JPH1047610A - Catalyst combustor of gas turbine - Google Patents

Catalyst combustor of gas turbine

Info

Publication number
JPH1047610A
JPH1047610A JP8208131A JP20813196A JPH1047610A JP H1047610 A JPH1047610 A JP H1047610A JP 8208131 A JP8208131 A JP 8208131A JP 20813196 A JP20813196 A JP 20813196A JP H1047610 A JPH1047610 A JP H1047610A
Authority
JP
Japan
Prior art keywords
catalyst
gas
temperature
catalyst layer
catalytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8208131A
Other languages
Japanese (ja)
Inventor
Hirotsugu Nagayasu
弘貢 長安
Naoyuki Uejima
直幸 上島
Kazutaka Mori
一剛 森
Shigemi Bandai
重実 萬代
Kuniaki Aoyama
邦明 青山
Koichi Nishida
幸一 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP8208131A priority Critical patent/JPH1047610A/en
Publication of JPH1047610A publication Critical patent/JPH1047610A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To make a catalyst have a long lifetime by constructing a catalyst combustion portion of a catalyst combustor such that a catalyst layer containing palladium is arranged as a front part thereof and a catalyst layer containing manganese and having a magnetoplumbite structure is arranged as a rear part thereof. SOLUTION: A catalyst layer 1 containing palladium which is excellent in ignitability from a low temperature is arranged at a gas inlet side as a front part of a catalyst combustion portion thus enabling a start of a catalytic action from a discharge gas temperature of a compressor. A catalyst layer 2 containing manganese which has a resistance against lowering of its catalytic activity and having a megnetoplumbite structure is arranged at a gas outlet as a rear part of the catalyst combustion portion. A mixture gas of air and fuel discharged from a compressor is fed to the catalyst layer 1 where a contact oxidation reaction proceeds. Corresponding to the progress of the reaction, the catalyst temperature and the gas temperature are elevated. The heated gas is fed to the catalyst layer 2 where the reaction is further proceeded to a temperature which enables a gas phase combustion.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はNOX 排出量を飛躍
的に低減することを目的としたガスタービン用触媒燃焼
器に関する。
The present invention relates to relates to catalytic combustor for a gas turbine for the purpose of dramatically reducing the NO X emissions.

【0002】[0002]

【従来の技術】現在、ガスタービン用の燃焼器として予
混合燃焼器が使用されているが、サーマル(Therm
al)NOX の生成が避けられず、NOX 排出量低減が
困難である。サーマルNOX を生成しない燃焼技術とし
て触媒燃焼が知られている。この触媒燃焼には、従来、
Pd、Ptのような貴金属を含有する触媒が使用されて
いるが、ガスタービン燃焼器のように触媒層出口ガス温
度が高温となる場合には、活性成分である貴金属種の揮
発、シンタリング(熱履歴による活性表面積の低下)に
伴う触媒活性低下が起こるため触媒の長期使用が困難で
ある。
2. Description of the Related Art At present, a premixed combustor is used as a combustor for a gas turbine.
al) Generation of NO X is inevitable, and it is difficult to reduce NO X emissions. Catalytic combustion are known as combustion technology does not produce thermal NO X. Conventionally, this catalytic combustion
A catalyst containing a noble metal such as Pd or Pt is used, but when the gas temperature at the outlet of the catalyst layer is high as in a gas turbine combustor, volatilization and sintering of a noble metal species as an active component ( It is difficult to use the catalyst for a long time because the catalyst activity is reduced due to the decrease in the active surface area due to the heat history.

【0003】[0003]

