JP5930857B2 - Battery manufacturing method - Google Patents

Battery manufacturing method Download PDF

Info

Publication number
JP5930857B2
JP5930857B2 JP2012130704A JP2012130704A JP5930857B2 JP 5930857 B2 JP5930857 B2 JP 5930857B2 JP 2012130704 A JP2012130704 A JP 2012130704A JP 2012130704 A JP2012130704 A JP 2012130704A JP 5930857 B2 JP5930857 B2 JP 5930857B2
Authority
JP
Japan
Prior art keywords
active material
material layer
current collector
battery
conductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012130704A
Other languages
Japanese (ja)
Other versions
JP2013254692A (en
Inventor
博人 西口
博人 西口
吉瀬 万希子
万希子 吉瀬
福本 久敏
久敏 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012130704A priority Critical patent/JP5930857B2/en
Publication of JP2013254692A publication Critical patent/JP2013254692A/en
Application granted granted Critical
Publication of JP5930857B2 publication Critical patent/JP5930857B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

この発明は、温度の上昇に伴い、抵抗が変化する電極を有した電池の製造方法に関する。 The present invention relates to a method of manufacturing a battery having an electrode whose resistance changes with increasing temperature.

リチウムイオン二次電池は、代表的な構成としてはリチウムを含む複合金属酸化物を活物質として含む正極、炭素材料を負極活物質として含む負極、正負極間を絶縁するポリオレフィン多孔膜セパレータ、非水系電解液を容器に封入してなる電池であり、高エネルギー密度及び高出力密度を満たすことから、電子機器用途の小型のものから電気自動車やスマートグリッド蓄電用途の大型のものまで幅広く使用されている。   Lithium ion secondary batteries typically have a positive electrode including a composite metal oxide containing lithium as an active material, a negative electrode including a carbon material as a negative electrode active material, a polyolefin porous membrane separator that insulates between the positive and negative electrodes, and a non-aqueous system. Batteries with electrolytes sealed in containers, satisfying high energy density and high output density, so they are widely used from small ones for electronic devices to large ones for electric vehicles and smart grid power storage. .

しかし、リチウムイオン二次電池は高エネルギー密度および高出力密度であるがゆえに急速な反応を起こす性質がある。例えば、過充電により電解液が酸化分解して発熱したり、局所的な衝撃等により生じた短絡によって瞬時に多量の電流が流れることで電池内温度が上昇し、その結果、電池内の電解液や正極材料の分解反応が促進されて更に電池温度が上昇して熱暴走が起きたり、分解反応により生じたガスが電池内圧を高めて電池が膨れる場合もある。そのため、リチウムイオン二次電池には急速に起こる反応に対する十分な対応策が必要とされている。   However, the lithium ion secondary battery has a high energy density and a high output density, and thus has a property of causing a rapid reaction. For example, the internal temperature of the battery rises due to a large amount of current flowing instantaneously due to a short circuit caused by local impact or the like due to oxidative decomposition of the electrolyte due to overcharge, and as a result, the electrolyte in the battery In some cases, the decomposition reaction of the positive electrode material is promoted and the battery temperature further rises to cause thermal runaway, or the gas generated by the decomposition reaction increases the internal pressure of the battery and the battery expands. Therefore, the lithium ion secondary battery needs a sufficient countermeasure against the reaction that occurs rapidly.

そこで、安全弁により内部圧力の上昇を逃がす、あるいは短絡による発熱に応じて抵抗が上昇して電流を遮断するPTC(正温度係数)素子を電池に組み込む、などが提案されている。しかし、安全弁は既にガスが発生した状態で効果が現れるものであり、またPTC素子は直接温度の上昇する電極部位とは離れた位置に設置されるため電池全体の温度が上昇した状態となって初めて効果が現れる。従って、これらは電池に大きな発熱が生じた後に動作する安全部品としての効果は高いが、更に確実性を高めるためには、電池に発熱が生じた直後に動作する対策が必要である。   In view of this, it has been proposed to incorporate a PTC (positive temperature coefficient) element into the battery, in which a rise in internal pressure is released by a safety valve, or a resistance that increases in response to heat generated by a short circuit to cut off current. However, the safety valve is effective when gas is already generated, and the PTC element is installed at a position away from the electrode part where the temperature directly increases, so the temperature of the entire battery is increased. The effect appears for the first time. Therefore, these are highly effective as safety parts that operate after a large amount of heat is generated in the battery. However, in order to further increase the reliability, a measure that operates immediately after the battery generates heat is required.

リチウムイオン二次電池の短絡時の発熱は短絡電流と内部抵抗により生じることから、短絡電流を抑制することで阻止できる。そこで、正負極間に配置したポリオレフィン製の多孔膜セパレータは、熱により軟化または溶融することにより、セパレータの孔部が閉塞されることでイオン電導性が低下し、短絡電流が減衰するシャットダウン特性を有したものが用いられる。しかし、発熱部位から離れた部位のセパレータは必ずしも溶融するとは限らず、また、さらに温度が上昇した場合にはセパレータが溶融、収縮することで正負極を電気的に絶縁する機能が失われ、短絡範囲が増大する可能性がある。   Since heat generation at the time of short-circuiting of the lithium ion secondary battery is caused by the short-circuit current and the internal resistance, it can be prevented by suppressing the short-circuit current. Therefore, the porous membrane separator made of polyolefin disposed between the positive and negative electrodes has a shutdown characteristic in which the ion conductivity is lowered and the short circuit current is attenuated by the pores of the separator being closed by being softened or melted by heat. What you have is used. However, the separator in the part away from the heat generating part does not always melt, and when the temperature rises further, the separator melts and contracts, so that the function of electrically insulating the positive and negative electrodes is lost, causing a short circuit. Range may increase.

また、短絡電流による発熱を抑制する機構として、PTC特性を有する電極構成が提案されている。電極自身がPTC特性を有することで短絡電流により生じる発熱に対し、付近の電極の導電性が低下するため短絡電流は速やかに減衰すると期待される。
例えば、下記特許文献1では、正極にPTC特性を有する層が正極集電体に対して実質的に平行に延びるように設けられている。下記特許文献2は、正極活物質層および負極活物質層の少なくとも一方に、PTC特性を有する粉末を含む電極構造である。また、下記特許文献3では、正極または負極の少なくとも一方に、電子導電性充填材と樹脂とからなるPTC特性を有する電子導電性材料を含む電極構造をとる。
Moreover, an electrode configuration having PTC characteristics has been proposed as a mechanism for suppressing heat generation due to a short-circuit current. Since the electrode itself has PTC characteristics, the short circuit current is expected to decay quickly because the conductivity of the nearby electrodes is reduced due to the heat generated by the short circuit current.
For example, in Patent Document 1 below, a layer having PTC characteristics is provided on the positive electrode so as to extend substantially parallel to the positive electrode current collector. Patent Document 2 below is an electrode structure including a powder having PTC characteristics in at least one of a positive electrode active material layer and a negative electrode active material layer. Moreover, in the following Patent Document 3, an electrode structure is used in which at least one of a positive electrode and a negative electrode includes an electronic conductive material having a PTC characteristic composed of an electronic conductive filler and a resin.

