JPH1047598A - Manufacture of dry ice and liquefied nitrogen and device thereof, and re-liquefying method of boil-off gas and device thereof - Google Patents

Manufacture of dry ice and liquefied nitrogen and device thereof, and re-liquefying method of boil-off gas and device thereof

Info

Publication number
JPH1047598A
JPH1047598A JP8204833A JP20483396A JPH1047598A JP H1047598 A JPH1047598 A JP H1047598A JP 8204833 A JP8204833 A JP 8204833A JP 20483396 A JP20483396 A JP 20483396A JP H1047598 A JPH1047598 A JP H1047598A
Authority
JP
Japan
Prior art keywords
gas
dry ice
heat exchanger
liquefied
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8204833A
Other languages
Japanese (ja)
Other versions
JP3664818B2 (en
Inventor
Hiroshi Makihara
洋 牧原
Wataru Matsubara
亘 松原
Masaki Iijima
正樹 飯島
Hiroyuki Furuichi
裕之 古市
Satoshi Ogawa
聡嗣 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP20483396A priority Critical patent/JP3664818B2/en
Publication of JPH1047598A publication Critical patent/JPH1047598A/en
Application granted granted Critical
Publication of JP3664818B2 publication Critical patent/JP3664818B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • F25J1/0025Boil-off gases "BOG" from storages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • F25J1/0015Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0027Oxides of carbon, e.g. CO2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • F25J1/0224Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop in combination with an internal quasi-closed refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/20Processes or apparatus using other separation and/or other processing means using solidification of components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/62Liquefied natural gas [LNG]; Natural gas liquids [NGL]; Liquefied petroleum gas [LPG]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/44Separating high boiling, i.e. less volatile components from nitrogen, e.g. CO, Ar, O2, hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/80Separating impurities from carbon dioxide, e.g. H2O or water-soluble contaminants
    • F25J2220/82Separating low boiling, i.e. more volatile components, e.g. He, H2, CO, Air gases, CH4
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/08Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/60Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being (a mixture of) hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/90Processes or apparatus involving steps for recycling of process streams the recycled stream being boil-off gas from storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Abstract

PROBLEM TO BE SOLVED: To produce a liquefied nitrogen efficiently by utilizing the temperature of LNG effectively by cooling a combustion exhaust gas by utilizing the temperature of a discharged LNG, producing a dry ice by the solidification of carbon dioxide gas contained in the combustion exhaust gas and separating it, and compressing and cooling a residual exhaust gas further. SOLUTION: LNG 11 coming out from LNG storage 1 is heat exchanged with a compression gas 13 by a heat exchanger 2 and NG 12 is made by the heat exchange with a combustion exhaust gas 10 by a fluidized bed type heat exchanger 3. While, the combustion exhaust gas 10 is cooled to about -40 to -70 deg.C by the heat exchange with NG gas 12 and the minute particle shape powder body of a dry ice is generated in the fluidized bed and this is separated from the residual exhaust gas by a cyclone 21 and stored in a dry ice storage 20. Then, the residual exhaust gas is supplied to a gas compressor 4 through a filter 22 to form a compression gas 13 and cooled by the heat exchange to LNG 11 by the heat exchanger 2 and further, after being heat exchanged to the low temperature gas 17 and cooled by the low temperature air heat exchanger 9, its one part is made to a liquefied nitrogen 14 by a adiabatic expansion device 5 and stored in a storage 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は液化天然ガス(LN
Gと略称)を気化し、天然ガス(NGと略称)として供
給する際の冷熱を利用してドライアイス、液化窒素を製
造する方法及びその装置並びに該液化窒素の冷熱を利用
してNGの非供給時にボイルオフガス(LNGが気化し
てLNG貯槽の上部に蓄積されるガス:BOGと略称)
をLNGとして再液化する方法及びその装置に関する。
The present invention relates to liquefied natural gas (LN).
G), a method and an apparatus for producing dry ice and liquefied nitrogen by using cold heat when supplying as natural gas (abbreviated as NG), and an apparatus for producing dry ice and liquefied nitrogen. Boil-off gas at the time of supply (LNG is vaporized and accumulated in the upper part of the LNG storage tank: abbreviated as BOG)
And a device for reliquefying LNG as LNG.

【0002】[0002]

【従来の技術】LNGは保冷タンクに貯蔵され、NG供
給時には気化、加圧されて火力発電プラントや都市ガス
用NGとして払い出される。NGの需要時に払い出され
るLNGは通常海水で熱交換して加熱気化しNGとする
方法が採られているため、LNGが保有している冷熱を
有効利用することもなく海水に廃棄していることと、低
温海水が発生し環境に影響を与えるという問題があっ
た。
2. Description of the Related Art LNG is stored in a cold storage tank, and is vaporized and pressurized at the time of NG supply and discharged as a thermal power plant or NG for city gas. LNG paid out at the time of demand for NG is normally disposed of by heat exchange with seawater to be heated and vaporized to make NG. Therefore, there is a problem that low-temperature seawater is generated and affects the environment.

【0003】また、LNGタンクは保冷されているが、
外部からの熱により常時LNGの一部が気化したり、非
定常的にはLNGの払い出し時や輸送船からの受け入れ
時に配管や機器の予冷にともなって一部が気化したりし
てBOGが発生する。定常的なBOGの発生量は貯蔵量
に対して約0.001〜0.1%/hrである。このよ
うに、昼夜を問わず常時発生するBOGの処理方法につ
いて有効な方法が求められていた。
[0003] The LNG tank is kept cool,
Part of LNG is constantly vaporized due to heat from the outside, or BOG is generated in an unsteady state when LNG is dispensed or received from a transport ship due to pre-cooling of piping and equipment. I do. The stationary BOG generation amount is about 0.001 to 0.1% / hr based on the storage amount. Thus, there has been a demand for an effective method of treating BOG that is constantly generated regardless of day or night.

【0004】ここでは、BOGを再液化して得られるL
NGをLNGタンクに戻すという観点からBOG再液化
処理法の従来技術をレビューした結果を以下に示す。
Here, L obtained by reliquefying BOG is
The results of a review of the prior art BOG reliquefaction process from the perspective of returning NG to the LNG tank are shown below.

【0005】(a)圧縮、冷却、膨張の組合せによる液
化サイクルを利用したものに関しては、特開昭50−2
2771号公報にはBOG自体を作動媒体として使用す
る方法が、特開昭57−65792号公報にはアンモニ
アを中間冷媒として使用する方法が、特開平2−157
583号公報には窒素を作動媒体とする閉ループサイク
ルによる方法が開示されている。
(A) Japanese Patent Application Laid-Open No. Sho 50-2 discloses a method utilizing a liquefaction cycle based on a combination of compression, cooling and expansion.
No. 2771 discloses a method using BOG itself as a working medium, and JP-A-57-65792 discloses a method using ammonia as an intermediate refrigerant.
No. 583 discloses a method based on a closed loop cycle using nitrogen as a working medium.

【0006】(b)送ガス負荷の高い昼間にLNG冷熱
を蓄冷し、低負荷の夜間に蓄冷を利用してBOGを再液
化するものに関しては、特開昭60−98300号公報
にはイソペンタン、イソブタンなどの炭化水素を冷媒と
して使用し、その顕熱、潜熱を利用して蓄冷する方法
が、特開平2−157583号公報にはアルコール類及
びその水溶液を冷媒として使用し、その顕熱、潜熱を利
用して蓄冷する方法が開示されている。
[0006] (b) JP-A-60-98300 discloses isopentane, which stores LNG cold in the daytime when gas supply load is high and re-liquefies BOG using cold storage in the night when light load is low. Japanese Patent Laid-Open Publication No. Hei 2-157583 discloses a method of using a hydrocarbon such as isobutane as a refrigerant and storing the cold using the sensible heat and latent heat. There is disclosed a method of storing cold using the same.

【0007】(c)送ガス時のLNG気化操作と同時に
LNG冷熱を利用しBOGを再液化するものに関して
は、特開平4−370499号公報にはBOGを圧縮後
冷却、液化し、液化したBOGを払い出しLNGと混合
し送ガスする方法が、特開昭62−147197号公報
にはBOG液化サイクルを構成し、液化BOGを貯槽に
還流する方法が開示されている。
[0007] (c) As for the LNG vaporization operation at the time of gas supply and re-liquefaction of BOG using LNG cold heat, JP-A-4-370499 discloses that BOG is compressed, cooled, liquefied, and liquefied BOG. Japanese Patent Application Laid-Open No. Sho 62-147197 discloses a method for discharging gas and mixing it with LNG to constitute a BOG liquefaction cycle and refluxing liquefied BOG to a storage tank.

【0008】(d)BOGへの高沸点成分の添加により
再液化を容易にする方法に関しては、特開平2−240
499号公報にはBOGを加熱後、炭素数2〜4の炭化
水素を添加する方法が、特開平3−41518号公報に
はBOG中の窒素濃度低減のためにBOGの重質成分を
再液化器にリサイクルする方法が開示されている。
(D) A method for facilitating reliquefaction by adding a high-boiling component to BOG is disclosed in JP-A-2-240.
Japanese Patent Publication No. 499 discloses a method of adding a hydrocarbon having 2 to 4 carbon atoms after heating BOG, and Japanese Patent Application Laid-Open No. 3-41518 discloses a method of reliquefying heavy components of BOG to reduce the nitrogen concentration in BOG. A method for recycling into containers is disclosed.

【0009】上記処理方法において、(a)の処理方式
はBOGに液化サイクルを適用するもので、時間帯によ
らず稼働可能であるが、LNG冷熱の有効利用プロセス
とはなっていない。
In the above-mentioned processing method, the processing method (a) applies a liquefaction cycle to BOG, and can be operated regardless of the time zone, but is not an effective use process of LNG cold heat.

【0010】(b)の処理方式はLNG冷熱を蓄冷する
ので送ガスの途絶又は激減する夜間においてもBOGの
再液化が可能であり、LNG冷熱を利用するのでBOG
液化の動力費の低減を可能にしているが、蓄冷剤の蓄冷
特性上から蓄冷槽が大きくなるという問題がある。
In the processing method (b), LNG cold energy is stored, so that BOG can be re-liquefied even at night when gas supply is interrupted or sharply reduced, and LNG cold energy is used, so that BOG is used.
Although the power cost for liquefaction can be reduced, there is a problem that the regenerator tank becomes large in view of the regenerative characteristics of the regenerator.

【0011】(c)の処理方式は蓄冷しないことから、
LNG払い出し時のみBOG再液化が可能であるが、B
OG処理が最も問題となる夜間にはBOG再液化ができ
ないという問題がある。
Since the processing method (c) does not store cold,
BOG re-liquefaction is possible only when LNG is paid out.
There is a problem that BOG cannot be reliquefied at night when OG treatment is the most problematic.