【発明が解決しようとする課題】上記したように、現
在、ガスタービン用燃焼器として予混合燃焼器が使用さ
れているが、サーマルNOX の生成が避けられずNOX
排出量低減が困難であり、サーマルNOX を生成しない
燃焼技術として触媒燃焼がある。触媒燃焼をガスタービ
ン用燃焼器に利用するためにはコンプレッサ出口ガス温
度を気相燃焼が可能なガス温度まで上昇させることがで
きる触媒性能とその性能を長期間維持できる耐久性が必
要である。この触媒性能を満たす触媒としてPd、Pt
などの貴金属成分を含有する触媒が使用されているが、
気相燃焼が可能なガス温度まで温度を上げる際に触媒成
分となる貴金属成分の揮発、シンタリング等を原因とす
る触媒性能の低下が起こるため、上記触媒性能を長期間
にわたり維持することが困難であり、実用に際し大きな
問題となっていた。例えば、Pdを含有する触媒では燃
焼開始後、数時間で触媒活性を失ってしまう。
As described above [0008] At present, premixed combustors have been used as a combustor for a gas turbine, inevitably generating the thermal NO X NO X
Emissions reduction is difficult, there is a catalytic combustion as the combustion technique that does not generate a thermal NO X. In order to use catalytic combustion in a gas turbine combustor, it is necessary to have a catalytic performance capable of raising the gas temperature at the compressor outlet to a gas temperature at which gas-phase combustion is possible and a durability capable of maintaining the performance for a long period of time. Pd, Pt as catalysts satisfying this catalytic performance
Catalysts containing precious metal components such as
When the temperature is raised to a gas temperature at which gas phase combustion can be performed, the catalytic performance decreases due to volatilization and sintering of the noble metal component serving as the catalytic component, so that it is difficult to maintain the catalytic performance for a long time. This has been a serious problem in practical use. For example, a catalyst containing Pd loses its catalytic activity within a few hours after the start of combustion.

【0004】本発明は上記技術水準に鑑み、前述の触媒
性能をもち、かつ、長期間にわたり使用可能な耐久性を
もつ触媒構成を有するガスタービン用触媒燃焼器を提供
しようとするものである。
The present invention has been made in view of the above-mentioned state of the art, and an object of the present invention is to provide a catalytic combustor for a gas turbine which has the above-mentioned catalytic performance and has a durable catalyst structure which can be used for a long period of time.

【0005】[0005]

【課題を解決するための手段】本発明は触媒燃焼部の構
成として、前段(ガス入口側)にパラジウムを含有する
触媒層を、後段(ガス出口側)にマンガンを含有し、マ
グネトプランバイト構造をもつ触媒を配置してなること
を特徴とするガスタービン用触媒燃焼器である。
According to the present invention, as a constitution of a catalytic combustion section, a palladium-containing catalyst layer is provided in a former stage (gas inlet side), and manganese is contained in a latter stage (gas outlet side). A catalytic combustor for a gas turbine, wherein a catalyst having

【0006】本発明において、ガス流路前段に配置する
パラジウムを含有する触媒としては、Pd/Al2 3
/コージェライト(Al2 3 担体に担持されたPd触
媒成分をコージェライト基材にコーティングしたもの:
Pd=0.1〜5wt%),Pd/Al2 3 −La2
3 /コージェライト(Al2 3 −La2 3 担体に
担持されたPd触媒成分をコージェライト基材にコーテ
ィングしたもの:Pd=0.1〜5wt%)などがあげ
られ、後段に配置されるマンガンを含有し、マグネトプ
ランバイト構造をもつ触媒としてはBaMnX Al11-X
19-a{1<x≦2,Mnの価数をzとすると、a=x
×(3−z)/2}があげられ、特にBaMn1.5 Al
10.519-a{a=1.5×(3−z)/2}が好まし
い。後段の触媒は担体としてコージェライトを使用する
こともあるが、この触媒は担体を用いない方が好まし
い。
[0006] In the present invention, the catalyst containing palladium, which is disposed in the preceding stage of the gas flow path, is Pd / Al 2 O 3
/ Cordierite (Pd catalyst component supported on Al 2 O 3 carrier coated on cordierite substrate:
Pd = 0.1-5 wt%), Pd / Al 2 O 3 -La 2
O 3 / cordierite (Pd catalyst component supported on Al 2 O 3 —La 2 O 3 carrier coated on cordierite substrate: Pd = 0.1 to 5 wt%) BaMn X Al 11-X is a catalyst containing manganese to be formed and having a magnetoplumbite structure.
Assuming that the valence of O 19-a {1 <x ≦ 2, Mn is z, a = x
× (3-z) / 2}, particularly BaMn 1.5 Al
10.5 O 19-a {a = 1.5 × (3-z) / 2} is preferred. The latter catalyst may use cordierite as a carrier, but it is preferable that this catalyst does not use a carrier.