特開2008−243708号公報JP 2008-243708 A 特開2005−123185号公報JP-A-2005-123185 特許第4011852号明細書Japanese Patent No. 40111852

しかし、上記特許文献1に示す電池構造では、正極集電体上にPTC層を形成し、その上に正極活物質層を積層する構造であるため接合界面数が増加して接触抵抗が増加してしまう。また、製造工程数が増えるため製造コストが増加してしまう。   However, in the battery structure shown in Patent Document 1, since the PTC layer is formed on the positive electrode current collector and the positive electrode active material layer is stacked on the positive electrode current collector, the number of bonding interfaces increases and the contact resistance increases. End up. Moreover, since the number of manufacturing steps increases, the manufacturing cost increases.

上記特許文献2及び3は、いずれも電極活物質層内にPTC特性を有する導電性材料を添加した構造であるが、これらの構造の電池において温度上昇時に短絡電流を十分に減衰するほどのPTC特性が発現するためには、PTC特性を有する導電性材料が電極活物層質内の電子導電性の多くを担う必要があり、導電性材料を多量に添加する必要がある上、電池内部抵抗を低減するための導電助剤を十分量添加することができず、電池抵抗が大きくなる。   Patent Documents 2 and 3 both have a structure in which a conductive material having PTC characteristics is added to the electrode active material layer. However, the PTC that sufficiently attenuates the short-circuit current when the temperature rises in a battery having these structures. In order for the characteristics to be manifested, it is necessary that the conductive material having the PTC characteristic is responsible for most of the electronic conductivity in the electrode active material layer layer, and it is necessary to add a large amount of the conductive material, and the internal resistance of the battery A sufficient amount of a conductive additive for reducing the battery resistance cannot be added, resulting in an increase in battery resistance.

もしPTC特性による効果を大きくするために導電性材料を多量に添加した場合、体積当たりのエネルギー密度が小さくなるためリチウムイオン二次電池の特長である高いエネルギー密度が損なわれてしまうし、導電助剤を十分量添加した場合、短絡等による発熱時にこの導電性材料の抵抗が高くなっても導電性材料以外の部分が導電経路となるため、短絡電流の減衰には至らない。   If a large amount of conductive material is added in order to increase the effect of the PTC characteristics, the energy density per volume is reduced, so that the high energy density, which is a feature of the lithium ion secondary battery, is impaired. When a sufficient amount of the agent is added, even if the resistance of the conductive material is increased during heat generation due to a short circuit or the like, the portion other than the conductive material becomes a conductive path, so that the short circuit current is not attenuated.

上記の課題を解消するため、この発明では、広義には、電池の特長を損なうことなく、温度上昇時に速やかに短絡電流を減衰させる電池の製造方法を提供することを目的とする。 In order to solve the above problems, an object of the present invention, in a broad sense, is to provide a method for manufacturing a battery that quickly attenuates a short-circuit current without increasing the characteristics of the battery .

この発明は、活物質層のための、活物質と、温度の上昇につれて電気抵抗が増加するPTC特性を有する電子導電性材料の1種類以上を分散媒に分散させて活物質層ペーストを生成する工程と、前記活物質層ペーストを集電体の片側の面に一度塗布する工程と、により前記集電体上に活物質層を形成し、前記活物質層ペーストを生成する工程において、前記電子導電性材料を、カーボン粉末、金属粉末、金属窒化物、金属炭化物、金属ホウ化物のうちの1種類以上を樹脂で被覆して生成し、前記活物質を、分散媒に分散させ分散体を生成し、前記分散体の粘度を低下させて前記活物質より比重が大きい前記電子導電性材料を混合して前記活物質層ペーストを生成する、ことを特徴とする電池の製造方法にある。 In the present invention, an active material layer paste is produced by dispersing one or more kinds of an active material for an active material layer and an electronic conductive material having a PTC characteristic whose electrical resistance increases as temperature rises in a dispersion medium. In the step of forming the active material layer paste on the current collector by generating the active material layer paste by the step of applying the active material layer paste to one surface of the current collector once, A conductive material is produced by coating one or more of carbon powder, metal powder, metal nitride, metal carbide, and metal boride with a resin, and the active material is dispersed in a dispersion medium to produce a dispersion. In the battery manufacturing method , the viscosity of the dispersion is reduced to mix the electronic conductive material having a specific gravity greater than that of the active material to produce the active material layer paste .

この発明では、PTC特性を有する電子導電性材料は活物質層の集電体近傍ほど含有率が高くなっているため、電子導電性材料は多量に添加しなくとも活物質層の集電体近傍の電子伝導性に大きく寄与することができる。短絡電流は活物質層と集電体の界面を通る経路をとるため、短絡により電池が発熱して電子導電性材料がPTC特性を発現させる際には効果的に短絡電流を減衰させることが可能となる。
また、この活物質層は一工程にて形成できることから、電池製造工程の仕様変更や追加をする必要がない。
In this invention, since the electronic conductive material having PTC characteristics has a higher content in the vicinity of the current collector of the active material layer, even if a large amount of the electronic conductive material is not added, the vicinity of the current collector of the active material layer It can greatly contribute to the electron conductivity of. The short-circuit current takes a path that passes through the interface between the active material layer and the current collector. Therefore, the short-circuit current can be effectively attenuated when the battery generates heat due to the short-circuit and the electronic conductive material exhibits PTC characteristics. It becomes.
Further, since this active material layer can be formed in one step, it is not necessary to change or add specifications in the battery manufacturing process.

この発明の実施の形態1に係わる電池構成を説明するための電池主要部の部分断面模式図である。It is a partial cross section schematic diagram of the battery main part for demonstrating the battery structure concerning Embodiment 1 of this invention. この発明による電池の一例である円筒型の電池の全体的な断面構成図である。1 is an overall cross-sectional configuration diagram of a cylindrical battery as an example of a battery according to the present invention. この発明による電池の活物質層(負極活物質層と正極活物質層で共通)の基本的構成を説明するための部分断面模式図である。FIG. 3 is a partial cross-sectional schematic diagram for explaining a basic configuration of an active material layer (common to a negative electrode active material layer and a positive electrode active material layer) of a battery according to the present invention. この発明に係る電極の電気抵抗率変化を説明するための図である。It is a figure for demonstrating the electrical resistivity change of the electrode which concerns on this invention.

以下、この発明による電池の製造方法を各実施の形態に従って図面を用いて説明する。なお、各実施の形態において、同一もしくは相当部分は同一符号で示し、重複する説明は省略する。なお、図面は簡略化して書かれており、寸法及び形状は必ずしも正確ではない。 Hereinafter, a battery manufacturing method according to the present invention will be described with reference to the drawings according to each embodiment. In each embodiment, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted. The drawings are simplified and the dimensions and shapes are not necessarily accurate.

この発明では特に、リチウムイオン二次電池の内部温度上昇を抑制する上で効果が高いと期待される、短絡電流を抑制するためのPTC特性を有した電極を適用し、リチウムイオン電池の特長である高いエネルギー密度と高出力密度を損なうことなく、温度上昇時に速やかに短絡電流を減衰させるリチウムイオン二次電池の製造方法を提供する。そこで、実施の形態に係わる電池として、リチウムイオン二次電池を例にして説明する。しかしながら、この発明はこれに限るものではなく、リチウム/二酸化マンガン電池などの一次電池、その他二次電池において適用が可能である。更には、水溶液系一次電池、二次電池についても適用が可能である。更には、電池形状によらず、積層型及び巻き型、ボタン型などの一次、二次電池にも適用が可能である。 In the present invention, in particular, an electrode having PTC characteristics for suppressing a short-circuit current, which is expected to be highly effective in suppressing an increase in internal temperature of the lithium ion secondary battery, is applied. Provided is a method of manufacturing a lithium ion secondary battery that quickly attenuates a short-circuit current when the temperature rises without impairing a certain high energy density and high output density. Therefore, a lithium ion secondary battery will be described as an example of the battery according to the embodiment. However, the present invention is not limited to this, and can be applied to primary batteries such as lithium / manganese dioxide batteries and other secondary batteries. Furthermore, the present invention can also be applied to aqueous solution type primary batteries and secondary batteries. Furthermore, the present invention can be applied to primary and secondary batteries such as a stacked type, a wound type, and a button type regardless of the battery shape.