【0012】(d)の処理方式はBOG再液化時のBO
Gの露点を上げるため、重質炭化水素を添加してBOG
の再液化を容易にする補助的手段にすぎず、蓄冷しない
ことからLNG払い出し時のみBOG再液化が可能であ
るが、BOG処理が最も問題となる夜間にはBOG再液
化ができないという問題がある。
[0012] The treatment method of (d) is the BO method at the time of BOG reliquefaction.
To increase the dew point of G, heavy hydrocarbons are added to BOG
It is only an auxiliary means for facilitating the re-liquefaction of BOG, and BOG can be re-liquefied only during LNG dispensing because it does not store cold. However, there is a problem that BOG re-liquefaction cannot be performed at night when BOG treatment is the most problematic. .

【0013】上述のように、従来から提案されているB
OGの処理方法のうち、好ましい方法は、払い出し時に
LNGの気化の際に発生する冷熱を利用して冷媒又は蓄
冷材を冷却しておき、需要量が減少又は停止した時に、
冷却した冷媒又は蓄冷材の冷熱を利用してBOGを再液
化してLNGタンクに戻す方式(b)(特開昭60−9
8300号公報など)である。しかし、この方法も現状
では蓄冷槽を大きくする必要があるという問題があるこ
とは既に述べたとおりである。この他、BOG再液化に
係わる周辺技術として、払い出されるNGに混ぜて利用
したり、あるいは冷熱を利用して空気を液化し、精留し
て液化窒素、液化酸素、液化アルゴンを併産したり、二
酸化炭素を冷却して液化二酸化炭素やドライアイスを併
産できることは周知である。
As described above, the conventionally proposed B
Among the OG processing methods, a preferred method is to cool the refrigerant or cold storage material using cold generated during the vaporization of LNG at the time of dispensing, and when the demand decreases or stops,
A method (b) in which BOG is re-liquefied by using the cooled heat of the cooled refrigerant or cold storage material and returned to the LNG tank (Japanese Patent Application Laid-Open No. 60-9 / 1985)
No. 8300). However, as described above, this method also has a problem that it is necessary to increase the size of the regenerator. In addition, as a peripheral technology related to BOG re-liquefaction, it is possible to mix with NG to be paid out or use it to liquefy air using cold heat and rectify it to produce liquefied nitrogen, liquefied oxygen, and liquefied argon together. It is well known that liquefied carbon dioxide and dry ice can be produced together by cooling carbon dioxide.

【0014】以上述べたことをまとめて以下に示す。火
力発電プラントや都市ガス用NGとして払い出されるL
NGの量は時間帯や季節により大きく変動する。一方、
BOGはLNGタンクへのLNG受け入れ時や貯蔵時や
NGの払い出し時において、非定常的にまた定常的に昼
夜を含め常時発生している。LNGの払い出される量が
多い昼間時には、BOGを圧縮して、払い出しLNGに
直接混合して消費するか、間接的に混合して再液化して
LNGタンクに戻すことで処理が可能である。しかし、
夜間や早朝などLNGの払い出しが減少ないしは無い場
合には、処理量が不定期に変動するBOGを安定して処
理できて、LNG冷熱を有効利用できるコンパクトで、
かつ省エネルギタイプのBOG処理技術のさらなる確立
が望まれている。
The above description is summarized below. L paid out as NG for thermal power plants and city gas
The amount of NG fluctuates greatly depending on the time zone and season. on the other hand,
BOG is constantly and unsteadily generated, including day and night, when LNG is received or stored in the LNG tank, or when NG is dispensed. During the daytime when the amount of LNG to be dispensed is large, processing can be performed by compressing the BOG and directly mixing and consuming it with the dispensed LNG, or indirectly mixing and re-liquefying it and returning it to the LNG tank. But,
When the payment of LNG is reduced or not at night or in the early morning, the BOG whose processing volume fluctuates irregularly can be processed stably, and the compact that can effectively use the LNG cold heat,
Further, further establishment of an energy-saving BOG processing technology is desired.

【0015】[0015]

【発明が解決しようとする課題】本発明の目的は上記の
問題を生ずることなく、LNGの冷熱を有効に利用する
こと及び発生量が変動するBOGを効率よく液化するこ
とができる方法及びそのための装置を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for effectively utilizing the cold heat of LNG and a method for efficiently liquefying BOG whose generation amount fluctuates without causing the above problems. It is to provide a device.

【0016】[0016]

【課題を解決するための手段】本発明者らは上記課題を
解決すべくLNG処理の周辺技術について鋭意検討した
結果、LNGが気化し外温に近い温度のNGとなるまで
の蒸発潜熱及び/又は顕熱を冷熱として利用して、各種
の燃焼排ガスに含有される炭酸ガス及び窒素を冷却し
て、ドライアイス及び液化窒素を製造することができ、
更にこのようにして製造した液化窒素を貯蔵し、これを
使用してLNGの非需要期間にBOGを再液化すること
により極めて効率的なプロセスが構成ができることを見
出し、本発明を完成するに至った。
Means for Solving the Problems The present inventors have conducted intensive studies on the peripheral technology of LNG processing in order to solve the above-mentioned problems. As a result, the latent heat of vaporization until LNG evaporates and becomes NG at a temperature close to the external temperature and / or Alternatively, using sensible heat as cold heat, it is possible to produce dry ice and liquefied nitrogen by cooling carbon dioxide and nitrogen contained in various types of combustion exhaust gas,
Further, the present inventors have found that an extremely efficient process can be constructed by storing the liquefied nitrogen produced in this manner and using the liquefied nitrogen to re-liquefy BOG during a period in which LNG is not required, thereby completing the present invention. Was.

【0017】すなわち本発明は次の(1)ないし(1
0)の態様を含むものである。 (1)払い出しLNGの冷熱を利用して燃焼排ガスを冷
却し、該燃焼排ガスに含有される炭酸ガスを固化するこ
とによりドライアイスを生成して分離し、ドライアイス
を分離した残排ガスを更に圧縮、冷却して液化窒素を製
造することを特徴とするドライアイス及び液化窒素の製
造方法。 (2)燃焼排ガスがLNG又はLPGの燃焼排ガスであ
ることを特徴とする前記(1) のドライアイス及び液化窒
素の製造方法。
That is, the present invention provides the following (1) to (1)
0). (1) Discharging the combustion exhaust gas using the cold heat of the discharged LNG, solidifying the carbon dioxide contained in the combustion exhaust gas to generate and separate dry ice, and further compressing the residual exhaust gas from which the dry ice has been separated. A method for producing dry ice and liquefied nitrogen, comprising producing liquefied nitrogen by cooling. (2) The method for producing dry ice and liquefied nitrogen according to (1), wherein the combustion exhaust gas is LNG or LPG combustion exhaust gas.

【0018】(3)払い出しLNGを圧縮ガス冷却用熱
交換器で、ドライアイスを分離したのち圧縮された燃焼
排ガスと熱交換し、更に流動層型熱交換器で除湿された
燃焼排ガスと熱交換してNGとし、一方、除湿された燃
焼排ガスを前記流動層型熱交換器で前記圧縮ガス冷却用
熱交換器を通して一部気化したLNGと熱交換してドラ
イアイスを生成して分離し、ドライアイスを分離した残
排ガスを圧縮した後、前記圧縮ガス冷却用熱交換器で貯
槽からのLNGと熱交換するか、又は熱交換したのち更
に断熱膨張させて液化窒素を製造することを特徴とする
前記(1) 又は(2)のドライアイス及び液化窒素の製造方
法。 (4)生成したドライアイスをサイクロンにより分離す
ることを特徴とする前記(4) のドライアイス及び液化窒
素の製造方法。
(3) Discharged LNG is heat-exchanged with compressed flue gas after separating dry ice in a heat exchanger for cooling compressed gas and then with flue gas dehumidified by a fluidized bed heat exchanger. On the other hand, the dehumidified combustion exhaust gas is heat-exchanged with the partially vaporized LNG through the compressed gas cooling heat exchanger in the fluidized bed heat exchanger to produce and separate dry ice. After compressing the residual exhaust gas from which the ice has been separated, heat is exchanged with LNG from the storage tank in the heat exchanger for cooling the compressed gas, or heat exchange is performed and then adiabatically expanded to produce liquefied nitrogen. The method for producing dry ice and liquefied nitrogen according to the above (1) or (2). (4) The method for producing dry ice and liquefied nitrogen according to (4), wherein the produced dry ice is separated by a cyclone.

【0019】(5)LNG貯槽、圧縮ガス冷却用熱交換
器、流動層型熱交換器、サイクロン、ドライアイス貯
槽、断熱膨張装置、液化窒素貯槽、ガス圧縮装置からな
り、LNG貯槽から払い出したLNGを圧縮ガス冷却用
熱交換器で、ドライアイスを分離したのち圧縮された燃
焼排ガスと熱交換し、更に流動層型熱交換器で除湿され
た燃焼排ガスと熱交換してNGとなし、一方、除湿され
た燃焼排ガスを前記流動層型熱交換器で前記圧縮ガス冷
却用熱交換器を通して一部気化したLNGと熱交換して
ドライアイスを生成し、生成したドライアイスをサイク
ロンにより分離してドライアイス貯槽に貯蔵し、ドライ
アイスを分離した残排ガスをガス圧縮装置により圧縮
し、更に圧縮ガス冷却用熱交換器でLNG貯槽からのL
NGと熱交換するか、又は熱交換したのち更に断熱膨張
させて液化窒素を製造し、得られた液化窒素を液化窒素
貯槽に貯蔵するように構成してなることを特徴とするド
ライアイス及び液化窒素の製造装置。
(5) LNG storage tank, heat exchanger for cooling compressed gas, fluidized bed heat exchanger, cyclone, dry ice storage tank, adiabatic expansion device, liquefied nitrogen storage tank, gas compression device, LNG discharged from LNG storage tank In a heat exchanger for cooling compressed gas, heat is exchanged with compressed flue gas after separating dry ice, and further heat exchange with flue gas dehumidified in a fluidized bed heat exchanger to form NG. The dehumidified combustion exhaust gas is heat-exchanged with the partially vaporized LNG through the compressed gas cooling heat exchanger in the fluidized bed heat exchanger to generate dry ice, and the generated dry ice is separated by a cyclone and dried. The residual exhaust gas stored in the ice storage tank and separated from the dry ice is compressed by a gas compression device, and the LNG from the LNG storage tank is further compressed by a heat exchanger for cooling compressed gas.
Dry ice and liquefaction, characterized in that liquefied nitrogen is produced by heat-exchanging with NG or heat-exchanged and then adiabatically expanded to produce liquefied nitrogen and storing the obtained liquefied nitrogen in a liquefied nitrogen storage tank. Nitrogen production equipment.