【0007】マグネトプランバイトの構造は図2に模式
的に示すように、スピネル・ブロック(Sブロック)と
Baを含むRブロックからなり、この上に同じ順序で、
ただし180°回転してSブロック,Rブロックが重な
って一結晶を構成しており、したがって上下2枚に分離
してあや織り模様をつくっている構造のものであり、こ
の結晶構造は高い耐熱性をもつことが知られているもの
である。
The structure of the magnetoplumbite is, as schematically shown in FIG. 2, composed of a spinel block (S block) and an R block containing Ba.
However, the S block and the R block overlap by 180 ° to form a single crystal, and are thus separated into two upper and lower pieces to form a twill weave pattern. This crystal structure has high heat resistance. Is known to have

【0008】[0008]

【発明の実施の形態】サーマルNOX を生成しない燃焼
技術である触媒燃焼を利用したガスタービン用触媒燃焼
器では、コンプレッサ出口ガス温度から気相燃焼が起こ
る温度まで上昇させることができる触媒性能と、この触
媒性能を長期間維持する耐久性が必要である。しかしな
がら、Pdを含有する触媒は低温からの燃焼開始能力に
優れるため、コンプレッサ出口ガス温度からの燃焼開始
には不可欠であるが、高温条件下では触媒成分の揮発、
シンタリング等を原因とする触媒活性の低下が激しいた
め使用が困難であり、一方、Mnを含有し、マグネトプ
ランバイト構造をもつ触媒は低温からの燃焼開始能力に
ついてはPdを含有する触媒に劣るが、高温条件下での
触媒成分の揮発、シンタリング等を原因とする触媒活性
の低下は起こりにくいため長期間にわたる使用が可能で
ある。
In DETAILED DESCRIPTION OF THE INVENTION catalytic combustor for a gas turbine using catalytic combustion is a combustion technique that does not generate a thermal NO X, and the catalyst performance can be raised from the compressor exit gas temperature to a temperature at which the vapor phase combustion occurs In addition, durability for maintaining the catalyst performance for a long time is required. However, since the catalyst containing Pd has an excellent ability to start combustion from a low temperature, it is indispensable to start the combustion from the compressor outlet gas temperature.
It is difficult to use the catalyst due to severe decrease in catalytic activity due to sintering and the like. On the other hand, a catalyst containing Mn and having a magnetoplumbite structure is inferior to a catalyst containing Pd in combustion starting ability from a low temperature. However, it is unlikely that the catalytic activity decreases due to volatilization of catalyst components and sintering under high temperature conditions, so that it can be used for a long period of time.

【0009】そこで、本発明では図1に示すように、前
段(ガス入口側)に低温からの着火性能に優れるPdを
含有する触媒層1を配置することによりコンプレッサ出
口ガス温度からの触媒反応の開始を可能とし、後段(ガ
ス出口側)に高温による触媒活性の低下を受けにくいM
nを含有し、マグネトプランバイト構造をもつ触媒層2
を配置することにより気相燃焼が可能な出口ガス温度を
長期間にわたり維持することを可能とするものである。
Therefore, in the present invention, as shown in FIG. 1, a catalyst layer 1 containing Pd, which is excellent in ignition performance from low temperatures, is disposed at the front stage (gas inlet side), whereby the catalytic reaction from the gas temperature at the compressor outlet is performed. M can be started, and M is less susceptible to reduction in catalyst activity due to high temperature in the subsequent stage (gas outlet side).
n-containing catalyst layer having magnetoplumbite structure 2
Is arranged so that the outlet gas temperature at which gas phase combustion is possible can be maintained for a long period of time.