実施の形態1.
図1はこの発明の実施の形態1に係わる電池構成を説明するための電池主要部の部分断面模式図である。この実施の形態の電池は、負極集電体6上に負極活物質層4が形成された負極1と、正極集電体7上に正極活物質層5が形成された正極2、そして正極2と負極1に挟持されたセパレータ3からなる。
Embodiment 1 FIG.
FIG. 1 is a partial cross-sectional schematic view of a main part of a battery for explaining a battery configuration according to Embodiment 1 of the present invention. The battery of this embodiment includes a negative electrode 1 in which a negative electrode active material layer 4 is formed on a negative electrode current collector 6, a positive electrode 2 in which a positive electrode active material layer 5 is formed on a positive electrode current collector 7, and a positive electrode 2 And the separator 3 sandwiched between the negative electrodes 1.

図2はこの発明による電池の一例である円筒型の電池の全体的な断面構成図を示す。この発明による電池は実際には、例えば図1に示す負極1、正極2、セパレータ3からなる積層体12が、図2に示すように渦巻状に巻かれた状態で電解液(特に図示せず)と共に密閉容器11に封入されて電池の形状をとる。   FIG. 2 is an overall cross-sectional configuration diagram of a cylindrical battery which is an example of the battery according to the present invention. In practice, the battery according to the present invention is, for example, an electrolyte solution (not particularly shown) in a state in which a laminated body 12 including a negative electrode 1, a positive electrode 2, and a separator 3 shown in FIG. 1 is wound in a spiral shape as shown in FIG. ) And sealed in a sealed container 11 to take the shape of a battery.

図3はこの発明による電池の活物質層(負極活物質層4と正極活物質層5で共通に示す)の基本的構成を説明するための部分断面模式図である。図3において、集電体67が図1の負極集電体6または正極集電体7に相当し、図1の負極活物質層4または正極活物質層5の部分が、活物質45A、電子導電性材料45C、必要に応じて導電助剤45Bを含むように構成されてなる。なおこの構成は正極2、負極1の少なくとも一方に施される。   FIG. 3 is a partial cross-sectional schematic view for explaining the basic structure of the active material layer (shown in common with the negative electrode active material layer 4 and the positive electrode active material layer 5) of the battery according to the present invention. 3, the current collector 67 corresponds to the negative electrode current collector 6 or the positive electrode current collector 7 in FIG. 1, and the portions of the negative electrode active material layer 4 or the positive electrode active material layer 5 in FIG. The conductive material 45C is configured to include a conductive auxiliary agent 45B as necessary. This configuration is applied to at least one of the positive electrode 2 and the negative electrode 1.

なお、電池の体積当たりの容量を高め、また内部の水分を除去するため、外装容器内を脱気した後に電解液を封入しても良い。   In addition, in order to increase the capacity per volume of the battery and to remove moisture inside, the electrolytic solution may be sealed after degassing the exterior container.

図1において負極集電体6及び正極集電体7は、電池内で安定な金属であれば使用可能であり、負極集電体6としては銅、正極集電体7としてアルミニウムが好ましく用いられる。集電体6、7の形状は、箔、網状、エキスパンドメタル等いずれのものでも使用可能であるが、網状、エキスパンドメタル等のように表面積が大きいものが、活物質層4、5との接合強度を得るためおよび接合後の電解液の含浸を容易にするために好ましい。   In FIG. 1, the negative electrode current collector 6 and the positive electrode current collector 7 can be used as long as they are stable metals in the battery. Copper is preferably used as the negative electrode current collector 6, and aluminum is preferably used as the positive electrode current collector 7. . The current collectors 6 and 7 can be any shape such as foil, net, and expanded metal, but those having a large surface area such as net and expanded metal are bonded to the active material layers 4 and 5. It is preferable for obtaining strength and for facilitating impregnation of the electrolytic solution after joining.

負極活物質層4は、負極集電体6の表面に、負極活物質(45A)をバインダ(図示省略)で結合したものを成形してなる。必要であれば導電助剤(45B)を添加しても良い。負極活物質層4に用いられる負極活物質(45A)にはリチウムイオンの出入りが可能な材料、例えば、リチウム金属、リチウム合金、炭素材料、無機化合物などがある。炭素材料には、鱗片状の天然黒鉛の他、人造黒鉛、カーボンブラックなどが用いられる。また、無機化合物には、シリコン化合物、チタン酸リチウムなどが用いられる。また、電池の種類に応じて種々のものが使用できるが、これらの活物質にはPTC特性を有さない材料を用いる。そしてこれに後述するPTC特性を有する電子導電性材料(45C)が混合される。   The negative electrode active material layer 4 is formed by bonding the negative electrode active material (45A) to the surface of the negative electrode current collector 6 with a binder (not shown). If necessary, a conductive aid (45B) may be added. Examples of the negative electrode active material (45A) used for the negative electrode active material layer 4 include materials that allow lithium ions to enter and exit, such as lithium metal, lithium alloys, carbon materials, and inorganic compounds. As the carbon material, artificial graphite, carbon black and the like are used in addition to scale-like natural graphite. Moreover, a silicon compound, lithium titanate, etc. are used for an inorganic compound. Various materials can be used depending on the type of the battery, but materials having no PTC characteristics are used for these active materials. This is mixed with an electronic conductive material (45C) having PTC characteristics described later.

正極活物質層5は、正極集電体7の表面に、正極活物質(45A)と導電助剤(45B)をバインダ(図示省略)で結合したものを形成してなる。正極活物質(45A)は導電性が低いものが多いため、導電助剤(45B)を一定量添加する構成が一般的である。正極活物質層5に用いられる正極活物質(45A)には、例えば、リチウムと、コバルト、マンガン、ニッケル、鉄などの遷移金属との複合酸化物、リチウムを含むカルコゲン化合物、あるいはこれらの複合化合物、さらに、上記複合酸化物、カルコゲン化合物および複合酸化物に各種添加元素を有するものなどの他、電池の種類に応じて種々のものが使用できるが、これらの活物質にはPTC特性を有さない材料を用いる。そしてこれに後述するPTC特性を有する電子導電性材料(45C)が混合される。   The positive electrode active material layer 5 is formed by bonding the positive electrode active material (45A) and the conductive additive (45B) to the surface of the positive electrode current collector 7 with a binder (not shown). Since most of the positive electrode active material (45A) has low conductivity, a configuration in which a certain amount of the conductive auxiliary agent (45B) is added is common. Examples of the positive electrode active material (45A) used for the positive electrode active material layer 5 include a composite oxide of lithium and a transition metal such as cobalt, manganese, nickel, and iron, a chalcogen compound containing lithium, or a composite compound thereof. In addition to the composite oxide, the chalcogen compound, and the composite oxide having various additive elements, various materials can be used depending on the type of battery, but these active materials have PTC characteristics. Use no material. This is mixed with an electronic conductive material (45C) having PTC characteristics described later.