【0020】(6)払い出しLNGの冷熱を利用して燃
焼排ガスを冷却し、該燃焼排ガスに含有される炭酸ガス
を冷却固化してドライアイスを生成して分離し、ドライ
アイスを分離した残排ガスを更に圧縮冷却して液化窒素
を製造して貯蔵し、該液化窒素を用いてBOGを液化す
ることを特徴とするBOGの再液化方法。 (7)LNGの需要期間にドライアイス及び液化窒素を
製造し、LNGの非需要期間にBOGの液化を行うこと
を特徴とする前記(6) のBOGの再液化方法。
(6) Discharging The combustion exhaust gas is cooled by utilizing the cold heat of the LNG, and the carbon dioxide gas contained in the combustion exhaust gas is cooled and solidified to produce and separate dry ice. Is further compressed and cooled to produce and store liquefied nitrogen, and the liquefied nitrogen is used to liquefy BOG. (7) The method for reliquefying BOG according to the above (6), wherein dry ice and liquefied nitrogen are produced during the LNG demand period, and BOG is liquefied during the LNG non-demand period.

【0021】(8)払い出しLNGを圧縮ガス冷却用熱
交換器で、ドライアイスを分離したのち圧縮された燃焼
排ガスと熱交換し、更に流動層型熱交換器で除湿された
燃焼排ガスと熱交換してNGとし、一方、除湿された燃
焼排ガスを前記流動層型熱交換器で前記圧縮ガス冷却用
熱交換器を通して一部気化したLNGと熱交換してドラ
イアイスを生成分離し、ドライアイスを生成分離した残
排ガスを圧縮した後、前記圧縮ガス冷却用熱交換器でL
NG貯槽からのLNGと熱交換するか、又は熱交換した
のち更に断熱膨張させて、液化窒素を製造して貯蔵し、
該液化窒素を用いてBOGを液化することを特徴とする
前記(6) 又は(7) のBOGの再液化方法。 (9)生成したドライアイスをサイクロンにより分離す
ることを特徴とする前記(8) のBOGの再液化方法。
(8) The discharged LNG is heat-exchanged with the compressed flue gas after separating dry ice in a heat exchanger for cooling compressed gas and then with the flue gas dehumidified by the fluidized bed heat exchanger. On the other hand, the dehumidified combustion exhaust gas is heat-exchanged with the partially vaporized LNG through the heat exchanger for cooling compressed gas in the fluidized bed heat exchanger to produce and separate dry ice, thereby separating dry ice. After compressing the generated and separated residual exhaust gas, the compressed gas-cooling heat exchanger
Heat exchange with LNG from the NG storage tank, or after heat exchange, further adiabatic expansion to produce and store liquefied nitrogen;
The method of (6) or (7), wherein the BOG is liquefied using the liquefied nitrogen. (9) The method for reliquefying BOG according to the above (8), wherein the produced dry ice is separated by a cyclone.

【0022】(10)LNG貯槽、圧縮ガス冷却用熱交
換器、流動層型熱交換器、サイクロン、ドライアイス貯
槽、断熱膨張装置、液化窒素貯槽、ガス圧縮装置、BO
G圧縮装置、BOG液化用熱交換器からなり、LNG貯
槽から払い出したLNGを圧縮ガス冷却用熱交換器で、
ドライアイスを分離したのち圧縮された燃焼排ガスと熱
交換し、更に流動層型熱交換器で除湿された燃焼排ガス
と熱交換してNGとなし、一方、除湿された燃焼排ガス
を前記流動層型熱交換器で前記圧縮ガス冷却用熱交換器
を通して一部気化したLNGと熱交換してドライアイス
を生成し、生成したドライアイスをサイクロンにより分
離し、ドライアイスを分離した残排ガスをガス圧縮装置
により圧縮し、更に圧縮ガス冷却用熱交換器でLNG貯
槽からのLNGと熱交換するか、又は熱交換したのち更
に断熱膨張させて液化窒素を製造し、得られた液化窒素
を液化窒素貯槽に貯蔵し、BOGをBOG圧縮装置によ
り圧縮したのちBOG液化用熱交換器で前記液化窒素と
熱交換して液化するように構成してなることを特徴とす
るBOGの再液化装置。
(10) LNG storage tank, heat exchanger for cooling compressed gas, fluidized bed heat exchanger, cyclone, dry ice storage tank, adiabatic expansion device, liquefied nitrogen storage tank, gas compression device, BO
It consists of a G compressor and a BOG liquefaction heat exchanger. The LNG discharged from the LNG storage tank is compressed gas cooling heat exchanger.
After separating dry ice, heat exchange is performed with the compressed flue gas, and further, heat exchange is performed with the flue gas dehumidified in the fluidized bed heat exchanger to form NG. On the other hand, the dehumidified flue gas is converted into the fluidized bed type flue gas. The heat exchanger exchanges heat with the partially vaporized LNG through the heat exchanger for cooling the compressed gas to generate dry ice, separates the generated dry ice by a cyclone, and removes the residual exhaust gas from the dry ice to a gas compressor. And then heat exchange with LNG from the LNG storage tank by a heat exchanger for compressed gas cooling or heat exchange and then adiabatic expansion to produce liquefied nitrogen, and the obtained liquefied nitrogen is transferred to the liquefied nitrogen storage tank. Storing and compressing the BOG by a BOG compression device, and then exchanging heat with the liquefied nitrogen in a BOG liquefaction heat exchanger to liquefy the BOG; Location.

【0023】[0023]

【発明の実施の形態】LNGは、産地によって組成が若
干異なるが、通常、メタンを主成分とする炭素数1〜5
の飽和炭化水素からなり、常圧ないし加圧下に、−15
0ないし−170℃に冷却されて液化し貯蔵されてお
り、常圧における気化温度は約−161℃である。した
がって、LNGが気化し外温のNGとなるまでの蒸発潜
熱及び/又は顕熱を冷熱として利用して、冷却剤等に多
くの需要があるドライアイス、液化空気あるいは液化窒
素を製造することができる。更にこの方法により製造し
た液化空気又は液化窒素を貯蔵し、必要時にこれを使用
してBOGを再液化することができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS LNG has a slightly different composition depending on the place of production.
Of saturated hydrocarbons at normal pressure or under pressure.
It is cooled to 0 to -170 ° C, liquefied and stored, and its vaporization temperature at normal pressure is about -161 ° C. Therefore, it is possible to produce dry ice, liquefied air or liquefied nitrogen, which has a great demand for a coolant or the like, by utilizing latent heat of vaporization and / or sensible heat until LNG is vaporized to become NG at an external temperature as cold heat. it can. Further, the liquefied air or liquefied nitrogen produced by this method can be stored and used to re-liquefy the BOG when needed.

【0024】液化窒素は単位重量あたりの蓄冷熱量が比
較的大きいので、貯蔵するのに小さな設備で済むので好
ましい。すなわち、1気圧下の飽和状態の液化窒素は、
同じく1気圧下の25℃の気体状の窒素に比較して、重
量1kgあたり103.0kcalの冷熱を保有する。
Since liquefied nitrogen has a relatively large amount of cold storage heat per unit weight, it can be stored in a small facility, which is preferable. That is, liquefied nitrogen at 1 atm under saturation is
It also retains 103.0 kcal / kg of cold heat compared to gaseous nitrogen at 25 ° C., also at 1 atmosphere.

【0025】BOGはLNG貯槽内の上部にほぼ常圧で
留まり、その温度は−100ないし−160℃であり、
主たる成分はメタンであり、常圧における液化温度は約
−161℃であり30kg/cm2 Gに圧縮した状態の
液化温度は約145℃である。
BOG stays in the upper part of the LNG storage tank at almost normal pressure, its temperature is -100 to -160 ° C,
The main component is methane, the liquefaction temperature at normal pressure is about -161 ° C, and the liquefaction temperature when compressed to 30 kg / cm 2 G is about 145 ° C.

【0026】本発明において、払い出しLNGとはLN
G保冷貯槽から火力発電プラントや都市ガス用にNGと
して払い出されるLNGを、需要期間とはLNGが上記
用途に払い出される期間を、非需要期間とは上記用途に
払い出される量が大幅に減少するか又は0である期間を
意味する。したがって、例えば、需要期間とは昼間であ
り、非需要期間とは夜間又は早朝あるいは火力発電プラ
ント等の停止期間である。
In the present invention, the payout LNG is LN
The demand period is the period during which LNG is paid out for the above-mentioned applications, and the amount of LNG that is paid out to the above-mentioned applications during the non-demand period is significantly reduced. Or, it means a period that is 0. Therefore, for example, the demand period is daytime, and the non-demand period is nighttime or early morning or a shutdown period of a thermal power plant or the like.

【0027】BOGは需要期には火力発電プラントや都
市ガス用にNGとして払い出されるが、非需要期には外
熱によりほぼ一定の速度で発生し、また輸送船等からの
LNG受け入れ時には貯槽壁、配管、機器等の予冷に伴
い、比較的短時間内に多量のBOGを発生して、LNG
貯槽内の上部に留まるので、上記発生速度に合わせてB
OGを液化窒素の保有冷熱により再液化する必要があ
る。本発明ではBOGのLNG貯槽内封じ込めによる圧
力上昇を心配する必要はない。
BOG is paid out as NG for thermal power plants and city gas during the demand period, but is generated at a substantially constant speed due to external heat during the non-demand period, and when the LNG is received from a transport ship or the like, the storage tank wall is discharged. A large amount of BOG is generated in a relatively short time due to the pre-cooling of pipes,
Since it stays in the upper part of the storage tank, B
The OG needs to be reliquefied by the cryogenic heat of liquefied nitrogen. In the present invention, there is no need to worry about a pressure increase due to the containment of BOG in the LNG storage tank.

【0028】本発明で対象とする燃焼排ガスはLNG、
LPG、石油類、石炭、ゴミ等の燃焼排ガスであり、好
ましくは、LNG、LPGの燃焼排ガスである。例え
ば、払い出されたNGの燃焼排ガスを使用し、払い出す
際のLNGの冷熱を利用してドライアイス及び液化窒素
の製造を行うことができ、更に製造した液化窒素を用い
てBOGの再液化を行うことができる。
The combustion exhaust gas targeted in the present invention is LNG,
It is a combustion exhaust gas of LPG, petroleum, coal, refuse and the like, and is preferably a combustion exhaust gas of LNG and LPG. For example, dry ice and liquefied nitrogen can be produced by using the discharged NG combustion exhaust gas and utilizing the cold heat of LNG at the time of dispensing, and BOG reliquefaction is performed by using the produced liquefied nitrogen. It can be performed.

【0029】以下燃焼排ガスがLNGの燃焼排ガスであ
る場合を例にとって本発明を詳細に説明する。燃焼排ガ
スの成分は主として二酸化炭素、窒素及び水分であり、
少量の酸素や、微量の窒素酸化物が含まれている。した
がって、上記燃焼排ガスから主に水分を除去すればドラ
イアイス及び液化窒素の原料として適当なものとなり、
BOGを液化窒素により再液化した後の窒素を大気に放
出しても、元は燃焼排ガスであるから経済的な損失は少
なく、かつ、環境保全上も問題ない。また、これらのガ
スは不燃性であり、装置が万一破損した時でもLNGや
BOGと混合して災害が発生する危険は少ない。
Hereinafter, the present invention will be described in detail by taking as an example the case where the combustion exhaust gas is LNG combustion exhaust gas. The components of the flue gas are mainly carbon dioxide, nitrogen and moisture,
Contains small amounts of oxygen and trace amounts of nitrogen oxides. Therefore, if water is mainly removed from the combustion exhaust gas, it becomes suitable as a raw material for dry ice and liquefied nitrogen,
Even if nitrogen after reliquefaction of BOG with liquefied nitrogen is released to the atmosphere, it is originally a combustion exhaust gas, so there is little economic loss and there is no problem in environmental conservation. Further, these gases are nonflammable, and even if the device is damaged, there is little danger of causing a disaster by mixing with LNG or BOG.

【0030】液化用の燃焼排ガスは必要により集塵、濾
過等の清浄化処理をした上で燃焼排ガス中の水分を予め
除去したものを使用する。例えば、本発明における流動
層型熱交換器通過後のNGと熱交換し、燃焼排ガス中の
水分を予め除去することができる。
As the combustion exhaust gas for liquefaction, a gas from which the moisture in the combustion exhaust gas has been removed in advance after purifying treatment such as dust collection and filtration as necessary is used. For example, heat exchange with NG after passing through the fluidized bed heat exchanger in the present invention can remove in advance the moisture in the combustion exhaust gas.

【0031】NGの需要時に、LNG貯槽から払い出さ
れるLNGは、圧縮ガス冷却用熱交換器で圧縮ガス(窒
素)と熱交換し、更に流動層型熱交換器で除湿された燃
焼排ガスと熱交換してNGとなり、火力発電プラントや
都市ガス用にNGとして払い出される。
At the time of demand for NG, LNG discharged from the LNG storage tank exchanges heat with the compressed gas (nitrogen) in the heat exchanger for cooling the compressed gas, and further exchanges heat with the exhaust gas dehumidified in the fluidized bed heat exchanger. NG, and it is paid out as NG for thermal power plants and city gas.

【0032】除湿された燃焼排ガスは流動層型熱交換器
の下部に供給され、LNGとNGの混合流体と熱交換し
て冷却されドライアイスを生成する。流動層型熱交換器
は内部に流動層を形成する容器と、容器の中に設けられ
た熱交換パイプ又はパネル等からなり、熱交換パイプ又
はパネルにはLNG及び/又はNG(通常は混合流体)
が冷却剤として流れ、流動層を形成する空間には流動層
用媒体が加えられている。
The dehumidified combustion exhaust gas is supplied to the lower part of the fluidized bed heat exchanger, exchanges heat with a mixed fluid of LNG and NG, and is cooled to produce dry ice. The fluidized bed heat exchanger includes a vessel in which a fluidized bed is formed, and a heat exchange pipe or panel provided in the vessel. LNG and / or NG (usually a mixed fluid) is provided in the heat exchange pipe or panel. )
Flows as a coolant, and a fluidized bed medium is added to the space forming the fluidized bed.

【0033】流動層用媒体としては珪砂、金属粒子、陶
磁器製粒子、その他の粒子が使用でき、その形状は球
状、角状、中空状、管状、環状物などが挙げられる。流
動層用媒体として粒子が使用される場合には、流動層媒
体粒子は流動層内を上昇する燃焼排ガスにより流動層内
を流動循環し、内部にLNGもしくはNGが流通する冷
却管により冷却され、粒子上に燃焼排ガス中の二酸化炭
素がドライアイスとなって凝固し付着するが、流動中の
粒子間衝突摩擦により粒子上のドライアイスは剥がれ落
ちて、粉体のドライアイスとなり、気流に搬送される。
As the fluidized bed medium, silica sand, metal particles, ceramic particles, and other particles can be used, and the shapes thereof are spherical, angular, hollow, tubular, and annular. When particles are used as the fluidized bed medium, the fluidized bed medium particles flow and circulate in the fluidized bed with the combustion exhaust gas rising in the fluidized bed, and are cooled by a cooling pipe through which LNG or NG flows, The carbon dioxide in the combustion exhaust gas is solidified and adheres to the particles as dry ice on the particles, but the dry ice on the particles is peeled off due to the collision friction between the flowing particles and becomes dry ice powder, which is conveyed to the airflow. You.

【0034】粒子の径及び比重は、流動層内で上昇する
燃焼排ガスにより流動層内を流動循環しドライアイスが
付着しても充分に流動できるような操作条件に合うよう
に選定される。流動層の形状、大きさにもよるが燃焼排
ガスの線速度は0.05〜5m/sec、好ましくは、
0.1〜1.0m/secである。したがって、流動層
用媒体粒子の好適な例としては珪砂、金属粒子等の比重
2ないし10程度のもであり、また粒子径は10μmな
いし1mmのものが挙げられる。粒子の形状としては球
状、角状、中空状あるいは砂のような無定型状のものが
好適である。
The diameter and specific gravity of the particles are selected so as to meet operating conditions such that the flue gas ascending in the fluidized bed flows and circulates in the fluidized bed so that even if dry ice adheres, it can flow sufficiently. Although depending on the shape and size of the fluidized bed, the linear velocity of the combustion exhaust gas is 0.05 to 5 m / sec, preferably,
0.1 to 1.0 m / sec. Therefore, preferred examples of the fluidized bed medium particles include those having a specific gravity of about 2 to 10 such as silica sand and metal particles, and those having a particle diameter of 10 μm to 1 mm. The shape of the particles is preferably spherical, angular, hollow, or amorphous such as sand.

【0035】媒体粒子は燃焼排ガスを冷却し、ドライア
イスを生成させるのに加えて、粒子上及び流動層型熱交
換器の冷却管及び流動層壁面上に形成されたドライアイ
スを粉体として粉砕したり、掻き落とす働きがある。
The medium particles not only cool the flue gas to produce dry ice, but also pulverize the dry ice formed on the particles, the cooling pipe of the fluidized bed heat exchanger and the wall surface of the fluidized bed into powder. And has the function of scraping.

【0036】流動層の上部又は上流部には、流動層用媒
体粒子を流動層に循環させるために、又は流動層用媒体
粒子上に堆積したドライアイスが破砕して生じた微粒子
を分離するためにサイクロン等の分離器を設けることが
できる。これらの分離器を用いても、流動層用媒体粒子
と、生成するドライアイスの微粒子とは比重差等のため
に容易に分離される。
The upper or upstream portion of the fluidized bed is used to circulate the fluidized bed medium particles through the fluidized bed or to separate fine particles generated by crushing dry ice deposited on the fluidized bed medium particles. Can be provided with a separator such as a cyclone. Even if these separators are used, the fluidized bed medium particles and the generated fine particles of dry ice are easily separated due to a difference in specific gravity and the like.

【0037】流動層内で生成するドライアイスは粉雪状
であり、嵩比重が0.2〜0.8であり、粒径が5〜5
0μmであるので、上記線速度では、窒素を主体とする
残排ガスにより流動層上部から運び去られ、ドライアイ
ス分離用サイクロンに供給され、ここで大部分のドライ
アイス微粒子は排ガス流から除去されるが、更に排ガス
に残留して同伴するドライアイス粉の微粒子(粉体)は
バグフィルタ等のフィルタにより分離される。ドライア
イス微粒子分離用フィルタとしては、バグフィルタが適
当である。ここでは上述の排ガス中に残留するドライア
イス微粒子が、ガス圧縮機内及び配管内に堆積して、閉
塞や回転アンバランスを引き起こさない程度までドライ
アイス微粒子を除去する必要かある。フィルタとして
は、低温熱収縮、ドライアイス付着による目詰まり防止
を考慮して材質と構造を選定する。
The dry ice produced in the fluidized bed is powdery snow, has a bulk specific gravity of 0.2 to 0.8, and a particle size of 5 to 5
0 μm, at the above linear velocity, the residual exhaust gas mainly composed of nitrogen is carried away from the upper part of the fluidized bed and supplied to the cyclone for dry ice separation, where most of the dry ice fine particles are removed from the exhaust gas flow. However, fine particles (powder) of dry ice powder remaining in the exhaust gas and entrained are separated by a filter such as a bag filter. A bag filter is suitable as a filter for separating dry ice fine particles. Here, it is necessary to remove the dry ice fine particles to such an extent that the dry ice fine particles remaining in the exhaust gas accumulate in the gas compressor and the pipe and do not cause blockage or rotational imbalance. The material and structure of the filter are selected in consideration of low-temperature heat shrinkage and prevention of clogging due to dry ice adhesion.

【0038】さらに、サイクロンの下部及びバクフィル
タ等のフィルタの下部には集粉装置が設けられ、ドライ
アイス粉体が回収される。このドライアイス粉体層を3
0〜40kg/cm2 程度に加圧することにより、密度
1600〜1700kg/m 3 のドライアイス成形体と
することができる。
Further, the lower part of the cyclone and the backfill
A dust collecting device is provided below the filter
Ice powder is collected. Apply this dry ice powder layer to 3
0-40kg / cmTwoDensity by pressing
1600-1700kg / m ThreeDry ice molded body and
can do.

【0039】ドライアイスを分離した残りの排ガス(残
排ガス)の成分はほとんど窒素であり、これを液化する
ために20〜40kg/cm2 に圧縮する。残排ガス
(窒素)の圧縮は2〜4段等の多段の圧縮、冷却を繰り
返して行ってもよい。冷却には圧縮ガス冷却用熱交換器
を通過後のNGが保有する冷熱を回収して残排ガス(窒
素)を予冷した上、さらに残排ガスを液化するためにL
NGの冷熱を使用する。
The component of the remaining exhaust gas (residual exhaust gas) separated from the dry ice is almost nitrogen, and is compressed to 20 to 40 kg / cm 2 in order to liquefy it. The compression of the residual exhaust gas (nitrogen) may be performed by repeating multi-stage compression and cooling such as two to four stages. For cooling, the NG held by the NG after passing through the heat exchanger for cooling the compressed gas is recovered, the residual exhaust gas (nitrogen) is pre-cooled, and L is further cooled to liquefy the residual exhaust gas.
Use the NG cold.

【0040】圧縮された窒素(残排ガス)は、圧縮ガス
用熱交換器でLNGにより−100〜−160℃に深冷
される。圧縮され、深冷された窒素は、必要であれば深
冷ガス熱交換器で更に熱交換して液化することができる
し、また更に未液化の深冷ガス分は断熱膨張により冷却
されて一部が液化できる。液化窒素は気体と分離され、
液化窒素貯槽に貯蔵され、気体は冷却されているので上
記深冷ガス熱交換器で熱交換した後、例えば、前記ガス
圧縮機の前段等にリサイクルされたり、又は燃焼排ガス
中の水分の除去に使用された後大気に放出される。
The compressed nitrogen (residual exhaust gas) is chilled to -100 to -160 ° C. by LNG in a compressed gas heat exchanger. The compressed and chilled nitrogen can be further heat-exchanged and liquefied in a cryogenic gas heat exchanger if necessary, and the unliquefied cryogenic gas can be cooled by adiabatic expansion and cooled. The part can be liquefied. Liquefied nitrogen is separated from gas,
It is stored in a liquefied nitrogen storage tank, and after the gas is cooled, it is heat-exchanged by the cryogenic gas heat exchanger.For example, it is recycled to the preceding stage of the gas compressor, or for removing moisture in the combustion exhaust gas. Released to atmosphere after use.

【0041】なお、圧縮機と液化窒素貯槽との間に膨張
タービンを設置し、圧縮窒素の一部を膨張タービンに供
給して可逆膨張させて冷却し、圧縮窒素から回収した動
力で駆動されるタービンにより新規に導入される窒素を
さらに圧縮し、一方膨張して冷却した未液化分の窒素
を、リサイクルされる深冷窒素として深冷ガス熱交換器
等に供給するようにしてもよい。
An expansion turbine is installed between the compressor and the liquefied nitrogen storage tank, and a part of the compressed nitrogen is supplied to the expansion turbine to be reversibly expanded and cooled, and is driven by power recovered from the compressed nitrogen. Nitrogen newly introduced by the turbine may be further compressed, while expanded and cooled unliquefied nitrogen may be supplied to a cryogenic gas heat exchanger or the like as cryogenic nitrogen to be recycled.

【0042】また、液化窒素の製造法は、最もシンプル
なジュール・トムソン効果を利用する方式でもよいし、
圧縮した窒素をLNGの冷熱を利用して冷却する窒素の
液化方法自体は、リンデ法によっても、クロード法によ
ってもさらにはこれらの改良法によってもよい。
The method for producing liquefied nitrogen may be a method utilizing the simplest Joule-Thomson effect,
The nitrogen liquefaction method itself for cooling the compressed nitrogen using the cold heat of LNG may be performed by the Linde method, the Claude method, or any of these improved methods.

【0043】NGの非需要時にLNG貯槽で発生するB
OGはBOG圧縮機により5〜30kg/cm2 に圧縮
し、BOG液化用熱交換器で、NGの需要時にLNGの
冷熱を利用して製造して貯蔵されている液化窒素と熱交
換しLNGに再液化され、再液化BOGとしてLNG貯
槽に貯蔵される。液化窒素はBOGの液化に使用される
か又は余剰液化窒素として貯蔵され、別の用途のために
使用される。BOGの液化に使用される場合には、BO
G液化用熱交換器でBOGの冷却に使用されて気化して
生じた窒素は排ガスとして大気に放出される。なお、N
Gの需要時に発生するBOGはBOG圧縮機により5〜
30kg/cm2 に圧縮した後、払出しLNGに混合し
て使用するとができる。
B generated in the LNG storage tank when NG is not required
OG is compressed to 5 to 30 kg / cm 2 by a BOG compressor, and is used as a BOG liquefaction heat exchanger to exchange heat with liquefied nitrogen produced and stored by utilizing the cold heat of LNG when demanding NG to LNG. It is reliquefied and stored in the LNG storage tank as reliquefied BOG. Liquefied nitrogen is used for liquefaction of BOG or stored as excess liquefied nitrogen and used for another purpose. When used for liquefaction of BOG,
Nitrogen that is used in cooling the BOG in the G liquefaction heat exchanger and is vaporized is released to the atmosphere as exhaust gas. Note that N
BOG generated at the time of demand of G is 5 to 5 by the BOG compressor.
After being compressed to 30 kg / cm 2 , it can be mixed with the dispensed LNG and used.

【0044】本発明では、圧縮ガス冷却用熱交換器、流
動層型熱交換器、BOG液化用熱交換器及び必要により
深冷ガス熱交換器が使用される。これらの熱交換器とし
ては、従来のシェルアンドチューブ型が、温度差が小さ
いときにはプレートフィン型等のものが使用できる。
In the present invention, a heat exchanger for cooling a compressed gas, a fluidized bed heat exchanger, a heat exchanger for liquefying BOG and, if necessary, a cryogenic gas heat exchanger are used. As such a heat exchanger, a conventional shell and tube type or a plate fin type when the temperature difference is small can be used.

【0045】図1は本発明の1実施態様を示すフローシ
ートである。図1において実線はNG需要時の、破線は
NG非需要時の流れを示す。以下に本発明の一例として
図1により、払い出しLNGの冷熱を利用してドライア
イス及び液化窒素を製造し、貯蔵し、BOGを再液化す
る方法を説明する。LNG貯槽1(容量2〜10万k1
の規模のものが現状では使用されている)には、LNG
が常圧、−161℃程度で貯蔵されており、LNGの上
部にはBOGが常圧ないしやや加圧の0.2kg/cm
2 G程度で、−100〜−160℃で留まっている。L
NGの払い出し量は昼間NG需要時に例えば、100t
/hrで、ポンプにより10〜50kg/cm2 に加圧
されて払い出され、夜間NG非需要時の払い出し量は0
〜10t/hrである。BOGの発生量は常時平均7t
/hrである。
FIG. 1 is a flow sheet showing one embodiment of the present invention. In FIG. 1, a solid line indicates a flow when NG is required, and a broken line indicates a flow when NG is not required. Referring to FIG. 1 as an example of the present invention, a method for producing dry ice and liquefied nitrogen using the cold heat of discharged LNG, storing it, and reliquefying BOG will be described below. LNG storage tank 1 (capacity 2 to 100,000 k1
LNG is currently used).
Is stored at normal pressure and at about -161 ° C., and BOG is placed on top of LNG at normal pressure or slightly pressurized 0.2 kg / cm.
It is about 2 G and stays at -100 to -160 ° C. L
NG payout amount is, for example, 100t during daytime NG demand
/ Hr, the pressure is increased to 10 to 50 kg / cm 2 by a pump and the amount is paid out.
10 to 10 t / hr. BOG generation is always 7t on average
/ Hr.

【0046】NGの需要時に、LNG貯槽1を出たLN
G11は、圧縮ガス冷却用熱交換器2で圧縮ガス〔残排
ガス(窒素)の圧縮されたガス〕13と熱交換し、更に
流動層型熱交換器3で除湿後の燃焼排ガス10と熱交換
してNG12となり、火力発電プラントや都市ガス用に
30〜80kg/cm2 に加圧されたNGとして払い出
される。
At the time of demand for NG, the LN exiting the LNG storage tank 1
G11 exchanges heat with the compressed gas [compressed gas of residual exhaust gas (nitrogen)] 13 in the compressed gas cooling heat exchanger 2, and further exchanges heat with the combustion exhaust gas 10 after dehumidification in the fluidized bed heat exchanger 3. As a result, NG 12 is paid out as NG pressurized to 30 to 80 kg / cm 2 for thermal power plants and city gas.

【0047】一方、除湿器(図示せず)で水分を除去さ
れた燃焼排ガス10は上記流動層型熱交換器3で冷却パ
イプ、流動層粒子を介してNGと熱交換し約−40〜−
70℃に冷却され、流動層中でドライアイスの微粒子状
粉体を生じ、残排ガスに同伴されて流動層粒子と分離さ
れ、サイクロン21に輸送される。サイクロンに供給さ
れたドライアイスの微粒子状粉体はサイクロン中で残排
ガスと分離されドライアイス貯槽20に貯蔵される。サ
イクロンを通過した残排ガスは、少量のドライアイス微
粒子を同伴するので、さらにフィルタ22によりドライ
アイス微粒子を除去した後、残排ガス26としてガス圧
縮機4に供給される。なお残排ガス26に酸素ガスその
他の微量ガスが含まれる場合には、必要に応じて従来の
方法により好ましい工程で、酸素その他の微量ガスを吸
着、脱着操作等により分離した後圧縮・液化工程に送る
ようにしてもよい。
On the other hand, the flue gas 10 from which water has been removed by a dehumidifier (not shown) exchanges heat with NG via the cooling pipe and the fluidized bed particles in the fluidized bed heat exchanger 3 to undergo about -40 to -40.
After cooling to 70 ° C., fine powder of dry ice is produced in the fluidized bed, separated from the fluidized bed particles with the residual exhaust gas, and transported to the cyclone 21. The fine powder of dry ice supplied to the cyclone is separated from residual exhaust gas in the cyclone and stored in the dry ice storage tank 20. The residual exhaust gas that has passed through the cyclone accompanies a small amount of dry ice fine particles, so that the dry ice fine particles are further removed by the filter 22 and then supplied to the gas compressor 4 as residual exhaust gas 26. In the case where the residual exhaust gas 26 contains oxygen gas or other trace gas, if necessary, in a preferred step by a conventional method, oxygen and other trace gas are separated by adsorption, desorption operation, etc., and then subjected to a compression / liquefaction step. You may send it.

【0048】残排ガス26(窒素)はガス圧縮機4によ
り20〜40kg/cm2 に加圧され、圧縮ガス13に
なり、圧縮ガス冷却用熱交換器2で払い出しLNG11
と熱交換して冷却され、深冷空気熱交換器9で深冷ガス
17と熱交換して冷却された後、断熱膨張装置5により
一部は液化窒素14となり、液化窒素貯槽6に貯蔵さ
れ、一部は深冷ガス17となり、深冷ガス熱交換器9で
圧縮ガス13と熱交換した後、ガス圧縮機の前段等にリ
サイクルされたり、又は図示していないが流動層型熱交
換器3を経て、必要によっては除湿器により燃焼排ガス
中の水分の除去に使用された後、排窒素ガス23として
大気に放出される。
The residual exhaust gas 26 (nitrogen) is pressurized to 20 to 40 kg / cm 2 by the gas compressor 4 to become a compressed gas 13, which is discharged by the heat exchanger 2 for cooling the compressed gas.
After being cooled by exchanging heat with the cryogenic gas 17 in the cryogenic air heat exchanger 9, a part thereof becomes liquefied nitrogen 14 by the adiabatic expansion device 5 and is stored in the liquefied nitrogen storage tank 6. , A part of which becomes a cryogenic gas 17, which is heat-exchanged with the compressed gas 13 in the cryogenic gas heat exchanger 9 and then recycled to the preceding stage of the gas compressor or a fluidized bed heat exchanger (not shown) After being used for removing moisture in the combustion exhaust gas by a dehumidifier through 3 if necessary, it is released to the atmosphere as exhaust nitrogen gas 23.

【0049】NGの非需要時に、BOG15はBOG圧
縮機8により5〜30kg/cm2に圧縮され、BOG
液化用熱交換器7で液化窒素と熱交換しLNGに再液化
され、再液化BOG16としてLNG貯槽1に貯蔵され
る。液化窒素はBOG液化用熱交換器7で気化し排窒素
ガス24として大気に放出されるか、余剰液化窒素25
として別の用途のために利用される。
When NG is not required, the BOG 15 is compressed by the BOG compressor 8 to 5 to 30 kg / cm 2 ,
The liquefied heat exchanger 7 exchanges heat with liquefied nitrogen to be reliquefied into LNG and stored in the LNG storage tank 1 as reliquefied BOG 16. The liquefied nitrogen is vaporized in the BOG liquefaction heat exchanger 7 and released to the atmosphere as exhaust nitrogen gas 24 or excess liquefied nitrogen 25
Used for other uses as.

【0050】[0050]

【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明はこれらに限定されるものではない。 (実施例1)図1に示す装置において、LNG貯槽1に
は、LNGが常圧、−161℃で貯蔵されている。LN
Gの払い出し量は昼間需要時に100t/hrで、ポン
プにより30kg/cm2 Gに加圧されて払い出され、
夜間非需要時の払い出し量は0t/hrである。NGの
需要時に、払い出されるLNGは、圧縮ガス冷却用熱交
換器2で圧縮ガス13と熱交換し、更に流動層型熱交換
器3で除湿後の燃焼排ガス10と熱交換し、除湿器(図
示せず)を経てNG12となり、火力発電プラント用に
払い出された。
EXAMPLES The present invention will now be described specifically with reference to examples, but the present invention is not limited to these examples. (Embodiment 1) In the apparatus shown in FIG. 1, LNG is stored in an LNG storage tank 1 at normal pressure and at -161 ° C. LN
The amount of G to be dispensed is 100 t / hr at the time of daytime demand, the pressure is increased to 30 kg / cm 2 G by a pump, and the G is dispensed.
The payout amount during non-demand at night is 0 t / hr. At the time of demand for NG, the LNG discharged is heat-exchanged with the compressed gas 13 in the heat exchanger 2 for cooling the compressed gas, and further heat-exchanged with the combustion exhaust gas 10 after dehumidification in the fluidized-bed heat exchanger 3 to be dehumidified (Not shown) and became NG12, which was paid out for the thermal power plant.

【0051】一方、LNG燃焼設備から排出され、窒素
71%、二酸化炭素9%、酸素3%、水分17%および
NOx 120ppmを含む燃焼排ガス39t/hrは、
除湿器(図示せず)を経て水分約10ppm以下に除湿
された燃焼排ガス10となり、流動層内ガスの空塔上昇
線速度が0.25m/secとなるように流動層型熱交
換器3に供給された。流動層型熱交換器3には、平均粒
径180μmの珪砂が充填されている。排ガス10は流
動層型熱交換器3でLNGと熱交換し約−140℃に冷
却され、ドライアイスの微粒子粉体を生成した。得られ
たドライアイスの微粒子状粉体は粒径約5〜50μmで
あり、残排ガス26によりサイクロン21に輸送され、
サイクロンで分離され、サイクロン下部の集粉器に集め
られ、ドライアイス貯槽20に貯蔵された。微量のドラ
イアイス微粒子を同伴する残排ガスはフィルタ22(こ
こではバグフィルタ)により、ドライアイス微粒子を分
離した後、残排ガス26は圧縮機4に供給された。分離
されたドライアイス微粒子粉体はサイクロン21で分離
されたドライアイスとともにドライアイス貯槽20に貯
蔵され、得られたドライアイスの量は5.5t/hrで
あった。
On the other hand, 39 t / hr of flue gas discharged from the LNG combustion equipment and containing 71% of nitrogen, 9% of carbon dioxide, 3% of oxygen, 17% of moisture and 120 ppm of NOx are
The flue gas 10 is dehumidified to a water content of about 10 ppm or less through a dehumidifier (not shown), and is supplied to the fluidized bed heat exchanger 3 so that the superficial linear velocity of the gas in the fluidized bed becomes 0.25 m / sec. Supplied. The fluidized bed heat exchanger 3 is filled with silica sand having an average particle size of 180 μm. The exhaust gas 10 exchanged heat with LNG in the fluidized bed heat exchanger 3 and was cooled to about -140 ° C to produce fine powder of dry ice. The obtained fine powder of dry ice has a particle size of about 5 to 50 μm, and is transported to the cyclone 21 by the residual exhaust gas 26,
It was separated by a cyclone, collected in a dust collector below the cyclone, and stored in a dry ice storage tank 20. The residual exhaust gas accompanied by a small amount of dry ice fine particles was separated from the dry ice fine particles by a filter 22 (here, a bag filter), and then the residual exhaust gas 26 was supplied to the compressor 4. The separated dry ice fine particle powder was stored in the dry ice storage tank 20 together with the dry ice separated by the cyclone 21, and the amount of the obtained dry ice was 5.5 t / hr.

【0052】ドライアイスを分離した後の残排ガス26
は、3段のガス圧縮機4により圧縮冷却を繰り返し、−
45℃、31kg/cm2 の圧縮ガス13になり、圧縮
ガス冷却用熱交換器2で、払い出しLNG11と熱交換
し、さらに深冷ガス熱交換器9で熱交換した後、断熱膨
張装置5により一部は液化窒素18.5t/hrとな
り、液化窒素タンク6に貯蔵された。断熱膨張した残り
の深冷ガス17は、深冷ガス熱交換器9で熱交換した
後、一部はガス圧縮機4の前段にリサイクルされ、他は
流動層型熱交換器3に流入する燃焼排ガスの予冷と、さ
らに除湿の冷熱源として利用された後大気に放出され
た。
Residual exhaust gas 26 after separation of dry ice
Is repeatedly compressed and cooled by the three-stage gas compressor 4,
It becomes a compressed gas 13 of 45 ° C. and 31 kg / cm 2 , heat-exchanges with the discharged LNG 11 in the heat exchanger 2 for cooling the compressed gas, and further heat-exchanges with the cryogenic gas heat exchanger 9. Part of the liquefied nitrogen became 18.5 t / hr and was stored in the liquefied nitrogen tank 6. After the adiabatic expanded remaining cryogenic gas 17 undergoes heat exchange in the cryogenic gas heat exchanger 9, part of the gas is recycled to the preceding stage of the gas compressor 4, and the other part flows into the fluidized bed heat exchanger 3. The exhaust gas was released to the atmosphere after being used for pre-cooling and further as a cold source for dehumidification.

【0053】(実施例2)図1に示す装置において、L
NG貯槽1には、LNGが常圧、−161℃で貯蔵され
ており、LNGの上部にはBOGが常圧、−160℃で
留まっている。LNGの払い出し量は昼間需要時に10
0t/hrで、ポンプにより30kg/cm2 Gに加圧
されて払い出され、夜間非需要時の払い出し量は0t/
hrである。BOGの発生量は平均7t/hrである。
(Embodiment 2) In the apparatus shown in FIG.
In the NG storage tank 1, LNG is stored at normal pressure and at -161 ° C, and BOG remains at normal pressure and at -160 ° C above LNG. LNG payout amount is 10 during daytime demand.
At 0 t / hr, the pressure is increased to 30 kg / cm 2 G by a pump, and the pump is paid out.
hr. The amount of BOG generated is 7 t / hr on average.

【0054】実施例1で製造された液化窒素を使用し
て、夜間のNG非需要時にBOGをLNGに再液化し
た。NG非需要時に、平均7t/hrで発生するBOG
15はBOG圧縮機8により11kg/cm2 に圧縮さ
れ、BOG液化用熱交換器7で液化窒素15t/hrと
熱交換して、ほぼ全量が再液化され、LNG貯槽1に貯
蔵された。なお、実施例1および2で用いたLNGの組
成、沸点及び露点は表1のとおりである。
Using the liquefied nitrogen produced in Example 1, BOG was reliquefied into LNG at night when NG was not required. BOG generated at an average of 7 t / hr when NG is not required
15 was compressed to 11 kg / cm 2 by a BOG compressor 8, and heat-exchanged with 15 t / hr of liquefied nitrogen in a BOG liquefaction heat exchanger 7, almost all of which was reliquefied and stored in the LNG storage tank 1. The composition, boiling point and dew point of LNG used in Examples 1 and 2 are as shown in Table 1.

【0055】[0055]

【表1】 [Table 1]

【0056】また、圧力30kg/cm2 Gと40kg
/cm2 GにおけるLNGの蒸発曲線(又は凝縮曲線)
及び圧力20kg/cm2 Gと30kg/cm2 Gにお
ける窒素の蒸発曲線(又は凝縮曲線)を図2に示した。
図2より、LNGの温度の方が加圧下の窒素ガスの液化
温度よりも低温側にあるので、明らかにLNG(又はN
G)および窒素(又は液化窒素)間の熱交換により、L
NGの冷熱で窒素ガス(燃焼排ガスの主成分)が液化し
うる操作条件が存在すること、逆に、液化窒素の冷熱で
BOGを液化しうる操作条件が存在することがわかる。
The pressure is 30 kg / cm 2 G and 40 kg.
/ NG L evaporation curve (or condensation curve) at / cm 2 G
FIG. 2 shows the nitrogen evaporation curves (or condensation curves) at 20 kg / cm 2 G and 30 kg / cm 2 G.
FIG. 2 clearly shows that the temperature of the LNG is lower than the liquefaction temperature of the nitrogen gas under pressure, and thus the LNG (or N
G) and heat exchange between nitrogen (or liquefied nitrogen)
It can be seen that there are operating conditions under which the nitrogen gas (the main component of the combustion exhaust gas) can be liquefied by the cold heat of NG, and conversely, there are operating conditions under which the BOG can be liquefied by the cold heat of the liquefied nitrogen.

【0057】[0057]

【発明の効果】本発明により、LNGの払い出しLNG
の冷熱を利用して、LNG又はLPG燃焼排ガス等から
ドライアイス及び液化窒素を製造することができた。ま
た、LNGの払い出し量は昼間需要時と、夜間非需要時
とで大きな差があったが、上記液化窒素を利用して、夜
間LNGの非需要時に発生するBOGをほぼ全量再液化
してLNG貯槽に戻すことができた。
According to the present invention, LNG is paid out LNG.
Dry ice and liquefied nitrogen could be produced from LNG or LPG combustion exhaust gas, etc. by utilizing the cold heat of the above. Also, the amount of LNG dispensed greatly differs between daytime demand and nighttime non-demand, but by using the above liquefied nitrogen, almost all of the BOG generated during nighttime LNG non-demand is reliquefied to LNG. We were able to return to storage tank.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の1実施態様を示すプロセスフローシー
ト。
FIG. 1 is a process flow sheet showing one embodiment of the present invention.

【図2】LNGおよび窒素の温度対エンタルピー曲線を
示す図。
FIG. 2 is a diagram showing temperature versus enthalpy curves of LNG and nitrogen.

【符号の説明】[Explanation of symbols]

1.LNG貯槽 2.圧縮ガス冷却用熱交換器
3.流動層型熱交換器 4.ガス圧縮機 5.断熱膨張装置 6.液化窒素
貯槽 7.BOG液化用熱交換器 8.BOG圧縮機
9.深冷ガス熱交換器 10.除湿後燃焼排ガス11.払い出しLNG 1
2.NG 13.圧縮ガス 14.液化窒素 15.BOG
16.再液化BOG 17.深冷ガス 20.ドライアイス貯槽 21.
サイクロン 22.フィルタ 23.排窒素ガス(未凝縮分) 24.排窒素ガス(BOG冷却後) 25.余剰液化
窒素(多目的利用分) 26.水分と炭酸ガスを除去後の残排ガス
1. LNG storage tank 2. Heat exchanger for compressed gas cooling
3. 3. Fluidized bed heat exchanger Gas compressor 5. Adiabatic expansion device 6. 6. Liquefied nitrogen storage tank 7. BOG liquefaction heat exchanger BOG compressor
9. Chill gas heat exchanger 10. 10. Combustion exhaust gas after dehumidification Payout LNG 1
2. NG 13. Compressed gas 14. Liquefied nitrogen 15. BOG
16. Reliquefied BOG 17. Chilled gas 20. Dry ice storage tank 21.
Cyclone 22. Filter 23. 13. Exhaust nitrogen gas (uncondensed) 25. Exhaust nitrogen gas (after BOG cooling) Excess liquefied nitrogen (multipurpose use) 26. Residual exhaust gas after removing moisture and carbon dioxide

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古市 裕之 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社内 (72)発明者 小川 聡嗣 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiroyuki Furuichi 2-5-1 Marunouchi, Chiyoda-ku, Tokyo Sanishi Heavy Industries, Ltd. (72) Inventor Satoshi Ogawa 2-5-1 Marunouchi, Chiyoda-ku, Tokyo Sanishi Heavy Industries Co., Ltd.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 払い出し液化天然ガスの冷熱を利用して
燃焼排ガスを冷却し、該燃焼排ガスに含有される炭酸ガ
スを固化することによりドライアイスを生成して分離
し、ドライアイスを分離した残排ガスを更に圧縮、冷却
して液化窒素を製造することを特徴とするドライアイス
及び液化窒素の製造方法。
1. A method of cooling a combustion exhaust gas by utilizing the cold heat of a discharged liquefied natural gas, solidifying carbon dioxide contained in the combustion exhaust gas to produce and separate dry ice, and separating the dry ice. A method for producing dry ice and liquefied nitrogen, further comprising compressing and cooling the exhaust gas to produce liquefied nitrogen.
【請求項2】 燃焼排ガスが液化天然ガス又は液化石油
ガスの燃焼排ガスであることを特徴とする請求項1記載
のドライアイス及び液化窒素の製造方法。
2. The method for producing dry ice and liquefied nitrogen according to claim 1, wherein the combustion exhaust gas is a combustion exhaust gas of liquefied natural gas or liquefied petroleum gas.
【請求項3】 払い出し液化天然ガスを圧縮ガス冷却用
熱交換器で、ドライアイスを分離したのち圧縮された燃
焼排ガスと熱交換し、更に流動層型熱交換器で除湿され
た燃焼排ガスと熱交換して天然ガスとし、一方、除湿さ
れた燃焼排ガスを前記流動層型熱交換器で前記圧縮ガス
冷却用熱交換器を通して一部気化した液化天然ガスと熱
交換してドライアイスを生成して分離し、ドライアイス
を分離した残排ガスを圧縮した後、前記圧縮ガス冷却用
熱交換器で貯槽からの液化天然ガスと熱交換するか、又
は熱交換したのち更に断熱膨張させて液化窒素を製造す
ることを特徴とする請求項1又は2記載のドライアイス
及び液化窒素の製造方法。
3. The discharged liquefied natural gas is heat-exchanged with a compressed flue gas after separating dry ice by a heat exchanger for cooling a compressed gas, and is further exchanged with the flue gas dehumidified by a fluidized bed heat exchanger. Exchanged into natural gas, while the dehumidified flue gas was heat-exchanged with partially vaporized liquefied natural gas through the compressed gas cooling heat exchanger in the fluidized bed heat exchanger to produce dry ice. After separating and drying the residual exhaust gas from which dry ice has been separated, heat is exchanged with the liquefied natural gas from the storage tank in the heat exchanger for cooling the compressed gas, or heat exchange is performed and then adiabatically expanded to produce liquefied nitrogen. The method for producing dry ice and liquefied nitrogen according to claim 1 or 2, wherein:
【請求項4】 生成したドライアイスをサイクロンによ
り分離することを特徴とする請求項3記載のドライアイ
ス及び液化窒素の製造方法。
4. The method for producing dry ice and liquefied nitrogen according to claim 3, wherein the produced dry ice is separated by a cyclone.
【請求項5】 液化天然ガス貯槽、圧縮ガス冷却用熱交
換器、流動層型熱交換器、サイクロン、ドライアイス貯
槽、断熱膨張装置、液化窒素貯槽、ガス圧縮装置からな
り、液化天然ガス貯槽から払い出した液化天然ガスを圧
縮ガス冷却用熱交換器で、ドライアイスを分離したのち
圧縮された燃焼排ガスと熱交換し、更に流動層型熱交換
器で除湿された燃焼排ガスと熱交換して天然ガスとな
し、一方、除湿された燃焼排ガスを前記流動層型熱交換
器で前記圧縮ガス冷却用熱交換器を通して一部気化した
液化天然ガスと熱交換してドライアイスを生成し、生成
したドライアイスをサイクロンにより分離してドライア
イス貯槽に貯蔵し、ドライアイスを分離した残排ガスを
ガス圧縮装置により圧縮し、更に圧縮ガス冷却用熱交換
器で液化天然ガス貯槽からの液化天然ガスと熱交換する
か、又は熱交換したのち更に断熱膨張させて液化窒素を
製造し、得られた液化窒素を液化窒素貯槽に貯蔵するよ
うに構成してなることを特徴とするドライアイス及び液
化窒素の製造装置。
5. A liquefied natural gas storage tank, a heat exchanger for cooling compressed gas, a fluidized bed heat exchanger, a cyclone, a dry ice storage tank, an adiabatic expansion device, a liquefied nitrogen storage tank, and a gas compression device. The discharged liquefied natural gas is heat-exchanged with the compressed flue gas after separating dry ice in a compressed gas cooling heat exchanger, and then heat-exchanged with the dehumidified flue gas in a fluidized bed heat exchanger. On the other hand, the dehumidified combustion exhaust gas is heat-exchanged with the partially liquefied natural gas through the heat exchanger for cooling the compressed gas in the fluidized bed heat exchanger to produce dry ice, thereby producing dry ice. Ice is separated by a cyclone and stored in a dry ice storage tank, the residual exhaust gas from which the dry ice is separated is compressed by a gas compressor, and then liquefied natural gas storage is performed by a heat exchanger for cooling compressed gas. Heat-exchanged with liquefied natural gas, or heat-exchanged and then adiabatically expanded to produce liquefied nitrogen, and the obtained liquefied nitrogen is stored in a liquefied nitrogen storage tank. Equipment for producing dry ice and liquefied nitrogen.
【請求項6】 払い出し液化天然ガスの冷熱を利用して
燃焼排ガスを冷却し、該燃焼排ガスに含有される炭酸ガ
スを冷却固化してドライアイスを生成して分離し、ドラ
イアイスを分離した残排ガスを更に圧縮冷却して液化窒
素を製造して貯蔵し、該液化窒素を用いてボイルオフガ
スを液化することを特徴とするボイルオフガスの再液化
方法。
6. The combustion exhaust gas is cooled by utilizing the cold heat of the discharged liquefied natural gas, and the carbon dioxide gas contained in the combustion exhaust gas is cooled and solidified to produce and separate dry ice. A method for reliquefying a boil-off gas, comprising compressing and cooling the exhaust gas to produce and store liquefied nitrogen, and liquefying the boil-off gas using the liquefied nitrogen.
【請求項7】 液化天然ガスの需要期間にドライアイス
及び液化窒素を製造し、液化天然ガスの非需要期間にボ
イルオフガスの液化を行うことを特徴とする請求項6記
載のボイルオフガスの再液化方法。
7. The reliquefaction of a boil-off gas according to claim 6, wherein dry ice and liquefied nitrogen are produced during a demand period of the liquefied natural gas, and the boil-off gas is liquefied during a non-demand period of the liquefied natural gas. Method.
【請求項8】 払い出し液化天然ガスを圧縮ガス冷却用
熱交換器で、ドライアイスを分離したのち圧縮された燃
焼排ガスと熱交換し、更に流動層型熱交換器で除湿され
た燃焼排ガスと熱交換して天然ガスとし、一方、除湿さ
れた燃焼排ガスを前記流動層型熱交換器で前記圧縮ガス
冷却用熱交換器を通して一部気化した液化天然ガスと熱
交換してドライアイスを生成分離し、ドライアイスを生
成分離した残排ガスを圧縮した後、前記圧縮ガス冷却用
熱交換器で液化天然ガス貯槽からの液化天然ガスと熱交
換するか、又は熱交換したのち更に断熱膨張させて、液
化窒素を製造して貯蔵し、該液化窒素を用いてボイルオ
フガスを液化することを特徴とする請求項6又は7記載
のボイルオフガスの再液化方法。
8. The discharged liquefied natural gas is heat-exchanged with a compressed flue gas after separating dry ice in a compressed gas cooling heat exchanger, and further exchanged with the flue gas dehumidified in a fluidized bed heat exchanger. The natural gas is exchanged, and the dehumidified combustion exhaust gas is heat-exchanged with the partially naturalized liquefied natural gas through the compressed gas cooling heat exchanger in the fluidized bed heat exchanger to produce and separate dry ice. After compressing the residual exhaust gas that has produced and separated dry ice, the compressed gas cooling heat exchanger exchanges heat with liquefied natural gas from the liquefied natural gas storage tank, or heat-exchanges and further adiabatically expands to liquefy. 8. The method for reliquefying a boil-off gas according to claim 6, wherein nitrogen is produced and stored, and the boil-off gas is liquefied using the liquefied nitrogen.
【請求項9】 生成したドライアイスをサイクロンによ
り分離することを特徴とする請求項8記載のボイルオフ
ガスの再液化方法。
9. The method according to claim 8, wherein the produced dry ice is separated by a cyclone.
【請求項10】 液化天然ガス貯槽、圧縮ガス冷却用熱
交換器、流動層型熱交換器、サイクロン、ドライアイス
貯槽、断熱膨張装置、液化窒素貯槽、ガス圧縮装置、ボ
イルオフガス圧縮装置、ボイルオフガス液化用熱交換器
からなり、液化天然ガス貯槽から払い出した液化天然ガ
スを圧縮ガス冷却用熱交換器で、ドライアイスを分離し
たのち圧縮された燃焼排ガスと熱交換し、更に流動層型
熱交換器で除湿された燃焼排ガスと熱交換して天然ガス
となし、一方、除湿された燃焼排ガスを前記流動層型熱
交換器で前記圧縮ガス冷却用熱交換器を通して一部気化
した液化天然ガスと熱交換してドライアイスを生成し、
生成したドライアイスをサイクロンにより分離してドラ
イアイス貯槽に貯蔵し、ドライアイスを分離した残排ガ
スをガス圧縮装置により圧縮し、更に圧縮ガス冷却用熱
交換器で液化天然ガス貯槽からの液化天然ガスと熱交換
するか、又は熱交換したのち更に断熱膨張させて液化窒
素を製造し、得られた液化窒素を液化窒素貯槽に貯蔵
し、ボイルオフガスをボイルオフガス圧縮装置により圧
縮したのちボイルオフガス液化用熱交換器で前記液化窒
素と熱交換して液化するように構成してなることを特徴
とするボイルオフガスの再液化装置。
10. Liquefied natural gas storage tank, heat exchanger for cooling compressed gas, fluidized bed heat exchanger, cyclone, dry ice storage tank, adiabatic expansion device, liquefied nitrogen storage tank, gas compression device, boil-off gas compression device, boil-off gas The liquefied natural gas discharged from the liquefied natural gas storage tank is separated from dry ice by a liquefied natural gas storage heat exchanger and then heat-exchanged with the compressed flue gas after being separated from the dry ice. Liquefied natural gas that has been partially vaporized through the compressed gas cooling heat exchanger in the fluidized bed heat exchanger with the dehumidified combustion exhaust gas is heat-exchanged with the dehumidified combustion exhaust gas to form natural gas. Heat exchange to produce dry ice,
The generated dry ice is separated by a cyclone and stored in a dry ice storage tank, the residual exhaust gas from which the dry ice is separated is compressed by a gas compressor, and then the liquefied natural gas from the liquefied natural gas storage tank is compressed by a heat exchanger for cooling compressed gas. Liquefied nitrogen is produced by heat-exchange or heat-exchanged and then adiabatically expanded to produce liquefied nitrogen.The obtained liquefied nitrogen is stored in a liquefied nitrogen storage tank, and the boil-off gas is compressed by a boil-off gas compression device and then liquefied. A boil-off gas reliquefaction apparatus, which is configured to liquefy by exchanging heat with the liquefied nitrogen in a heat exchanger.
JP20483396A 1996-08-02 1996-08-02 Dry ice, liquefied nitrogen production method and apparatus, and boil-off gas reliquefaction method and apparatus Expired - Fee Related JP3664818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20483396A JP3664818B2 (en) 1996-08-02 1996-08-02 Dry ice, liquefied nitrogen production method and apparatus, and boil-off gas reliquefaction method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20483396A JP3664818B2 (en) 1996-08-02 1996-08-02 Dry ice, liquefied nitrogen production method and apparatus, and boil-off gas reliquefaction method and apparatus