【0010】コンプレッサ(図示省略)から排出された
空気と燃料ガス(天然ガス)との混合ガスはPd/Al
2 3 /コージェライト(Pd=1wt%)よりなる触
媒層1に導入され接触酸化反応が進行する。反応が進行
するに伴い触媒温度およびガス温度が上昇する。触媒層
1上で加熱されたガスはBaMn1.5 Al10.5
19-a{a=1.5×(3−z)/2}なるマグネトプラ
ンバイト構造をもつ触媒層2(担体なし)に導入され、
さらに接触酸化反応が進行し気相燃焼が可能な温度以上
まで上昇する。この触媒構成を採用することにより、コ
ンプレッサ出口ガス温度を気相燃焼が可能な温度以上ま
で上昇させることができる触媒性能をもち、かつこの触
媒性能を長期間にわたり、維持することができる耐久性
をもつ。
A mixed gas of air discharged from a compressor (not shown) and fuel gas (natural gas) is Pd / Al
The catalyst is introduced into the catalyst layer 1 made of 2 O 3 / cordierite (Pd = 1 wt%), and the catalytic oxidation reaction proceeds. As the reaction proceeds, the catalyst temperature and gas temperature increase. The gas heated on the catalyst layer 1 is BaMn 1.5 Al 10.5 O
19-a {a = 1.5 × (3-z) / 2} is introduced into the catalyst layer 2 (without carrier) having a magnetoplumbite structure,
Further, the catalytic oxidation reaction proceeds, and the temperature rises to a temperature at which gas phase combustion can be performed. By adopting this catalyst configuration, it has a catalyst performance that can raise the compressor outlet gas temperature to a temperature at which gas phase combustion can be performed, and a durability that can maintain this catalyst performance for a long time. Have.

【0011】[0011]

【実施例】以下、本発明の具体的な実施例をあげ、本発
明の効果を明らかにする。図3はガスタービン用触媒燃
焼器内への触媒の組込み例を示し、図4は触媒層での大
気圧条件下での触媒性能の試験結果を示す図表である。
EXAMPLES Hereinafter, specific examples of the present invention will be described to clarify the effects of the present invention. FIG. 3 shows an example of incorporation of a catalyst into a catalytic combustor for a gas turbine, and FIG. 4 is a table showing test results of catalyst performance of a catalyst layer under atmospheric pressure conditions.

【0012】図3において、1はPd/Al2 3 /コ
ージェライト(担体Al2 3 に対するPd量:1wt
%,コージェライト:100gに対するPd担持Al2
3含有量:5g)よりなるPd含有触媒層、2はBa
Mn1.5 Al10.519-a{a=1.5×(3−z)/
2}よりなるMnを含有し、マグネトプランバイト構造
を有する触媒層、3は触媒パイロット、4は燃料入口、
5は空気入口、6は(燃料+空気)入口、7は触媒パイ
ロット出口、8は触媒燃焼器を示し、A及びB点は図4
に示す触媒層入口位置及び触媒層出口位置を示す。ここ
において、触媒層1:触媒層2の体積比は3:2に設定
してある。
In FIG. 3, reference numeral 1 denotes Pd / Al 2 O 3 / cordierite (Pd content relative to the carrier Al 2 O 3 : 1 wt.
%, Cordierite: Pd-supported Al 2 per 100 g
Pd-containing catalyst layer composed of O 3 content: 5 g);
Mn 1.5 Al 10.5 O 19-a {a = 1.5 × (3-z) /
A catalyst layer containing Mn of 2% and having a magnetoplumbite structure, 3 is a catalyst pilot, 4 is a fuel inlet,
5 is an air inlet, 6 is a (fuel + air) inlet, 7 is a catalyst pilot outlet, 8 is a catalytic combustor, and points A and B are shown in FIG.
The catalyst layer inlet position and the catalyst layer outlet position shown in FIG. Here, the volume ratio of the catalyst layer 1 to the catalyst layer 2 is set to 3: 2.

【0013】燃料(LNG)/空気比は2.6wt%と
して、燃料及び空気が触媒燃焼器8に導入され、そのう
ちのガス量の5〜10%が触媒パイロット3に導入さ
れ、他の燃料及び空気は燃料入口4及び空気入口5より
導入される。触媒パイロット3の触媒層入口位置Aのガ
ス温度を約400℃とした時、触媒層出口位置Bのガス
温度は900℃以上、例えば約1000℃に達し、触媒
パイロット出口7より触媒燃焼器8内に拡散し、燃料入
口4、空気入口5から導入された燃料、空気混合ガスの
着火源となり、全燃料をほぼ完全(99%以上)に燃焼
させ、触媒燃焼器8の出口では約1350℃にも達す
る。この際、触媒パイロット3内で燃焼した燃焼ガス、
触媒燃焼器8で燃焼した燃焼ガスは共にNOX の発生は
1ppm以下で殆どないことが確認された。
Assuming that the fuel (LNG) / air ratio is 2.6% by weight, fuel and air are introduced into the catalytic combustor 8, and 5 to 10% of the gas amount thereof is introduced into the catalytic pilot 3, and other fuel and air are introduced. Air is introduced from the fuel inlet 4 and the air inlet 5. When the gas temperature at the catalyst layer inlet position A of the catalyst pilot 3 is about 400 ° C., the gas temperature at the catalyst layer outlet position B reaches 900 ° C. or more, for example, about 1000 ° C. And becomes an ignition source of the fuel and the air mixture gas introduced from the fuel inlet 4 and the air inlet 5 to burn all the fuel almost completely (99% or more). At the outlet of the catalytic combustor 8, about 1350 ° C. Also reach. At this time, the combustion gas burned in the catalyst pilot 3,
Combustion gas combusted in the catalytic combustor 8 generates of the NO X together was confirmed that almost no in 1ppm or less.

【0014】図4は前述した触媒性能の試験結果を示す
図表であるが、燃料(LNG)と空気の混合ガス(燃料
/空気比=2.6wt%)は400℃で図3に関して説
明した触媒層に供給され、両触媒層を通過したガスは触
媒層出口直後では約1000℃となる。1000時間の
連続運転を行った結果、図4に示すように触媒性能の低
下がないことが確認された。
FIG. 4 is a table showing the test results of the catalyst performance described above. The mixed gas of fuel (LNG) and air (fuel / air ratio = 2.6 wt%) is 400 ° C. and the catalyst described with reference to FIG. The gas supplied to the bed and passing through both catalyst layers has a temperature of about 1000 ° C. immediately after exiting the catalyst layer. As a result of the continuous operation for 1000 hours, it was confirmed that the catalyst performance did not decrease as shown in FIG.

【0015】これらの試験結果から、NOX 排出量低減
を目的とする触媒燃焼器において、本発明に基づく触媒
構成を採用することにより、コンプレッサ出口温度に相
当する400℃程度のガスを気相燃焼が可能な温度以上
にすることができ、この性能を長期にわたり維持できる
ことが明らかとなった。
[0015] From these test results, in the catalytic combustor for the purpose of NO X emissions reduction, by employing the catalyst structure according to the present invention, a 400 ° C. of about gas corresponding to the compressor outlet temperature vapor phase combustion It was found that the temperature could be higher than the possible temperature, and that this performance could be maintained for a long time.

【0016】[0016]

【発明の効果】ガスタービン用触媒燃焼器において、本
発明に基づく触媒構成とすることにより、コンプレッサ
出口温度のガスを気相燃焼が可能な温度まで上昇させる
ことができる触媒性能を長期間維持することが可能とな
る。したがって、本発明により、ガスタービン用触媒燃
焼器を使用するに当たり、触媒の長期使用を可能とする
ことができる。
As described above, in the catalytic combustor for a gas turbine, by employing the catalyst structure according to the present invention, the catalytic performance capable of increasing the gas at the compressor outlet temperature to a temperature at which the gas phase combustion can be performed is maintained for a long time. It becomes possible. Therefore, according to the present invention, in using the catalytic combustor for gas turbine, the catalyst can be used for a long time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による触媒の構成と温度分布の一例の説
明図。
FIG. 1 is an explanatory diagram of an example of the structure and temperature distribution of a catalyst according to the present invention.

【図2】マグネトプランバイト構造を示した模式図。FIG. 2 is a schematic diagram showing a magnetoplumbite structure.

【図3】本発明の一実施例の触媒燃焼器内への触媒の組
込み例を示した説明図。
FIG. 3 is an explanatory view showing an example of incorporating a catalyst into a catalytic combustor according to one embodiment of the present invention.

【図4】触媒燃焼の耐久性に関する試験結果の一例を示
す図表。
FIG. 4 is a chart showing an example of test results regarding durability of catalytic combustion.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 萬代 重実 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 青山 邦明 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂製作所内 (72)発明者 西田 幸一 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂製作所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shigetomi Bandai 2-1-1, Shinhama, Arai-machi, Takasago City, Hyogo Prefecture Inside the Takasago Research Laboratory, Mitsubishi Heavy Industries, Ltd. (72) Inventor Kuniaki Aoyama 2-1-1, Araimachi, Takarai City, Hyogo Prefecture No. 1 Inside Mitsubishi Heavy Industries, Ltd. Takasago Works (72) Inventor Koichi Nishida 2-1-1, Shinhama, Araimachi, Takasago City, Hyogo Prefecture Inside Mitsubishi Heavy Industries, Ltd. Takasago Works

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 触媒燃焼部の構成として、前段(ガス入
口側)にパラジウムを含有する触媒層を、後段(ガス出
口側)にマンガンを含有し、マグネトプランバイト構造
をもつ触媒を配置してなることを特徴とするガスタービ
ン用触媒燃焼器。
As a configuration of a catalytic combustion section, a catalyst layer containing palladium is arranged at a former stage (gas inlet side), and a catalyst containing manganese and having a magnetoplumbite structure is arranged at a latter stage (gas outlet side). A catalytic combustor for a gas turbine.
JP8208131A 1996-08-07 1996-08-07 Catalyst combustor of gas turbine Withdrawn JPH1047610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8208131A JPH1047610A (en) 1996-08-07 1996-08-07 Catalyst combustor of gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8208131A JPH1047610A (en) 1996-08-07 1996-08-07 Catalyst combustor of gas turbine

Publications (1)

Publication Number Publication Date
JPH1047610A true JPH1047610A (en) 1998-02-20

Family

ID=16551155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8208131A Withdrawn JPH1047610A (en) 1996-08-07 1996-08-07 Catalyst combustor of gas turbine

Country Status (1)

Country Link
JP (1) JPH1047610A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009104386A1 (en) * 2008-02-21 2009-08-27 株式会社エフ・シー・シー Process for production of catalyst supports and catalyst supports

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009104386A1 (en) * 2008-02-21 2009-08-27 株式会社エフ・シー・シー Process for production of catalyst supports and catalyst supports
US8461073B2 (en) 2008-02-21 2013-06-11 Kabushiki Kaisha F.C.C. Catalyst support and method of producing same
JP5431158B2 (en) * 2008-02-21 2014-03-05 株式会社エフ・シー・シー Catalyst carrier or catalyst and method for producing the same

Similar Documents

Publication Publication Date Title
KR100566504B1 (en) Catalytic combustion system and combustion control method
EP0696337B1 (en) Method and apparatus for reduction of pollutants emitted from automotive engines by flame incineration
US4893465A (en) Process conditions for operation of ignition catalyst for natural gas combustion
EP0685055B1 (en) Improved catalyst configuration for catalytic combustion systems
EP0631656B1 (en) Catalytic combustion process using supported palladium oxide catalysts
JPH0156324B2 (en)
JPS6279847A (en) Catalyst system for combustion of lower hydrocarbon fuel and combustion method using said system
JPH1047610A (en) Catalyst combustor of gas turbine
JPS6380848A (en) Catalytic system for combustion of high pressure methane based fuel and combustion method using the same
JPS6380849A (en) Catalytic system for combustion of high pressure methane based fuel and combustion method using the same
JPH0663627B2 (en) Combustion method of methane fuel by catalytic combustion catalyst system
JPS60205115A (en) Combustion catalyst system and combustion therewith
JPS61252409A (en) Method of igniting methane fuel
JPH0156326B2 (en)
JPS6380847A (en) Catalytic system for combustion of high pressure methane based fuel and combustion method using the same
JPS6280420A (en) Combustion catalyst system for low class hydro-carbon fuel and combustion method of using same
JPS6352283B2 (en)
JPS6241511A (en) Combustion catalyst system and its process for combustion
JP4226143B2 (en) Catalytic combustion apparatus and combustion control method thereof
JPS6280419A (en) Combustion catalyst system for low class hydro-carbon fuel and combustion method of using this system
JPH06296866A (en) Catalyst for combustion of methane-based fuel
JPH06129613A (en) Catalyst combustion device
JP3930093B2 (en) Combustion device
JPS634852A (en) Catalyst for combustion
JPH06159631A (en) Method for igniting combustion gas

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031007