導電助剤(45B)は活物質層内の電子導電性を高めるために添加するものである。導電助剤は例えばカーボンブラックや黒鉛材料が用いられる。   The conductive auxiliary agent (45B) is added to increase the electronic conductivity in the active material layer. For example, carbon black or graphite material is used as the conductive assistant.

バインダは電極の形状を安定に保つ為に用いられるものであり、例えばフッ素系樹脂、ゴムが使用できる。フッ素系樹脂には、ポリフッ化ビニリデン(以下、PVDF)、ポリテトラフルオロエチレン、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体などが用いられる。ゴムには、スチレン・ブタジエンゴム、アクリロニトリルゴムなどが用いられる。   The binder is used to keep the shape of the electrode stable. For example, a fluorine resin or rubber can be used. As the fluorine-based resin, polyvinylidene fluoride (hereinafter referred to as PVDF), polytetrafluoroethylene, tetrafluoroethylene / hexafluoropropylene copolymer, or the like is used. As the rubber, styrene / butadiene rubber, acrylonitrile rubber or the like is used.

PTC特性を有する電子導電性材料(45C)には2種類の材料が挙げられる。一つは、カーボン粉末、金属粉末、金属窒化物、金属炭化物、金属ホウ化物等の1種類以上を樹脂で被覆した材料であり、他方は、PTC特性を有する金属酸化物材料である。   There are two types of materials for the electronic conductive material (45C) having PTC characteristics. One is a material in which one or more of carbon powder, metal powder, metal nitride, metal carbide, metal boride and the like are coated with a resin, and the other is a metal oxide material having PTC characteristics.

ここで、カーボン粉末、金属粉末、金属窒化物、金属炭化物、金属ホウ化物等の1種類以上を樹脂で被覆した材料とは、上記導電性材料を導電性が低い樹脂で被覆した構造であり、温度上昇時に樹脂が軟化、溶融、体積膨張することにより導電経路が樹脂により妨げられて抵抗値が増大する。
カーボン材料とは、例えばアセチレンブラック、ファーネスブラック、ランプブラック、サーマルブラック、チャンネルブラック等に代表されるカーボンブラックやグラファイト、カーボン繊維等である。
また、金属炭化物とは例えば、TiC、ZrC、VC、NbC、TaC、MoC、WC、BC、Cr等である。
金属窒化物とは、例えばTiN、ZrN、VN、NbN、TaN、CrN等である。
金属ホウ化物とは、例えばTiB2、ZrB、NbB、CrB、MoB、WB等である。
Here, the material in which one or more of carbon powder, metal powder, metal nitride, metal carbide, metal boride and the like are coated with a resin is a structure in which the conductive material is coated with a resin having low conductivity, When the temperature rises, the resin softens, melts, and expands in volume, so that the conductive path is blocked by the resin and the resistance value increases.
Examples of the carbon material include carbon black, graphite, carbon fiber and the like typified by acetylene black, furnace black, lamp black, thermal black, channel black, and the like.
Examples of the metal carbide include TiC, ZrC, VC, NbC, TaC, Mo 2 C, WC, B 4 C, and Cr 3 C 2 .
Examples of the metal nitride include TiN, ZrN, VN, NbN, TaN, and Cr 2 N.
The metal borides, e.g. TiB2, ZrB 2, NbB 2, CrB, MoB, a WB like.

また、樹脂とは、例えば高密度ポリエチレン(融点130℃〜140℃)、低密度ポリエチレン(融点110℃〜112℃)、ポリウレタンエラストマー(融点140℃〜160℃)、ポリ塩化ビニル(融点約145℃)の重合体であり、これらはいずれも融点が90℃以上160℃以下の範囲内にある。また、電子導電性材料の樹脂に結晶性樹脂を使用すると温度上昇時の体積変化率が大きくなり抵抗の上昇も大きくなるため好ましい。   Examples of the resin include high-density polyethylene (melting point: 130 ° C. to 140 ° C.), low density polyethylene (melting point: 110 ° C. to 112 ° C.), polyurethane elastomer (melting point: 140 ° C. to 160 ° C.), polyvinyl chloride (melting point: about 145 ° C. These polymers have a melting point in the range of 90 ° C. or higher and 160 ° C. or lower. In addition, it is preferable to use a crystalline resin as the resin of the electronic conductive material because the volume change rate at the time of temperature increase is increased and the resistance is increased.

これらの樹脂の種類を変えることにより、PTC特性の発現する温度は更に幅広く調節可能であるが、90℃以下の融点の樹脂を用いた場合には、電池を通常使用する温度範囲においてもPTC機能が発現するため電池性能が低下してしまい、また、160℃以上の融点の樹脂を用いた場合には、PTC機能が発現する時には既に電池温度がそれ以上の温度となることから温度上昇を抑制する効果としては不十分であるため、融点が90℃以上160℃以下の範囲内にある樹脂を用いる。   By changing the type of these resins, the temperature at which the PTC characteristics are manifested can be adjusted more widely. However, when a resin having a melting point of 90 ° C. or lower is used, the PTC function is maintained even in the temperature range in which the battery is normally used. If the resin with a melting point of 160 ° C. or higher is used, the battery temperature is already higher when the PTC function is exhibited, so the temperature rise is suppressed. Therefore, a resin having a melting point in the range of 90 ° C. or higher and 160 ° C. or lower is used.

次にカーボン粉末、金属粉末、金属窒化物、金属炭化物、金属ホウ化物等の1種類以上を樹脂で被覆した材料の製造方法について述べる。
カーボン粉末、金属粉末、金属窒化物、金属炭化物、金属ホウ化物等のいずれか1種類以上を、融点が90℃以上160℃以下の範囲内にある樹脂と一定の比率で混合し、樹脂の軟化点以上の温度に加熱しながら混練した。
次いで、混練した材料を冷却した後、粗く剪断し、さらに電子導電性材料の粒子径が0.1〜100μmとなるようにジェットミルにて微粉砕を行った。このときの粉砕条件により粒子径の範囲をより精度良く決定することが可能となる。
Next, a method for producing a material in which one or more of carbon powder, metal powder, metal nitride, metal carbide, metal boride and the like are coated with a resin will be described.
One or more of carbon powder, metal powder, metal nitride, metal carbide, metal boride, etc. is mixed with a resin having a melting point in the range of 90 ° C. or higher and 160 ° C. or lower in a certain ratio to soften the resin. It knead | mixed, heating to the temperature beyond a point.
Next, the kneaded material was cooled, then sheared roughly, and further pulverized with a jet mill so that the particle diameter of the electronically conductive material was 0.1 to 100 μm. The particle diameter range can be determined with higher accuracy according to the pulverization conditions at this time.

ここで、この発明の電極構造においては、活物質層(4,5)が含有する電子導電性材料(45C)は活物質(45A)よりも比重が大きいことを特徴とする。そのため、電子導電性材料は活物質よりも比重が大きくなるように樹脂と被覆される材料を選定し一定の比率で混合した。   Here, in the electrode structure of the present invention, the electronic conductive material (45C) contained in the active material layer (4, 5) has a specific gravity greater than that of the active material (45A). For this reason, the material to be coated with the resin was selected so that the specific gravity of the electronic conductive material was larger than that of the active material, and was mixed at a certain ratio.

また、電子導電性材料(45C)にはPTC機能を有する金属酸化物を使用しても良い。金属酸化物にはチタン酸バリウム、酸化バナジウムを使用することができる。
また、これらの金属酸化物のPTC機能が発現する温度は希土類のドープによるキュリー点の変化から調節することができる。
Further, a metal oxide having a PTC function may be used for the electronic conductive material (45C). As the metal oxide, barium titanate or vanadium oxide can be used.
Further, the temperature at which the PTC function of these metal oxides can be adjusted can be adjusted from the change of the Curie point due to the rare earth doping.

電解液には、ジメトキシエタン、ジエトキシエタン、ジメチルエーテル、ジエチルエーテル等のエーテル系溶剤、エチレンカーボネート、プロピレンカーボネート等のエステル系溶剤の単独または混合物に、LiPF、LiClO、LiBF、LiCFSO、LiN(CFSO)、LiC(CFSO)等の電解質を溶解したものの他、電池の種類に応じて種々のものが使用できる。 The electrolyte includes an ether solvent such as dimethoxyethane, diethoxyethane, dimethyl ether, and diethyl ether, and an ester solvent such as ethylene carbonate and propylene carbonate, or a mixture of LiPF 6 , LiClO 4 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 and other electrolytes can be used in addition to various types depending on the type of battery.

セパレータには、ポリエチレン、ポリプロピレン、フッ素樹脂等の多孔質薄膜の他、電池の種類に応じて種々のものが使用できる。   In addition to porous thin films such as polyethylene, polypropylene, and fluororesin, various separators can be used depending on the type of battery.

電極活物質層(4,5)は集電体(67、6,7)上にロールコート、ドクターブレード、グラビアコート等の各種ペースト塗布方法により形成されており、また、集電体の両面に形成しても良い。集電体の両面に形成する場合、集電体の一方の面に塗布した後、他方の面に塗布する工程をとる。   The electrode active material layers (4, 5) are formed on the current collectors (67, 6, 7) by various paste coating methods such as roll coating, doctor blade, gravure coating, etc. It may be formed. When forming on both surfaces of a current collector, after applying to one surface of the current collector, a step of applying to the other surface is taken.

以下に実施例を示すが、この実施例はこの発明内容における作製手法の一例であり、この発明は実施例にて示した内容に限定されるものではない。   Examples will be shown below, but this example is an example of a production method in the content of the present invention, and the present invention is not limited to the content shown in the example.

実施例1.
この実施例1では、正極活物質層5にPTC機能を有する材料を添加して正極2を製造した。
電子伝導性材料(45C)としてWC35重量部及びカーボンブラック45重量部をポリエチレン20重量部にて比重が約6.8となるよう被覆した微粉末を用いた。LiCoOからなる正極活物質70重量部(45A)、導電助剤(例えばロンザ社製KS−6)1重量部(45B)、PVDF3.5重量部(バインダ)に分散が均一となるようN−メチルピロリドン(以下、NMP)(分散媒)を複数回に分けて添加して混練し、それらの良好な分散体を調製した。
その後、加熱しながら、さらにNMPを添加して分散体の粘度を低下させた後、電子導電性材料(45C)を25.5重量部添加して混合し、正極活物質層ペーストを調製した。
その後、正極活物質層ペーストを正極集電体7となる厚み20μmのアルミニウム箔上にドクターブレード法により厚み100μmに塗布して正極活物質層5を形成した。ここで、LiCoO(正極活物質)の比重は約5であるのに対し、使用した電子導電性材料の比重は約6.8であり、電子導電性材料の方が比重が大きい。正極活物質層ペーストの粘度を十分に低くすることで電極層内で比重の大きい電子導電性材料が塗布時に先に堆積することから、活物質層5中の電子導電性材料(45C)は集電体(7、67)近傍ほど含有率が高く、対面側すなわち集電体と反対側で低くなる分布を有する構造となる。従って正極活物質層ペーストは集電体の片側の面に一度塗布すればよい。形成した活物質層5を80℃送風乾燥により乾燥させた後、ロールプレスにより厚さ70μmの正極活物質層5を形成した正極2を作製した。
Example 1.
In Example 1, a positive electrode 2 was manufactured by adding a material having a PTC function to the positive electrode active material layer 5.
As the electron conductive material (45C), a fine powder in which 35 parts by weight of W 2 C and 45 parts by weight of carbon black were coated with 20 parts by weight of polyethylene to have a specific gravity of about 6.8 was used. In order to make the dispersion uniform in 70 parts by weight (45A) of a positive electrode active material made of LiCoO 2, 1 part by weight (45B) of a conductive additive (for example, KS-6 manufactured by Lonza), and 3.5 parts by weight (binder) of PVDF. Methyl pyrrolidone (hereinafter referred to as NMP) (dispersion medium) was added in several portions and kneaded to prepare good dispersions thereof.
Thereafter, while heating, NMP was further added to lower the viscosity of the dispersion, and then 25.5 parts by weight of the electronic conductive material (45C) was added and mixed to prepare a positive electrode active material layer paste.
Thereafter, the positive electrode active material layer 5 was formed by applying the positive electrode active material layer paste on a 20 μm thick aluminum foil to be the positive electrode current collector 7 to a thickness of 100 μm by the doctor blade method. Here, the specific gravity of LiCoO 2 (positive electrode active material) is about 5, whereas the specific gravity of the used electronic conductive material is about 6.8, and the specific gravity of the electronic conductive material is larger. The electron conductive material (45C) in the active material layer 5 is collected because an electron conductive material having a large specific gravity in the electrode layer is first deposited during application by sufficiently reducing the viscosity of the positive electrode active material layer paste. In the vicinity of the electric conductors (7, 67), the content ratio is higher, and the structure is such that the distribution is lower on the opposite side, that is, on the opposite side of the current collector. Therefore, the positive electrode active material layer paste may be applied once to the surface on one side of the current collector. After the formed active material layer 5 was dried by air blowing at 80 ° C., the positive electrode 2 in which the positive electrode active material layer 5 having a thickness of 70 μm was formed by a roll press was produced.

実施例2.
この実施例2では、負極活物質層4にPTC機能を有する材料を添加して負極1を製造した。
PTC特性を有する電子導電性材料(45C)として、電子伝導性材料としてのWC25重量部及びカーボンブラック55重量部をポリエチレン20重量部にて比重が約4.5となるよう被覆した微粉末を用いた。負極活物質(45A)にメソフェーズカーボンマイクロビーズ(以下、MCMBと略す)を使用し、MCMBを52重量部、PVDF7重量部(バインダ)に分散が均一となるようNMP(分散媒)を複数回に分けて混練し、それらの良好な分散体を調製した。
その後、さらにNMPを添加して分散体の粘度を低下させた後、電子導電性材料を41重量部添加して混合し、負極活物質層ペーストを調製した。
その後、負極活物質ペーストを負極集電体6となる厚さ20μmの銅箔上にドクターブレード法により厚み70μmに塗布して負極活物質層4を形成した。ここで、MCMBの比重は1〜2であるのに対し、使用した電子導電性材料の比重は約4.5であり、電子導電性材料の方が比重が大きい。負極活物質層ペーストの粘度を十分に低くすることで電極層内で比重の大きい電子導電性材料が塗布時に先に堆積することから、活物質層4中の電子導電性材料(45C)は集電体(6,67)近傍ほど含有率が高く、対面側すなわち集電体と反対側で低くなる分布を有する構造となる。従って負極活物質層ペーストは集電体の片側の面に一度塗布すればよい。形成した活物質層4を80℃送風乾燥により乾燥させた後、ロールプレスにより厚さ70μmの負極活物質層4を形成した負極1を作製した。
Example 2
In Example 2, the negative electrode 1 was manufactured by adding a material having a PTC function to the negative electrode active material layer 4.
Fine powder coated with 25 parts by weight of W 2 C as an electron conductive material and 55 parts by weight of carbon black as an electron conductive material (45C) having PTC characteristics so that the specific gravity is about 4.5 with 20 parts by weight of polyethylene Was used. Mesophase carbon microbeads (hereinafter abbreviated as MCMB) are used for the negative electrode active material (45A), and 52 parts by weight of MCMB and 7 parts by weight of PVDF (binder) are dispersed with NMP (dispersion medium) multiple times. They were kneaded separately to prepare good dispersions thereof.
Thereafter, NMP was further added to lower the viscosity of the dispersion, and then 41 parts by weight of an electronic conductive material was added and mixed to prepare a negative electrode active material layer paste.
Thereafter, a negative electrode active material layer 4 was formed by applying a negative electrode active material paste on a copper foil having a thickness of 20 μm to be the negative electrode current collector 6 to a thickness of 70 μm by a doctor blade method. Here, the specific gravity of MCMB is 1 to 2, whereas the specific gravity of the used electronic conductive material is about 4.5, and the specific gravity of the electronic conductive material is larger. By making the viscosity of the negative electrode active material layer paste sufficiently low, an electronic conductive material having a large specific gravity in the electrode layer is first deposited at the time of application. Therefore, the electronic conductive material (45C) in the active material layer 4 is collected. In the vicinity of the electric body (6, 67), the content rate is higher, and the structure has a distribution that becomes lower on the opposite side, that is, on the side opposite to the current collector. Therefore, the negative electrode active material layer paste may be applied once to the surface on one side of the current collector. After the formed active material layer 4 was dried by air blowing at 80 ° C., the negative electrode 1 in which the negative electrode active material layer 4 having a thickness of 70 μm was formed by a roll press was produced.

比較例1.
この比較例ではPTC機能を有する材料を添加しない正極を作製した。
LiCoOからなる正極活物質91重量部、導電助剤(例えばロンザ社製KS−6)6重量部、PVDF3重量部(バインダ)にNMP(分散媒)を添加して混練し、それらの分散体を調製した。その後、正極集電体7となる厚み20μmのアルミニウム箔上にドクターブレード法により厚み100μmに塗布して正極活物質層(5)を形成した。形成した活物質層を80℃送風乾燥により乾燥させた後、ロールプレスにより厚さ70μmの正極活物質層(5)を形成した正極(1)を作製した。
Comparative Example 1
In this comparative example, a positive electrode to which a material having a PTC function was not added was produced.
NMP (dispersion medium) is added to and kneaded with 91 parts by weight of a positive electrode active material composed of LiCoO 2, 6 parts by weight of a conductive additive (for example, KS-6 manufactured by Lonza), and 3 parts by weight of PVDF (binder). Was prepared. Thereafter, a positive electrode active material layer (5) was formed on a 20 μm thick aluminum foil serving as the positive electrode current collector 7 by a doctor blade method to a thickness of 100 μm. The formed active material layer was dried by blow drying at 80 ° C., and then a positive electrode (1) in which a positive electrode active material layer (5) having a thickness of 70 μm was formed by a roll press was produced.

比較例2.
この比較例ではPTC機能を有する材料を添加しない負極を作製した。
負極活物質にMCMBを使用し、MCMBを90重量部、PVDF10重量部(バインダ)をNMP(分散媒)に分散して作製した負極活物質ペーストを、厚さ20μmの銅箔から成る負極集電体上にドクターブレード法により厚さ100μmに塗布した。形成した活物質層を80℃送風乾燥により乾燥させた後、ロールプレスにより厚さ70μmの負極活物質層(4)を形成した負極(1)を作製した。
Comparative Example 2
In this comparative example, a negative electrode to which a material having a PTC function was not added was produced.
A negative electrode current collector made of copper foil having a thickness of 20 μm was prepared by using MCMB as the negative electrode active material, and preparing a negative electrode active material paste prepared by dispersing 90 parts by weight of MCMB and 10 parts by weight of PVDF (binder) in NMP (dispersion medium). It apply | coated to 100 micrometers in thickness by the doctor blade method on the body. The formed active material layer was dried by air blowing at 80 ° C., and then a negative electrode (1) in which a negative electrode active material layer (4) having a thickness of 70 μm was formed by a roll press was produced.

比較例3.
この比較例3ではPTC機能を有する電子導電性材料を添加した正極であって、活物質層内で電子導電性材料の分布が生じない構造を作製した。
電子伝導性材料としてWC35重量部及びカーボンブラック45重量部をポリエチレン20重量部にて比重が約6.8となるよう被覆した微粉末を用いた。LiCoOからなる正極活物質70重量部、導電助剤(例えばロンザ社製KS−6)1重量部、PVDF3.5重量部(バインダ)、電子導電性材料を25.5重量部に分散が均一となるようNMP(分散媒)を複数回に分けて添加して混練し、それらの良好な分散体を調製して正極活物質層ペーストを調製した。その後、希釈を行うことなく正極活物質層ペーストを正極集電体(7)となる厚み20μmのアルミニウム箔上にドクターブレード法により厚み100μmに塗布して正極活物質層を形成した。形成した活物質層を80℃送風乾燥により乾燥させた後、ロールプレスにより厚さ70μmの正極活物質層(5)を形成した正極(2)を作製した。
Comparative Example 3
In Comparative Example 3, a positive electrode to which an electronic conductive material having a PTC function was added and a structure in which the distribution of the electronic conductive material did not occur in the active material layer was produced.
A fine powder in which 35 parts by weight of W 2 C and 45 parts by weight of carbon black were coated with 20 parts by weight of polyethylene to have a specific gravity of about 6.8 was used as the electron conductive material. 70 parts by weight of a positive electrode active material made of LiCoO 2, 1 part by weight of a conductive additive (for example, KS-6 manufactured by Lonza), 3.5 parts by weight of PVDF (binder), and 25.5 parts by weight of an electronic conductive material are uniformly dispersed. NMP (dispersion medium) was added and kneaded in several batches so that a good dispersion was prepared to prepare a positive electrode active material layer paste. Thereafter, the positive electrode active material layer paste was applied to a thickness of 100 μm by a doctor blade method on an aluminum foil having a thickness of 20 μm to be the positive electrode current collector (7) without dilution, thereby forming a positive electrode active material layer. The formed active material layer was dried by blow drying at 80 ° C., and then a positive electrode (2) in which a positive electrode active material layer (5) having a thickness of 70 μm was formed by a roll press was produced.

上記電極(正極、負極)のPTC特性評価方法について述べる。電極の両面を金メッキした銅板からなる集電板にて挟み込み、一方の集電板にプラス側の電圧端子と電流端子を、もう一方の集電板にマイナス側の電圧端子と電流端子を接続した。集電板上にはヒーターを設置し、5℃/分の昇温速度となるよう電極を25℃から150℃の範囲で昇温しながら、定電流を流した素子の電圧降下を測定することで抵抗値を算出した。   A method for evaluating the PTC characteristics of the electrodes (positive electrode and negative electrode) will be described. The electrode was sandwiched between current collectors made of gold-plated copper, and the positive voltage terminal and current terminal were connected to one current collector, and the negative voltage terminal and current terminal were connected to the other current collector. . Install a heater on the current collector plate, and measure the voltage drop of the device with a constant current while raising the temperature of the electrode in the range of 25 ° C to 150 ° C so that the rate of temperature rise is 5 ° C / min. The resistance value was calculated by

図4は上記各実施例および比較例に示した電極の25℃時の電気抵抗率とPTCが十分に発現した130℃時の電気抵抗率の比率を示した図である。各実施例および比較例により作製した電極はそれぞれの構成により電気抵抗率が異なることから、常温環境(25℃)の電気抵抗率と昇温環境(130℃)の電気抵抗率との比率によりPTC機能の有無を評価した。
図4にて示されるように、実施例1および2では高温で5〜8倍程度の電気抵抗率の増大が生じており、PTC特性が発現していることから温度上昇時の短絡電流の低減が期待される。また、比較例3において25℃電気抵抗率から130℃に昇温することで電気抵抗率が低下しているが、これは電子導電性材料中の樹脂の軟化・溶融に伴い形状が変化して電極の充填密度が増したためである。すなわち、適切な電極構成を採らない場合には短絡電流を減衰することはできない。
FIG. 4 is a graph showing the ratio between the electrical resistivity at 25 ° C. and the electrical resistivity at 130 ° C. at which PTC was sufficiently developed for the electrodes shown in the above examples and comparative examples. Since the electrodes produced in each of the examples and comparative examples have different electrical resistivity depending on the respective configurations, the PTC is determined by the ratio between the electrical resistivity in the normal temperature environment (25 ° C.) and the electrical resistivity in the temperature rising environment (130 ° C.) The presence or absence of function was evaluated.
As shown in FIG. 4, in Examples 1 and 2, the electrical resistivity increased by about 5 to 8 times at high temperature, and the PTC characteristics were exhibited, so the short circuit current was reduced when the temperature rose. There is expected. In Comparative Example 3, the electrical resistivity is lowered by raising the temperature from 25 ° C. to 130 ° C., but this changes in shape with softening / melting of the resin in the electronic conductive material. This is because the packing density of the electrodes has increased. That is, the short-circuit current cannot be attenuated unless an appropriate electrode configuration is adopted.

この発明では、正極(2)および負極(1)の少なくとも一方が、活物質(45A)及び、温度の上昇につれて電気抵抗が増加するPTC特性を有する電子導電性材料(45C)を1種類以上含有する活物質層(4,5)を集電体(6,7)上に形成してなる電池であって、活物質層(4,5)中の電子導電性材料(45C)は集電体(6,7)近傍ほど含有率が高く、集電体と反対側で低くなる分布を有する構造を有する。また、活物質層(4,5)が導電助剤(45B)をさらに含有する。これにより、PTC特性を有する電子導電性材料は多量に添加しなくとも活物質層の集電体近傍の電子伝導性に大きく寄与することができる。短絡電流は活物質層と集電体の界面を通る経路をとるため、短絡により電池が発熱して電子導電性材料がPTC特性を発現させる際には効果的に短絡電流を減衰させることが可能となる。   In this invention, at least one of the positive electrode (2) and the negative electrode (1) contains one or more kinds of active material (45A) and an electronic conductive material (45C) having a PTC characteristic that increases in electrical resistance as the temperature increases. The active material layer (4, 5) is formed on the current collector (6, 7), and the electron conductive material (45C) in the active material layer (4, 5) is the current collector. In the vicinity of (6, 7), the content rate is higher, and the structure has a distribution that becomes lower on the side opposite to the current collector. The active material layers (4, 5) further contain a conductive additive (45B). Thereby, the electronic conductive material having PTC characteristics can greatly contribute to the electronic conductivity in the vicinity of the current collector of the active material layer without adding a large amount. The short-circuit current takes a path that passes through the interface between the active material layer and the current collector. Therefore, the short-circuit current can be effectively attenuated when the battery generates heat due to the short-circuit and the electronic conductive material exhibits PTC characteristics. It becomes.

また、電子導電性材料(45C)は活物質(45A)よりも比重が大きい。これにより、活物質層中の電子導電性材料は集電体近傍ほど含有率が高く、対面側すなわち集電体と反対側で低くなる分布を有する構造の提供が可能となる。   The electronic conductive material (45C) has a higher specific gravity than the active material (45A). Thereby, the electronic conductive material in the active material layer has a higher content in the vicinity of the current collector, and it is possible to provide a structure having a distribution that is lower on the facing side, that is, on the side opposite to the current collector.

また、電子導電性材料(45C)は、カーボン粉末、金属粉末、金属窒化物、金属炭化物、金属ホウ化物のうちの1種類以上を樹脂で被覆した構造を有する。これにより、活物質よりも比重が大きい電子導電性材料を製造することが可能となる。   The electronic conductive material (45C) has a structure in which one or more of carbon powder, metal powder, metal nitride, metal carbide, and metal boride are coated with a resin. This makes it possible to manufacture an electronic conductive material having a specific gravity greater than that of the active material.

また、電子導電性材料(45C)を被覆する樹脂が導電性が低く90℃以上160℃以下の範囲内の融点を有する。これにより、電子導電性材料が適切な温度範囲でPTC特性を発現することができる。   Further, the resin covering the electronic conductive material (45C) has low conductivity and a melting point in the range of 90 ° C. or higher and 160 ° C. or lower. Thereby, an electronic conductive material can express a PTC characteristic in a suitable temperature range.

また、電子導電性材料(45C)は、PTC特性を有する金属酸化物でもよい。PTC特性を有する金属酸化物を使用した場合にも、活物質よりも比重が大きい電子導電性材料とすることで、活物質層中の電子導電性材料は集電体近傍ほど含有率が高く、対面側すなわち集電体と反対側で低くなる分布を有する構造の電極が提供可能となる。   Further, the electronic conductive material (45C) may be a metal oxide having PTC characteristics. Even when a metal oxide having PTC characteristics is used, by making an electronic conductive material having a specific gravity greater than that of the active material, the electronic conductive material in the active material layer has a higher content in the vicinity of the current collector, It is possible to provide an electrode having a structure having a distribution that is lowered on the opposite side, that is, on the side opposite to the current collector.

また、活物質層のための、活物質(45A)と、温度の上昇につれて電気抵抗が増加するPTC特性を有する電子導電性材料(45C)の1種類以上を分散媒に分散させて活物質層ペーストを生成する工程と、活物質層ペーストを集電体(67)の片側の面に一度塗布する工程と、により集電体上に活物質層を形成する。活物質層ペーストを生成する工程においては、活物質(45A)を分散媒に分散させ分散体を生成し、分散体の粘度を低下させて活物質(45A)より比重が大きい電子導電性材料(45C)を混合する。この作製方法では、PTC特性を有する電極を片面につき一度の塗布で形成するため、積層する等、塗布工程を増すことなく上記特性を有する構造が提供可能となる。   Also, the active material layer for the active material layer is dispersed by dispersing in the dispersion medium one or more of the active material (45A) and the electronic conductive material (45C) having a PTC characteristic whose electrical resistance increases as the temperature rises. An active material layer is formed on the current collector by a step of generating a paste and a step of once applying the active material layer paste to one surface of the current collector (67). In the step of producing the active material layer paste, an active material (45A) is dispersed in a dispersion medium to produce a dispersion, the viscosity of the dispersion is lowered, and an electronic conductive material having a higher specific gravity than the active material (45A) ( 45C). In this manufacturing method, since the electrode having the PTC characteristic is formed by one application per side, it is possible to provide a structure having the above characteristics without increasing the application process such as stacking.

1 負極、2 正極、3 セパレータ、4 負極活物質層、5 正極活物質層、6 負極集電体、7 正極集電体、11 密閉容器、12 積層体、45A 活物質、45B 導電助剤、45C 電子導電性材料、67 集電体。   DESCRIPTION OF SYMBOLS 1 Negative electrode, 2 Positive electrode, 3 Separator, 4 Negative electrode active material layer, 5 Positive electrode active material layer, 6 Negative electrode collector, 7 Positive electrode collector, 11 Sealed container, 12 Laminated body, 45A Active material, 45B Conductive auxiliary agent, 45C Electroconductive material, 67 Current collector.

Claims (4)

活物質層のための、活物質と、温度の上昇につれて電気抵抗が増加するPTC特性を有する電子導電性材料の1種類以上を分散媒に分散させて活物質層ペーストを生成する工程と、
前記活物質層ペーストを集電体の片側の面に一度塗布する工程と、
により前記集電体上に活物質層を形成し、
前記活物質層ペーストを生成する工程において、
前記電子導電性材料を、カーボン粉末、金属粉末、金属窒化物、金属炭化物、金属ホウ化物のうちの1種類以上を樹脂で被覆して生成し、
前記活物質を、分散媒に分散させ分散体を生成し、前記分散体の粘度を低下させて前記活物質より比重が大きい前記電子導電性材料を混合して前記活物質層ペーストを生成する、
ことを特徴とする電池の製造方法。
Producing an active material layer paste by dispersing, in a dispersion medium, one or more of an active material for an active material layer and an electronic conductive material having a PTC characteristic that increases in electrical resistance with increasing temperature;
Applying the active material layer paste to one surface of the current collector once;
To form an active material layer on the current collector,
In the step of generating the active material layer paste,
The electronic conductive material is produced by coating one or more of carbon powder, metal powder, metal nitride, metal carbide, and metal boride with a resin,
The active material is dispersed in a dispersion medium to form a dispersion, the viscosity of the dispersion is reduced, and the electronic conductive material having a specific gravity greater than that of the active material is mixed to produce the active material layer paste.
A battery manufacturing method characterized by the above.
前記活物質層ペーストを集電体の片側の面に一度塗布する工程において、In the step of once applying the active material layer paste to one surface of the current collector,
前記電池の正極および負極の少なくとも一方の前記集電体の片側の面に前記活物質層ペーストを塗布し、  Applying the active material layer paste to one surface of the current collector of at least one of the positive electrode and the negative electrode of the battery;
前記活物質層中の前記電子導電性材料が前記集電体近傍ほど含有率が高く、前記集電体と反対側で低くなる分布を有する、ことを特徴とする請求項1に記載の電池の製造方法。  2. The battery according to claim 1, wherein the electronic conductive material in the active material layer has a distribution in which the content is higher in the vicinity of the current collector and lower on the side opposite to the current collector. Production method.
前記活物質層ペーストを生成する工程において、導電助剤をさらに含めて生成する、ことを特徴とする請求項1または2に記載の電池の製造方法。3. The method for manufacturing a battery according to claim 1, wherein the step of generating the active material layer paste further includes a conductive additive. 4. 前記電子導電性材料を被覆する前記樹脂が導電性が低く90℃以上160℃以下の範囲内の融点を有することを特徴とする請求項1から3までのいずれか1項に記載の電池の製造方法。4. The battery production according to claim 1, wherein the resin covering the electronic conductive material has low conductivity and a melting point in a range of 90 ° C. or more and 160 ° C. or less. 5. Method.
JP2012130704A 2012-06-08 2012-06-08 Battery manufacturing method Expired - Fee Related JP5930857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012130704A JP5930857B2 (en) 2012-06-08 2012-06-08 Battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012130704A JP5930857B2 (en) 2012-06-08 2012-06-08 Battery manufacturing method

Publications (2)

Publication Number Publication Date
JP2013254692A JP2013254692A (en) 2013-12-19
JP5930857B2 true JP5930857B2 (en) 2016-06-08

Family

ID=49952021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012130704A Expired - Fee Related JP5930857B2 (en) 2012-06-08 2012-06-08 Battery manufacturing method

Country Status (1)

Country Link
JP (1) JP5930857B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10944126B2 (en) * 2014-12-08 2021-03-09 Showa Denko Materials Co., Ltd. Positive electrode for lithium ion secondary battery, and lithium ion secondary battery using the same
JP6819941B2 (en) * 2014-12-16 2021-01-27 エルジー・ケム・リミテッド A method for manufacturing an electrode for a secondary battery containing a PTC substance and an electrode manufactured thereby.
JP6264410B2 (en) * 2015-10-21 2018-01-24 日亜化学工業株式会社 Non-aqueous secondary battery positive electrode composition and method for producing the same
JP6583254B2 (en) 2016-12-27 2019-10-02 日亜化学工業株式会社 Non-aqueous secondary battery positive electrode material, non-aqueous secondary battery and method for producing positive electrode material for non-aqueous secondary battery
KR102223721B1 (en) 2017-07-28 2021-03-05 주식회사 엘지화학 Positive electorde for secondary battery and lithium secondary battery including the same
CN110661003B (en) * 2018-12-29 2021-06-29 宁德时代新能源科技股份有限公司 Electrode plate and electrochemical device
CN111613399B (en) * 2020-05-29 2022-07-22 珠海冠宇电池股份有限公司 PTC material and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1050917A4 (en) * 1997-12-25 2009-02-18 Mitsubishi Electric Corp Lithium ion secondary battery
JP4011852B2 (en) * 1998-06-25 2007-11-21 三菱電機株式会社 Battery and manufacturing method thereof
JP2014112462A (en) * 2011-03-22 2014-06-19 Sanyo Electric Co Ltd Electrode for nonaqueous electrolyte secondary battery and method of manufacturing the same

Also Published As

Publication number Publication date
JP2013254692A (en) 2013-12-19

Similar Documents

Publication Publication Date Title
JP5930857B2 (en) Battery manufacturing method
JP4586820B2 (en) Winding type non-aqueous electrolyte secondary battery
US11942627B2 (en) Positive electrode and lithium ion secondary battery that include undercoat layer containing microcapsule
US6623883B1 (en) Electrode having PTC function and battery comprising the electrode
JP4776918B2 (en) Non-aqueous electrolyte secondary battery
JP6754768B2 (en) Non-aqueous electrolyte secondary battery
JP2014127242A (en) Lithium secondary battery
JPH10241665A (en) Electrode and battery using the same
JP4011852B2 (en) Battery and manufacturing method thereof
US6579641B2 (en) Battery and process for preparing the same
US20010005562A1 (en) Battery and process for preparing the same
JP2006032359A (en) Method of manufacturing separator for battery and method of manufacturing battery
JP2004327183A (en) Battery and its manufacturing method
JP4382557B2 (en) Non-aqueous secondary battery
JP3786973B2 (en) Electrode, method for producing the electrode, and battery using the electrode
US6440605B1 (en) Electrode, method or producing electrode, and cell comprising the electrode
KR100670485B1 (en) Electrode assembly for a lithium secondary battery and a lithium secondary battery comprising the same
US20010005559A1 (en) Battery and process for preparing the same
US20010007726A1 (en) Battery and process for preparing the same
JP4011636B2 (en) Battery and manufacturing method thereof
JP4394857B2 (en) battery
JP7387437B2 (en) Electrodes and storage elements
JP2014044826A (en) Method of manufacturing separator for secondary battery, separator for secondary battery, secondary battery, and battery pack
US20030090021A1 (en) Electrode, method of fabricating thereof, and battery using thereof
JP2002042886A (en) Battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160426

R150 Certificate of patent or registration of utility model

Ref document number: 5930857

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees