010244788A (en) * 2009-04-03 2010-10-28 Sharp Corp Nonaqueous secondary battery
JP5177301B2 (en) * 2009-11-20 2013-04-03 日産自動車株式会社 Current collector for bipolar secondary battery
WO2011062065A1 (en) * 2009-11-20 2011-05-26 日産自動車株式会社 Current collector for bipolar secondary battery
US9005807B2 (en) 2009-11-20 2015-04-14 Nissan Motor Co., Ltd. Current collector for bipolar secondary battery
US9786919B2 (en) 2012-05-15 2017-10-10 Uacj Corporation Current collector, electrode structure, nonaqueous electrolyte battery and electrical storage device, and method for producing current collector
CN104272509A (en) * 2012-05-15 2015-01-07 株式会社Uacj Collector, electrode structure, nonaqueous electrolyte battery and power storage component, and method for producing collector
WO2013172257A1 (en) * 2012-05-15 2013-11-21 古河スカイ株式会社 Collector, electrode structure, nonaqueous electrolyte battery and power storage component, and method for producing collector
WO2014050653A1 (en) * 2012-09-28 2014-04-03 古河電気工業株式会社 Collector, electrode structure, nonaqueous electrolyte battery, conductive filler, and electricity storage component
JPWO2015046469A1 (en) * 2013-09-30 2017-03-09 日立化成株式会社 Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
WO2015046469A1 (en) * 2013-09-30 2015-04-02 日立化成株式会社 Lithium ion secondary battery cathode and lithium ion secondary battery using same
US10573875B2 (en) 2013-09-30 2020-02-25 Hitachi Chemical Company, Ltd. Cathode for lithium ion secondary battery and lithium ion secondary battery using the same
US10944126B2 (en) 2014-12-08 2021-03-09 Showa Denko Materials Co., Ltd. Positive electrode for lithium ion secondary battery, and lithium ion secondary battery using the same
WO2020098770A1 (en) * 2018-11-16 2020-05-22 宁德时代新能源科技股份有限公司 Positive electrode piece and electrochemical device
US11196044B2 (en) 2018-11-16 2021-12-07 Contemporary Amperex Technology Co., Limited Positive electrode plate and electrochemical device

Similar Documents

Publication Publication Date Title
JP5219191B2 (en) Electrochemical element separator and electrochemical element
JP5477985B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JP3756815B2 (en) Battery separator and battery
JP5611505B2 (en) Battery separator and lithium secondary battery
JP4743747B2 (en) Separator, manufacturing method thereof, and nonaqueous electrolyte battery
JP5158678B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JP5526488B2 (en) Electrochemical devices
JP4038699B2 (en) Lithium ion battery
JP4927064B2 (en) Secondary battery
WO2017014245A1 (en) Lithium ion secondary battery
JP3677975B2 (en) Electrode and battery using the same
JP2006164761A5 (en)
JP2008123988A (en) Separator for electrochemical device, electrochemical device and method for manufacturing the same
US10763558B2 (en) Battery including thermal-expandable layer between pair of current collectors, and battery stack
JP5148360B2 (en) Porous substrate for separator, separator for electrochemical element, electrode and electrochemical element
JPH06231749A (en) Electricity storage element
JP4952878B2 (en) Primary battery
JP2013196781A (en) Positive electrode for electric device and electric device using the same
JPH1050294A (en) Power storage element with thermosensitive resistor layer
US20150064569A1 (en) Current collector, electrode structure, nonaqueous electrolyte battery, and electricity storage component
JP3811353B2 (en) Lithium ion secondary battery
WO1999067836A1 (en) Cell and method of producing the same
JP2006032359A (en) Method of manufacturing separator for battery and method of manufacturing battery
JP5930857B2 (en) Battery manufacturing method
WO1999067837A1 (en) Electrode, method of producing electrode, and cell comprising the electrode