Publications (2)

Publication Number Publication Date
JPH1047598A true JPH1047598A (en) 1998-02-20
JP3664818B2 JP3664818B2 (en) 2005-06-29

Family

ID=16497147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20483396A Expired - Fee Related JP3664818B2 (en) 1996-08-02 1996-08-02 Dry ice, liquefied nitrogen production method and apparatus, and boil-off gas reliquefaction method and apparatus

Country Status (1)

Country Link
JP (1) JP3664818B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005082492A1 (en) * 2004-03-02 2005-09-09 The Chugoku Electric Power Co., Inc. Method and system for removing moisture and harmful gas component from exhaust gas
JP2005306721A (en) * 2004-03-26 2005-11-04 Chugoku Electric Power Co Inc:The Method and apparatus for separating carbon dioxide
JP2006082995A (en) * 2004-09-15 2006-03-30 Chugoku Electric Power Co Inc:The Method and system for producing supercritical carbon dioxide
WO2009006694A1 (en) 2007-07-09 2009-01-15 Lng Technology Pty Ltd Boil-off gas treatment process and system
JP2010208891A (en) * 2009-03-10 2010-09-24 Chugoku Electric Power Co Inc:The System for recovering carbon dioxide from exhaust gas
WO2010128466A2 (en) * 2009-05-08 2010-11-11 Corac Group Plc Production and distribution of natural gas
CN101913604A (en) * 2010-07-20 2010-12-15 浙江大学 Device and method for manufacturing dry ice by using liquefied natural gas cold energy
JP2011245995A (en) * 2010-05-27 2011-12-08 Ihi Corp Liquefied gas carrier
CN102812318A (en) * 2009-09-28 2012-12-05 皇家飞利浦电子股份有限公司 System And Method For Liquefying And Storing A Fluid
WO2014132998A1 (en) * 2013-02-28 2014-09-04 三菱重工業株式会社 Liquefied-gas vaporization method, liquefied-gas vaporization system, offshore floating-body structure provided with said system
CN104236252A (en) * 2014-08-27 2014-12-24 华南理工大学 Method and device for preparing liquid CO2 (carbon diode) by cold energy of LNG (liquefied natural gas)
CN105605419A (en) * 2015-12-31 2016-05-25 杰瑞石油天然气工程有限公司 Cold energy comprehensive recycling system of air and nitrogen station and recycling method thereof
JP2016535211A (en) * 2013-10-28 2016-11-10 ハイヴュー・エンタープライゼズ・リミテッド Method and system for reliquefaction of boil-off gas
CN108939713A (en) * 2018-07-18 2018-12-07 杭州新融方科技有限公司 A kind of exhaust gas comprehensive treatment equipment and its operating method
CN109973165A (en) * 2019-03-08 2019-07-05 东北大学 A kind of natural gas low-carbon combustion and afterheat generating system
CN112156876A (en) * 2020-07-24 2021-01-01 广东郡睿环保科技有限公司 Method for improving recovery rate of nonferrous metals in household garbage incinerator slag

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005082492A1 (en) * 2004-03-02 2005-09-09 The Chugoku Electric Power Co., Inc. Method and system for removing moisture and harmful gas component from exhaust gas
JP2005306721A (en) * 2004-03-26 2005-11-04 Chugoku Electric Power Co Inc:The Method and apparatus for separating carbon dioxide
JP2006082995A (en) * 2004-09-15 2006-03-30 Chugoku Electric Power Co Inc:The Method and system for producing supercritical carbon dioxide
EP2171341A4 (en) * 2007-07-09 2017-12-13 LNG Technology Pty Ltd Boil-off gas treatment process and system
WO2009006694A1 (en) 2007-07-09 2009-01-15 Lng Technology Pty Ltd Boil-off gas treatment process and system
JP2010208891A (en) * 2009-03-10 2010-09-24 Chugoku Electric Power Co Inc:The System for recovering carbon dioxide from exhaust gas
WO2010128466A2 (en) * 2009-05-08 2010-11-11 Corac Group Plc Production and distribution of natural gas
WO2010128466A3 (en) * 2009-05-08 2011-12-29 Corac Group Plc Production and distribution of natural gas
CN102812318A (en) * 2009-09-28 2012-12-05 皇家飞利浦电子股份有限公司 System And Method For Liquefying And Storing A Fluid
JP2011245995A (en) * 2010-05-27 2011-12-08 Ihi Corp Liquefied gas carrier
CN101913604A (en) * 2010-07-20 2010-12-15 浙江大学 Device and method for manufacturing dry ice by using liquefied natural gas cold energy
WO2014132998A1 (en) * 2013-02-28 2014-09-04 三菱重工業株式会社 Liquefied-gas vaporization method, liquefied-gas vaporization system, offshore floating-body structure provided with said system
CN104956142A (en) * 2013-02-28 2015-09-30 三菱重工业株式会社 Liquefied-gas vaporization method, liquefied-gas vaporization system, offshore floating-body structure provided with said system
JP2014167317A (en) * 2013-02-28 2014-09-11 Mitsubishi Heavy Ind Ltd Liquefied gas vaporization method, liquefied gas vaporization system and offshore floating body structure mounting the same
CN104956142B (en) * 2013-02-28 2018-04-24 三菱重工业株式会社 Liquid gas gasification method, LNG gasifaction system and the offshore floating structure thing for carrying the system
JP2016535211A (en) * 2013-10-28 2016-11-10 ハイヴュー・エンタープライゼズ・リミテッド Method and system for reliquefaction of boil-off gas
CN104236252A (en) * 2014-08-27 2014-12-24 华南理工大学 Method and device for preparing liquid CO2 (carbon diode) by cold energy of LNG (liquefied natural gas)
CN105605419A (en) * 2015-12-31 2016-05-25 杰瑞石油天然气工程有限公司 Cold energy comprehensive recycling system of air and nitrogen station and recycling method thereof
CN108939713A (en) * 2018-07-18 2018-12-07 杭州新融方科技有限公司 A kind of exhaust gas comprehensive treatment equipment and its operating method
CN109973165A (en) * 2019-03-08 2019-07-05 东北大学 A kind of natural gas low-carbon combustion and afterheat generating system
CN112156876A (en) * 2020-07-24 2021-01-01 广东郡睿环保科技有限公司 Method for improving recovery rate of nonferrous metals in household garbage incinerator slag

Also Published As

Publication number Publication date
JP3664818B2 (en) 2005-06-29

Similar Documents

Publication Publication Date Title
JPH1047598A (en) Manufacture of dry ice and liquefied nitrogen and device thereof, and re-liquefying method of boil-off gas and device thereof
US3735600A (en) Apparatus and process for liquefaction of natural gases
AU738861B2 (en) Improved cascade refrigeration process for liquefaction of natural gas
Baker et al. A study of the efficiency of hydrogen liquefaction
JP4971356B2 (en) Method and system for collecting carbon dioxide from combustion gases
US6082133A (en) Apparatus and method for purifying natural gas via cryogenic separation
RU2194930C2 (en) Method for liquefaction of natural gas containing at least one freezable component
US3360944A (en) Gas liquefaction with work expansion of major feed portion
US6553784B2 (en) Comprehensive natural gas processor
KR20010014039A (en) Improved multi-component refrigeration process for liquefaction of natural gas
US2996891A (en) Natural gas liquefaction cycle
US1989190A (en) Apparatus for separating low boiling gas mixtures
JP3664862B2 (en) LNG cold heat storage method and apparatus, and BOG reliquefaction method using cold storage heat and apparatus thereof
JP3868033B2 (en) Method and apparatus for reliquefaction of LNG boil-off gas
US9612050B2 (en) Simplified LNG process
WO2015017357A1 (en) Process for liquefaction of natural gas
AU756734B2 (en) Process for producing a methane-rich liquid
US3058314A (en) Process and apparatus for the low temperature separation of air
Kochunni et al. Comparison between reverse Brayton and Kapitza based LNG boil-off gas reliquefaction system using exergy analysis
US3066492A (en) Process for the liquefaction of a gas
JP2627144B2 (en) Method for separating carbon dioxide in exhaust gas and system treatment system for carbon dioxide
JPH04347307A (en) Method for separating carbon dioxide from exhaust gas and device thereof
Shen et al. Energy and materials flows in the production of liquid and gaseous oxygen
CA2764162C (en) Simplified lng process
KR20190058986A (en) Carbon dioxide capture apparatus using cold heat of liquefied natural gas

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080408

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110408

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees