JPH10472A - Electrolytic water generator - Google Patents
Electrolytic water generatorInfo
- Publication number
- JPH10472A JPH10472A JP15515896A JP15515896A JPH10472A JP H10472 A JPH10472 A JP H10472A JP 15515896 A JP15515896 A JP 15515896A JP 15515896 A JP15515896 A JP 15515896A JP H10472 A JPH10472 A JP H10472A
- Authority
- JP
- Japan
- Prior art keywords
- water
- electrolytic cell
- raw water
- salt water
- electrode plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は水道水、井戸水等の
原水を電気分解して、殺菌洗浄水として利用する強酸性
水を製造する電解水生成装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolyzed water generating apparatus for electrolyzing raw water such as tap water and well water to produce strongly acidic water used as sterilizing and washing water.
【0002】[0002]
【従来の技術】通常、水道蛇口等に接続されて利用され
る電解水生成装置の従来の技術については、特開平4−
330987号公報に開示されており、図8を用いなが
ら以下に説明する。2. Description of the Related Art The prior art of an electrolyzed water generating apparatus which is usually used by being connected to a water tap or the like is disclosed in Japanese Unexamined Patent Publication No. Hei.
It is disclosed in Japanese Patent No. 330987 and will be described below with reference to FIG.
【0003】図中の1は電解槽で、内部を隔膜2で第1
室3と第2室4に仕切られ、その両室3、4に内壁と一
体または別個に電極板5、6が設けられている。この両
室3、4には水道水、井戸水等の原水を供給する原水供
給手段7が接続される。原水は継ぎ手10で供給管9と
分岐管11を介してそれぞれ第1室3、第2室4に供給
される。また、原水供給管9には継ぎ手8が接続され、
継ぎ手8にはポンプ22と塩水タンク23が接続され
る。[0003] In the figure, reference numeral 1 denotes an electrolytic cell, and the inside thereof is a first membrane with a diaphragm 2.
A chamber 3 and a second chamber 4 are partitioned, and both chambers 3 and 4 are provided with electrode plates 5 and 6 integrally with or separately from the inner wall. Raw water supply means 7 for supplying raw water such as tap water and well water is connected to both chambers 3 and 4. Raw water is supplied to the first chamber 3 and the second chamber 4 via the supply pipe 9 and the branch pipe 11 at the joint 10. Also, a joint 8 is connected to the raw water supply pipe 9,
A pump 22 and a salt water tank 23 are connected to the joint 8.
【0004】前記第1室3、第2室4の上部には、それ
ぞれ第1排水管12および第2排水管13が接続され、
それぞれ第1開閉弁18、第2開閉弁20を介して酸性
水側排水管16とアルカリ水側排水管17に接続され
る。A first drain pipe 12 and a second drain pipe 13 are connected to the upper portions of the first chamber 3 and the second chamber 4, respectively.
The acidic water drain pipe 16 and the alkaline water drain pipe 17 are connected via a first on-off valve 18 and a second on-off valve 20, respectively.
【0005】前記第1開閉弁18の上流側の第1排水管
12には、バイパス管12aが接続され、そのバイパス
管12aが第3開閉弁21を介してアルカリ水側排水管
17に接続される。また第2開閉弁20の上流側の第2
排水管13には、バイパス管13aが接続され、そのバ
イパス管13aが第4開閉弁19を介して酸性側排水管
16に接続される。[0005] A bypass pipe 12 a is connected to the first drain pipe 12 on the upstream side of the first on-off valve 18, and the bypass pipe 12 a is connected to the alkaline water-side drain pipe 17 via a third on-off valve 21. You. Also, a second upstream side of the second on-off valve 20
The drain pipe 13 is connected to a bypass pipe 13 a, and the bypass pipe 13 a is connected to the acidic drain pipe 16 via a fourth on-off valve 19.
【0006】電解槽1の電極板5、6には電極端子2
4、25を介して正逆電圧切り換え器14が接続される
とともに、その正逆電圧切り換え器14に直流電源15
が接続される。この正逆電圧切り換え器14は直流電源
15の正負を交互に、たとえば2時間置きに切り換えて
電極端子24、25間に印加するとともに、その切り換
えに連動して第1〜第4開閉弁18、19、20、21
を開閉するもので、たとえば電極端子24がプラスで、
電極端子25がマイナスのときは、第1開閉弁18と第
2開閉弁20を開、第3開閉弁21と第4開閉弁19を
閉とし、逆に、電極端子25がプラスで、電極端子24
がマイナスのときは、第1開閉弁18と第2開閉弁20
を閉、第3開閉弁21と第4開閉弁19を開に切り換え
る。The electrode plates 5 and 6 of the electrolytic cell 1 have electrode terminals 2
The forward / reverse voltage switch 14 is connected to the DC / DC converter 15 via a DC power supply 15.
Is connected. The forward / reverse voltage switch 14 switches the polarity of the DC power supply 15 alternately, for example, every two hours to apply the voltage between the electrode terminals 24 and 25, and in conjunction with the switching, switches the first to fourth on-off valves 18, 19, 20, 21
For example, the electrode terminal 24 is positive,
When the electrode terminal 25 is negative, the first on-off valve 18 and the second on-off valve 20 are opened, the third on-off valve 21 and the fourth on-off valve 19 are closed, and conversely, the electrode terminal 25 is positive and the electrode terminal is 24
Is negative, the first on-off valve 18 and the second on-off valve 20
Is closed, and the third on-off valve 21 and the fourth on-off valve 19 are switched to open.
【0007】このような構成の電解水生成装置にあっ
て、食塩タンク23内の食塩水が原水に混合希釈されて
電解槽1内の第1室3、第2室4に供給された状態にお
いて、電極端子24がプラスで電極端子25がマイナス
になるように直流電源15を印加し、同時に第1開閉弁
18と第2開閉弁20を開とし、第3開閉弁21と第4
開閉弁19を閉とすると、電解槽1では第1室3が陽極
室、第2室4が陰極室となり、第1室3では酸性水が、
第2室4ではアルカリ水が製造され、製造された酸性水
とアルカリ水はそれぞれ酸性水側排水管16、アルカリ
水側排水管17より取り出される。In the electrolyzed water generating apparatus having such a configuration, in the state where the saline solution in the salt tank 23 is mixed and diluted with the raw water and supplied to the first chamber 3 and the second chamber 4 in the electrolytic cell 1, The DC power source 15 is applied so that the electrode terminal 24 is positive and the electrode terminal 25 is negative, and at the same time, the first on-off valve 18 and the second on-off valve 20 are opened, and the third on-off valve 21 and the fourth
When the on-off valve 19 is closed, the first chamber 3 is an anode chamber and the second chamber 4 is a cathode chamber in the electrolytic cell 1, and the acidic water is
In the second chamber 4, alkaline water is produced, and the produced acidic water and alkaline water are respectively taken out from the acidic water side drain pipe 16 and the alkaline water side drain pipe 17.
【0008】極性切り換えを行い、電極端子24がマイ
ナスで、電極端子25がプラスになるように直流電源1
5を印加し、同時に、第1開閉弁18と第2開閉弁20
を閉とし、第3開閉弁21と第4開閉弁19を開とする
と、電解槽1では第1室3が陰極室、第2室4が陽極室
となり、第1室3ではアルカリ水が、第2室4では酸性
水が製造され、製造された酸性水とアルカリ水はそれぞ
れ酸性水側排水管16、アルカリ水側排水管17より取
り出される。The DC power supply 1 is switched so that the electrode terminal 24 is negative and the electrode terminal 25 is positive.
5 and simultaneously the first on-off valve 18 and the second on-off valve 20
Is closed and the third on-off valve 21 and the fourth on-off valve 19 are opened, in the electrolytic cell 1, the first chamber 3 becomes the cathode chamber, the second chamber 4 becomes the anode chamber, and the first chamber 3 contains the alkaline water. In the second chamber 4, acidic water is produced, and the produced acidic water and alkaline water are respectively taken out from the acidic water side drain pipe 16 and the alkaline water side drain pipe 17.
【0009】この酸性水生成において、添加する塩(N
aCl)は原水の電気抵抗を低くして電気分解時の電圧
を低下させて電気分解を安定化させる作用を有するが、
最も大きい効果は、電気分解によって殺菌力や消毒作用
を有するジ亜塩素酸(HClO)を生成するためのClイオ
ンを供給することである。すなわち、原水中にクロル
(Cl)イオンが無い場合には、ジ亜塩素酸(HClO)は
生成されない。In the production of the acidic water, the salt (N
aCl) has the effect of lowering the electric resistance of raw water to lower the voltage during electrolysis and stabilizing electrolysis.
The greatest effect is to supply Cl ions for producing dichlorite (HClO) having a bactericidal and disinfecting action by electrolysis. That is, when there is no chlor (Cl) ion in the raw water, dichlorous acid (HClO) is not generated.
【0010】一般的に、殺菌や消毒や抗菌に効果のある
強酸性水(pH≒2.5、ORP≒1100mV、ジ亜塩素酸
(HClO)≒10〜30ppm)を得る場合は、塩水添加混
合希釈後の塩(NaCl)の濃度を500〜2000pp
m にして電気分解することが必要である。Generally, when obtaining strongly acidic water (pH ≒ 2.5, ORP ≒ 1100 mV, dichlorous acid (HClO) ≒ 10 to 30 ppm) which is effective for sterilization, disinfection and antibacterial, salt water is added and mixed. The concentration of salt (NaCl) after dilution is 500 to 2000 pp
It is necessary to electrolyze with m.
【0011】[0011]
【発明が解決しようとする課題】前述のように従来の技
術では、塩水を原水に混合希釈するので、塩水はアルカ
リ水を生成する陰極側および酸性水を生成する陽極側に
同時に同濃度で供給されている。As described above, in the prior art, since salt water is mixed and diluted with raw water, the salt water is simultaneously supplied to the cathode side for producing alkaline water and the anode side for producing acidic water at the same concentration. Have been.
【0012】ここで、アルカリ水は殺菌や消毒や抗菌に
はほとんど使用されないので廃棄されることになるが、
前述のように酸性水側と同量の塩分を含んでいる。Here, alkaline water is discarded because it is hardly used for sterilization, disinfection and antibacterial.
As described above, it contains the same amount of salt as the acidic water side.
【0013】一般に、ナトリウム(Na)イオンは50
ppm 、クロル(Cl)イオンは200ppm を超えると植
物に対して発芽抑制等の塩害を発生すると言われてお
り、塩水添加混合希釈後の500〜2000ppm の塩水
は、廃棄するのは好ましくない。In general, sodium (Na) ions have a concentration of 50
It is said that if the ppm and chlor (Cl) ions exceed 200 ppm, salt damage such as germination suppression will be caused to plants, and it is not preferable to discard 500 to 2,000 ppm of salt water after salt solution addition and dilution.
【0014】また、電気分解作用は必ず電極板表面での
み生じる。すなわち、電極板表面付近により多くのクロ
ル(Cl)イオンを集めておくことがジ亜塩素酸(HClO)
生成の効率改善に結び付く。The electrolysis action always occurs only on the surface of the electrode plate. In other words, it is necessary to collect more chlor (Cl) ions near the surface of the electrode plate.
This leads to improved production efficiency.
【0015】さらに、強酸性水としてジ亜塩素酸(HCl
O)生成に必要な最低量の塩水に絞り込むと、同量の強
酸性水生成に必要な塩水量も削減できるので、装置の運
転において人手を必要とする塩水の準備作業が軽減さ
れ、かつ、1度の塩水供給によってより多くの強酸性水
を連続して生成することができ、省人化にもつながる。Further, dichlorous acid (HCl
O) By narrowing down to the minimum amount of salt water required for generation, the amount of salt water required for generating the same amount of strongly acidic water can also be reduced, so that salt water preparation work that requires human labor in operation of the apparatus is reduced, and A single supply of salt water can continuously generate more strongly acidic water, which leads to labor savings.
【0016】この点において、従来の技術のように電解
槽1に流入する前に原水に塩水23を均一に混合希釈す
ることは望ましいとは言えない。In this regard, it is not desirable to uniformly mix and dilute the salt water 23 in the raw water before flowing into the electrolytic cell 1 as in the prior art.
【0017】本発明は、このような強酸性水生成におい
て、強酸性水を生成する陽極室の電極表面付近の塩分
(NaCl)濃度を積極的に高め、上記従来の技術の課
題を解決する電解水生成装置を提供することを目的とす
る。According to the present invention, in producing such strongly acidic water, the concentration of salt (NaCl) in the vicinity of the electrode surface of the anode chamber for producing strongly acidic water is positively increased to solve the above-mentioned problems of the prior art. It is an object to provide a water generation device.
【0018】[0018]
【課題を解決するための手段】本発明は、上記目的を達
成するために、内部に対向する電極板を有する電解槽
と、前記電解槽に原水を通水する手段と、前記電解槽内
の原水に直流電圧を印加して直流電流を流す手段を備
え、前記電解槽内の原水に電極板表面から塩水を供給す
る手段を設けた電解水生成装置の構成とする。In order to achieve the above object, the present invention provides an electrolytic cell having an electrode plate facing the inside thereof, a means for passing raw water through the electrolytic cell, The electrolytic water generating apparatus includes means for applying a DC voltage to the raw water to flow a DC current, and means for supplying salt water from the electrode plate surface to the raw water in the electrolytic cell.
【0019】本発明によれば、電極板表面近傍のクロル
(Cl)イオン濃度を増加させて電解効率を改善するとと
もに消費する塩水量を少なくして、塩害の抑制および塩
水追加頻度の削減に有効となる。According to the present invention, the chlor (Cl) ion concentration in the vicinity of the electrode plate surface is increased to improve the electrolysis efficiency and to reduce the amount of salt water consumed, which is effective for suppressing salt damage and reducing the frequency of salt water addition. Becomes
【0020】[0020]
【発明の実施の形態】本発明の請求項1に記載の発明
は、内部に対向する電極板を有する電解槽と、前記電解
槽に原水を通水する手段と、前記電解槽内の原水に直流
電圧を印加して直流電流を流す手段を備え、前記電解槽
内の原水に塩を添加する手段を設け、電気分解によって
ジ亜塩素酸をふくむ強酸性水を生成することを特徴とす
る電解水生成装置としたものであり、電極板表面付近の
塩水濃度を高めて消費する塩の量を減らし、効率良くジ
亜塩素酸(HClO)を生成させることができ、廃棄される
アルカリ水側の塩分を少なくして塩害を抑制する作用を
有している。BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention provides an electrolytic cell having an electrode plate facing the inside thereof, a means for passing raw water through the electrolytic cell, and a method for supplying raw water in the electrolytic cell. Electrolysis characterized by comprising means for applying a DC voltage to flow a DC current, providing means for adding salt to raw water in the electrolytic cell, and generating strongly acidic water containing dichlorous acid by electrolysis. This is a water generator, which can increase the concentration of salt water near the surface of the electrode plate to reduce the amount of salt consumed, efficiently generate dichlorous acid (HClO), It has the effect of reducing salt content and suppressing salt damage.
【0021】本発明の請求項2に記載の発明は、請求項
1の電解水生成装置において、電極板は塩水の通水部を
有し、前記通水部より塩水を供給する手段を設け、前記
電極板両面で強酸性水生成反応を生じさせるようにした
構成としたものであり、電解槽内の陽極室と陰極室の組
み合わせを1組から2組あるいはそれ以上の複数組に構
成することができ、装置の小型化が可能になる作用を有
している。According to a second aspect of the present invention, in the electrolyzed water generating apparatus of the first aspect, the electrode plate has a salt water passage, and means for supplying the salt water from the passage is provided. A structure in which a strongly acidic water generating reaction is caused to occur on both surfaces of the electrode plate, and a combination of an anode chamber and a cathode chamber in an electrolytic cell is configured as one to two or more sets. This has the effect that the size of the device can be reduced.
【0022】本発明の請求項3に記載の発明は、内部に
対向する電極板を有する電解槽と、前記電解槽に原水を
通水する手段と、前記電解槽内の原水に直流電圧を印加
して直流電流を流す手段を備え、前記対向する各電極板
に印加する直流電圧の極性切り替え手段と、前記対向す
る各電極板に形成した通水部より電解槽内の原水に塩水
を加える手段と、前記対向する各電極板の通水部へ供給
する塩水の供給切り替え手段とを設け、前記極性切り替
え手段と塩水の供給切り替え手段の切り替え動作を同期
させたことを特徴とする電解水生成装置としたものであ
り、極性切り替え動作と塩水の供給する電極を切り替え
を同期させて、連続的に強酸性水を生成することがで
き、活用効率を高める作用を有している。According to a third aspect of the present invention, there is provided an electrolytic cell having an electrode plate facing the inside, a means for passing raw water through the electrolytic cell, and applying a DC voltage to the raw water in the electrolytic cell. Means for flowing a direct current, and means for switching the polarity of the direct current voltage applied to each of the opposed electrode plates, and means for adding salt water to raw water in the electrolytic cell from a water passage formed in each of the opposed electrode plates. An electrolyzed water generating apparatus, comprising: a supply switching unit for supplying the salt water to the water passages of the opposed electrode plates; and a switching operation of the polarity switching unit and the supply switching unit for the salt water synchronized. This makes it possible to synchronize the polarity switching operation with the switching of the electrode for supplying salt water to continuously generate strongly acidic water, thereby improving the utilization efficiency.
【0023】本発明の請求項4に記載の発明は、内部に
対向する電極板を有し、かつ、隔膜を持たない電解槽
と、前記電解槽に原水を通水する手段と、前記電解槽内
の原水に直流電圧を印加して直流電流を流す手段と、前
記電解槽内の原水に塩水を加える手段を備え、電解槽内
部の原水の通水時の流れを層流化する手段を設け、電極
板近傍の塩水の通水流れによる拡散を抑制するようにし
たことを特徴とする電解水生成装置としたものであり、
電解槽内部の通水時の流れを層流化して電極板近傍の塩
水(NaCl)の通水流れによる拡散を抑制するととも
に、隔膜を不要とし、層流化で電解槽下流側においても
電極板付近のクロル(Cl)イオン濃度を高く維持するこ
とができ、より一層効率を改善することができるという
作用を有している。According to a fourth aspect of the present invention, there is provided an electrolytic cell having an electrode plate facing inside and having no diaphragm, means for passing raw water through the electrolytic cell, A means for applying a DC voltage to the raw water in the cell to flow a direct current, and a means for adding salt water to the raw water in the electrolytic cell, and a means for laminarizing the flow of the raw water in the electrolytic cell when the water flows. An electrolytic water generation apparatus characterized in that the diffusion due to the flow of salt water in the vicinity of the electrode plate is suppressed.
The flow at the time of water flow inside the electrolytic cell is made laminar to suppress the diffusion of salt water (NaCl) near the electrode plate due to the flowing water, and a diaphragm is not required. Chlorine (Cl) ion concentration in the vicinity can be kept high, and the effect is that the efficiency can be further improved.
【0024】本発明の請求項5に記載の発明は、内部に
対向する電極板を有し、かつ、隔膜を持たない電解槽
と、前記電解槽に原水を通水する手段と、前記電解槽内
の原水に直流電圧を印加して直流電流を流す手段を備
え、前記電解槽内の原水に前記電極板に形成した通水部
より塩水を加える手段と、電解槽内部の原水の通水時の
流れを層流化する手段を設け、電極板近傍の塩水の通水
流れによる拡散を抑制し、電極板両面で強酸性水生成反
応するようにしたことを特徴とする電解水生成装置とし
たものであり、電極両面より塩水を供給して電極板両面
で強酸性水生成反応を生じさせ、より一層効率を改善す
るとともに、電解槽内の陽極室と陰極室の組み合わせを
1組から2組あるいはそれ以上の複数組に構成すること
ができ、装置の小型化と高効率化が可能になる作用を有
している。According to a fifth aspect of the present invention, there is provided an electrolytic cell having an electrode plate facing inside and having no diaphragm, means for passing raw water through the electrolytic cell, A means for applying a DC voltage to the raw water in the cell to flow a DC current, a means for adding salt water to the raw water in the electrolytic cell from a water passage formed in the electrode plate, and a method for supplying the raw water in the electrolytic cell. A means for laminarizing the flow of water, suppressing the diffusion due to the flow of salt water near the electrode plate, and producing an acidic water generation reaction on both surfaces of the electrode plate. In addition, salt water is supplied from both sides of the electrode to generate a strong acidic water generation reaction on both sides of the electrode plate, thereby further improving the efficiency and combining one to two sets of the anode chamber and the cathode chamber in the electrolytic cell. Or, it can be configured in multiple sets of more And has a function of high efficiency can be achieved.
【0025】本発明の請求項6に記載の発明は、内部に
対向する電極板を有し、かつ、隔膜を持たない電解槽
と、前記電解槽に原水を通水する手段と、前記電解槽内
の原水に前記各電極板により直流電圧を印加して直流電
流を流す手段と、前記各電極板に印加する直流電圧の極
性切り替え手段と、前記電解槽内の原水に各電極板に形
成した各通水部より塩水を加える手段と、前記各通水部
に供給する塩水の切り替え手段と、電解槽内部の原水の
通水時の流れを層流化する手段を設け、前記極性切り替
え手段と塩水の切り替え手段の切り替え動作を同期させ
たことを特徴とする電解水生成装置としたものであり、
隔膜を持たない電解槽において、電極板の極性切り替え
動作と塩水の切り替え動作を同期させたことで、効率良
くしかも連続的に強酸性水を生成することができ、より
一層の効率化と連続的な強酸性水生成によって活用効率
を高める作用を有している。According to a sixth aspect of the present invention, there is provided an electrolytic cell having an electrode plate facing inside and having no diaphragm, means for passing raw water through the electrolytic cell, A means for applying a DC voltage to the raw water in each of the electrode plates to flow a DC current, a polarity switching means for the DC voltage to be applied to each of the electrode plates, and a raw water in the electrolytic cell formed on each of the electrode plates. A means for adding salt water from each water passage, a means for switching salt water supplied to each water passage, and a means for laminating a flow of raw water inside the electrolytic tank when water flows, the polarity switching means; It is a device for generating electrolyzed water, characterized in that the switching operation of the salt water switching means is synchronized,
In an electrolytic cell without a diaphragm, by synchronizing the polarity switching operation of the electrode plate and the salt water switching operation, it is possible to efficiently and continuously generate strongly acidic water, thereby further improving efficiency and continuously. It has the effect of increasing utilization efficiency by generating strong acidic water.
【0026】以下、本発明の実施の形態について、図1
〜図7を用いて説明する。なお、従来例の構成部と同一
構成部には同じ符号を付して説明する。Hereinafter, an embodiment of the present invention will be described with reference to FIG.
This will be described with reference to FIGS. The same components as those of the conventional example are denoted by the same reference numerals and will be described.
【0027】(実施の形態1)図1に本発明の実施の形
態1の電解水生成装置の構成図を示す。(Embodiment 1) FIG. 1 shows a configuration diagram of an electrolyzed water generating apparatus according to Embodiment 1 of the present invention.
【0028】図中の1は電解槽で、隔膜2で第1室3と
第2室4の2室に仕切られ、その両室3、4にその内壁
と一体または別個に電極板5、6が設けられている。こ
の両室3、4には水道水、井戸水等の原水を供給する原
水供給手段7が接続される。第1室3、第2室4の上部
には、それぞれ第1排水管12および第2排水管13が
接続される。また、強酸性水を生成する陽極室となる第
2室4の電極板6の上流部分には小さな多数の穴を有す
る塩水供給部32が設けられており、塩水供給部32に
は塩水配管30、ポンプ22を介して塩水タンク23が
接続される。図中の14は正逆電圧切り換え器、15は
直流電源、24と25は電極端子である。In the figure, reference numeral 1 denotes an electrolytic cell, which is divided into two chambers, a first chamber 3 and a second chamber 4, by a diaphragm 2, and both of the chambers 3, 4 are integrated with the inner walls or separately from the electrode plates 5, 6, respectively. Is provided. Raw water supply means 7 for supplying raw water such as tap water and well water is connected to both chambers 3 and 4. A first drain pipe 12 and a second drain pipe 13 are connected to upper portions of the first chamber 3 and the second chamber 4, respectively. Further, a salt water supply section 32 having a large number of small holes is provided in an upstream portion of the electrode plate 6 of the second chamber 4 serving as an anode chamber for generating strong acid water. , A pump 22 is connected to a salt water tank 23. In the figure, 14 is a forward / reverse voltage switch, 15 is a DC power supply, and 24 and 25 are electrode terminals.
【0029】このような電解水生成装置にあって、電解
槽1内の第1室3、第2室4に原水供給手段7から原水
が供給された状態において、電極端子24がマイナス
で、電極端子25がプラスになるように直流電源15を
印加し、同時に塩水ポンプ22を動作させて塩水供給部
32から塩水23を適量に供給すると、電解槽1では第
1室3が陰極室、第2室4が陽極室となり、第1室3で
はアルカリ水が、第2室4では強酸性水が生成され、生
成されたアルカリ水と強酸性水はそれぞれ第1および第
2排水管12、13へ流される。In such an electrolyzed water generating apparatus, when raw water is supplied from the raw water supply means 7 to the first chamber 3 and the second chamber 4 in the electrolytic cell 1, the electrode terminal 24 is negative and the electrode terminal 24 is negative. When the DC power supply 15 is applied so that the terminal 25 becomes positive, and the salt water pump 22 is simultaneously operated to supply an appropriate amount of the salt water 23 from the salt water supply unit 32, the first chamber 3 in the electrolytic cell 1 becomes the cathode chamber, The chamber 4 serves as an anode chamber. Alkaline water is generated in the first chamber 3, and strongly acidic water is generated in the second chamber 4. The generated alkaline water and strongly acidic water are supplied to the first and second drain pipes 12 and 13, respectively. Swept away.
【0030】ここで、図1の電解槽のA−A’、B−
B’断面におけるクロル(Cl)イオン濃度の分布状況を
図2に示す。図中のmxは各部のクロル(Cl)イオン濃
度、M 0は供給する塩水のクロル(Cl)イオン濃度で、
その相対値を百分率化したものが縦軸のスケールであ
り、横軸は電極板5、6のPQ点間位置を示す。Here, AA ', B-
FIG. 2 shows the distribution state of the chlor (Cl) ion concentration in the B ′ section. In the figure, mx is the chlor (Cl) ion concentration of each part, M 0 is the chlor (Cl) ion concentration of the supplied salt water,
The percentage of the relative value is the scale of the vertical axis, and the horizontal axis is the position between the PQ points of the electrode plates 5 and 6.
【0031】ここで40は従来の技術における塩水添加
の場合のクロル(Cl)イオン濃度特性を、41は本発明
における塩水添加の場合のA−A’断面のクロル(Cl)
イオン濃度特性を、42は本発明における塩水添加の場
合のB−B’断面のクロル(Cl)イオン濃度特性を示
す。Here, reference numeral 40 denotes chlor (Cl) ion concentration characteristics in the case of adding salt water in the prior art, and 41 denotes chlor (Cl) in the AA 'section in the case of adding salt water in the present invention.
Reference numeral 42 denotes the ion concentration characteristic of the chlor (Cl) ion cross section along the line BB 'when the salt water is added in the present invention.
【0032】従来の技術による塩水添加の場合のクロル
(Cl)イオン濃度特性40は、予め電解槽へ入るまえに
塩水23を混合希釈するので、電解槽1内の濃度分布は
ほぼ一様で、陽極室側の電極板6の表面付近のクロル
(Cl)イオン濃度を十分に高くするために、電解槽1内
全体に比較的濃度の高い状態にする必要がある。According to the chlor (Cl) ion concentration characteristic 40 in the case of adding salt water according to the prior art, the salt water 23 is mixed and diluted before entering the electrolytic cell, so that the concentration distribution in the electrolytic cell 1 is almost uniform. In order to sufficiently increase the chlor (Cl) ion concentration near the surface of the electrode plate 6 on the anode chamber side, it is necessary to make the entire electrolytic cell 1 relatively high in concentration.
【0033】一方、本発明における塩水添加の場合のA
−A’断面のクロル(Cl)イオン濃度特性41は、陽極
室側の電極板6の表面付近のみクロル(Cl)イオン濃度
を高くでき、電解槽1全体としての濃度は相対的に低く
抑えられる。On the other hand, in the case of adding salt water in the present invention, A
The chlor (Cl) ion concentration characteristic 41 in the -A 'cross section can increase the chlor (Cl) ion concentration only near the surface of the electrode plate 6 on the anode chamber side, and the concentration of the entire electrolytic cell 1 can be relatively suppressed. .
【0034】また、電解槽1内が平行平板構造あるいは
同心円筒構造とした場合は極端な乱流とはならないの
で、電解槽1の下流側B−B’断面のクロル(Cl)イオ
ン濃度特性42においても陽極室側の電極板6の表面付
近のクロル(Cl)イオン濃度を高く維持することができ
る。When the inside of the electrolytic cell 1 has a parallel plate structure or a concentric cylindrical structure, an extremely turbulent flow does not occur. Therefore, the chlor (Cl) ion concentration characteristic 42 on the downstream BB 'section of the electrolytic cell 1 is obtained. Also in this case, the chlor (Cl) ion concentration near the surface of the electrode plate 6 on the anode chamber side can be kept high.
【0035】このように、陽極室側の電極板6の表面付
近のクロル(Cl)イオン濃度を高くすることは、それだ
け電気分解時にジ亜塩素酸(HClO)の生成効率が良くな
る。そしてジ亜塩素酸(HClO)生成に関わることの無
い、いわゆるむだな塩分を少なくすることができ、特
に、アルカリ水を生成する陰極側の第1室3内の塩分を
非常に少なくすることが可能である。As described above, increasing the chlor (Cl) ion concentration in the vicinity of the surface of the electrode plate 6 on the anode chamber side improves the efficiency of generating dichlorous acid (HClO) during electrolysis. In addition, it is possible to reduce the so-called useless salt which is not involved in the production of dichlorous acid (HClO). In particular, it is possible to extremely reduce the salt in the first chamber 3 on the cathode side for generating alkaline water. It is possible.
【0036】(実施の形態2)図3に本発明の実施の形
態2の電解水生成装置の電解槽付近の構成図を示す。こ
の電解水生成装置の特徴的構成は、図示のように2つ目
のシェルの電極端子24aを備え、また、電解槽1内の
両側に2つ目のシェルの室3a、4aを設け、中央部に
は内部が中空で、かつ、両面に塩水供給部を備える中空
電極33を設けている。(Embodiment 2) FIG. 3 shows a configuration diagram around an electrolytic cell of an electrolyzed water generating apparatus according to Embodiment 2 of the present invention. The characteristic configuration of this electrolyzed water generating apparatus is as follows: a second shell electrode terminal 24a is provided as shown, and second shell chambers 3a and 4a are provided on both sides in the electrolytic cell 1; The part is provided with a hollow electrode 33 having a hollow inside and having a salt water supply part on both sides.
【0037】ここでシェルとは、プラスおよびマイナス
を印加する1対の電極板で構成されるその1組のことで
ある。Here, the shell is a set of a pair of electrode plates to which plus and minus are applied.
【0038】本実施の形態2の電解水生成装置は、電解
槽1内に2つのシェルを構成することができる。すなわ
ち、実施の形態1で述べたような電極板近傍のみクロル
(Cl)イオン濃度を高くできるエリアを、中空電極33
の両面に作り出すことが可能となる。よって、電極の総
表面積に対する電解動作する面積割合が増加し、結果的
に同じ生成量においては電解槽1を小型化することが可
能となる。In the electrolyzed water generating apparatus according to the second embodiment, two shells can be formed in the electrolyzer 1. That is, the area where the chlor (Cl) ion concentration can be increased only in the vicinity of the electrode plate as described in the first embodiment is defined as the hollow electrode 33.
On both sides. Therefore, the area ratio of the electrolysis operation with respect to the total surface area of the electrodes is increased, and as a result, the electrolytic cell 1 can be downsized for the same amount of generation.
【0039】(実施の形態3)図4に本発明の実施の形
態3の電解水生成装置の構成図を示す。この実施の形態
3において、電解槽1の下流側の構成と動作状況は従来
の技術と同じである。(Embodiment 3) FIG. 4 shows a configuration diagram of an electrolyzed water generating apparatus according to Embodiment 3 of the present invention. In the third embodiment, the configuration and the operation state on the downstream side of the electrolytic cell 1 are the same as those in the related art.
【0040】特徴的構成としては、第1室3側への塩水
供給部32aと、第2室4側への塩水供給部32bを設
け、塩水供給部32aには塩水を供給する塩水配管30
aを接続し、塩水供給部32bには塩水を供給する塩水
配管30bを接続している。そしてポンプ22からの塩
水23を塩水配管30a、30bのどちらかに切り替え
るための塩水用開閉弁31a、31bを設けたことにあ
る。As a characteristic configuration, a salt water supply section 32a to the first chamber 3 side and a salt water supply section 32b to the second chamber 4 side are provided.
a, and a saltwater supply line 32b is connected to a saltwater pipe 30b for supplying saltwater. In addition, salt water on-off valves 31a and 31b for switching the salt water 23 from the pump 22 to one of the salt water pipes 30a and 30b are provided.
【0041】このような電解水生成装置にあって、原水
が電解槽1内の第1室3、第2室4に供給された状態に
おいて、電極端子24がプラスで、電極端子25がマイ
ナスになるように直流電源15を印加し、同時に塩水用
開閉弁31aを開、塩水開閉弁31bを閉としてポンプ
22からの塩水23を塩水配管30aを介して塩水供給
部32aから第1室3内に供給し、第1開閉弁18と第
2開閉弁20を開とし、第3開閉弁21と第4開閉弁1
9を閉とすると、電解槽1では第1室3が陽極室、第2
室4が陰極室となり、第1室3では強酸性水が、第2室
4ではアルカリ水が生成され、生成された強酸性水とア
ルカリ水はそれぞれ酸性水側排水管16、アルカリ水側
排水管17より取り出される。In such an electrolyzed water generator, when the raw water is supplied to the first chamber 3 and the second chamber 4 in the electrolytic cell 1, the electrode terminal 24 is positive and the electrode terminal 25 is negative. A DC power supply 15 is applied so that the salt water on-off valve 31a is opened and the salt water on-off valve 31b is closed at the same time, and the salt water 23 from the pump 22 is fed from the salt water supply part 32a into the first chamber 3 through the salt water pipe 30a. The first on-off valve 18 and the second on-off valve 20 are opened, and the third on-off valve 21 and the fourth on-off valve 1 are opened.
9 is closed, in the electrolytic cell 1, the first chamber 3 is the anode chamber, and the second chamber 3 is the second chamber.
The chamber 4 serves as a cathode chamber, and strongly acidic water is generated in the first chamber 3 and alkaline water is generated in the second chamber 4. The generated strongly acidic water and alkaline water are respectively discharged into the acidic water side drain pipe 16 and the alkaline water side drainage. It is taken out from the pipe 17.
【0042】極性切り換えを行い、電極端子24がマイ
ナスで、電極端子25がプラスになるように直流電源1
5を印加し、同時に、塩水用開閉弁31aを閉、塩水用
開閉弁31bを開としてポンプ22からの塩水23を塩
水配管30bを介して塩水供給部32bから第2室4内
に供給し、第1開閉弁18と第2開閉弁20を閉とし、
第3開閉弁21と第4開閉弁19を開とすると、電解槽
1では第1室3が陰極室、第2室4が陽極室となり、第
1室3ではアルカリ水が、第2室4では強酸性水が製造
され、生成された強酸性水とアルカリ水はそれぞれ酸性
水側排水管16、アルカリ水側排水管17より取り出さ
れる。The DC power supply 1 is switched so that the electrode terminal 24 is negative and the electrode terminal 25 is positive.
5 and at the same time, the salt water on-off valve 31a is closed and the salt water on-off valve 31b is opened to supply the salt water 23 from the pump 22 from the salt water supply part 32b into the second chamber 4 through the salt water pipe 30b, Closing the first on-off valve 18 and the second on-off valve 20,
When the third on-off valve 21 and the fourth on-off valve 19 are opened, in the electrolytic cell 1, the first chamber 3 becomes a cathode chamber and the second chamber 4 becomes an anode chamber. Then, strongly acidic water is produced, and the generated strongly acidic water and alkaline water are respectively taken out from the acidic water side drain pipe 16 and the alkaline water side drain pipe 17.
【0043】この構成によれば、実施の形態1の効果に
追加して、連続して強酸性水を生成でき、装置の利用効
率も改善される。According to this configuration, in addition to the effects of the first embodiment, strongly acidic water can be continuously generated, and the utilization efficiency of the apparatus is improved.
【0044】(実施の形態4)図5に本発明の実施の形
態4の電解水生成装置の電解槽付近の構成図を示す。本
発明の実施の形態5の特徴は、電解槽1内部の水の流れ
を層流化して、実施の形態1の効果をより高めるもので
ある。(Embodiment 4) FIG. 5 shows a configuration diagram around an electrolytic cell of an electrolyzed water generating apparatus according to Embodiment 4 of the present invention. A feature of the fifth embodiment of the present invention is that the effect of the first embodiment is further enhanced by laminating the flow of water inside the electrolytic cell 1.
【0045】このため電解槽1の入り口部の水の圧力お
よび流れを穏やかににして均一化する導水部34を設
け、その下流側に整流板35を設けたものである。For this reason, a water guide 34 is provided for making the pressure and flow of water at the entrance of the electrolytic cell 1 gentle and uniform, and a rectifying plate 35 is provided downstream thereof.
【0046】この構成において、電解槽1に原水を供給
すると、電解槽1内の流れは、水の縦方向の流れに対し
て垂直(横)方向への移動が極めて少なくなり、すなわ
ち、層流を形成する。このような層流を形成する流れ中
に塩水供給部32から静かに塩水23を供給すると、塩
水23は電極板6に沿って拡散することなく下流側(図
中では上方向)へ流れていく。In this configuration, when the raw water is supplied to the electrolytic cell 1, the flow in the electrolytic cell 1 moves very little in the vertical (horizontal) direction with respect to the vertical flow of the water. To form When the salt water 23 is gently supplied from the salt water supply unit 32 into the flow forming such a laminar flow, the salt water 23 flows downstream (upward in the figure) without diffusing along the electrode plate 6. .
【0047】図2に電解槽1内の断面C−C’およびD
−D’のクロル(Cl)イオン濃度の分布状況を示す。図
中の43は本実施の形態4における塩水添加の場合のC
−C’断面のクロル(Cl)イオン濃度特性を、44は本
実施の形態4における塩水添加の場合のD−D’断面の
クロル(Cl)イオン濃度特性を示す。FIG. 2 shows cross sections CC ′ and D in the electrolytic cell 1.
The distribution state of the chlor (Cl) ion concentration of -D 'is shown. 43 in the figure indicates C in the case of addition of salt water in the fourth embodiment.
The chlor (Cl) ion concentration characteristics in the -C 'section and the chlor (Cl) ion concentration characteristics in the DD' section in the case of addition of the salt water in the fourth embodiment are shown at 44.
【0048】本実施の形態4では、電解槽1内の流れを
層流化しているので、実施の形態1に比較して、一層電
極板6の表面付近がより高いクロル(Cl)イオン濃度と
なっており、さらに、横方向への移動も少ないので、下
流側においてもその状態を維持できるものである。すな
わち、実施の形態1で示す効果がさらに高められる。In the fourth embodiment, since the flow in the electrolytic cell 1 is made laminar, the vicinity of the surface of the electrode plate 6 has a higher chlor (Cl) ion concentration and a higher concentration than in the first embodiment. Further, since there is little movement in the lateral direction, the state can be maintained on the downstream side. That is, the effect shown in the first embodiment is further enhanced.
【0049】(実施の形態5)図6に本発明の実施の形
態5の電解水生成装置の電解槽付近の構成図を示す。(Embodiment 5) FIG. 6 shows a configuration diagram around an electrolytic cell of an electrolyzed water generating apparatus according to Embodiment 5 of the present invention.
【0050】本実施の形態5は、実施の形態4の層流化
の手段と実施の形態2の中空電極33の採用を組み合わ
せた構成としたものであり、高効率で、かつ、小型化を
可能にするものである。The fifth embodiment is a combination of the laminarization means of the fourth embodiment and the employment of the hollow electrode 33 of the second embodiment. Is what makes it possible.
【0051】ここで中空電極33の両面には層流が形成
される。よって、塩水23は電解槽1内に静かに供給さ
れると中空電極33の表面にそって流れていくので、実
施の形態4と同様に電極板6の表面付近がより高いクロ
ル(Cl)イオン濃度となっており、かつ、両面で電解作
用させることができるので、2つあるいは複数のシェル
を形成することによって、電解槽1を小型化することが
できる。Here, a laminar flow is formed on both surfaces of the hollow electrode 33. Therefore, when the salt water 23 is gently supplied into the electrolytic cell 1, the salt water flows along the surface of the hollow electrode 33, so that the chlor (Cl) ion is higher near the surface of the electrode plate 6 as in the fourth embodiment. Since the concentration is set and the electrolytic action can be performed on both surfaces, the electrolytic cell 1 can be reduced in size by forming two or more shells.
【0052】(実施の形態6)図7に本発明の実施の形
態6の電解水生成装置の構成図を示す。(Embodiment 6) FIG. 7 shows a configuration diagram of an electrolyzed water generating apparatus according to Embodiment 6 of the present invention.
【0053】本実施の形態6の特徴は、実施の形態4の
層流化の手段と実施の形態3の電圧極性切り替え動作に
同期させた塩水供給手段を組み合わせた構成としたもの
である。The feature of the sixth embodiment is that the laminarization means of the fourth embodiment is combined with the salt water supply means synchronized with the voltage polarity switching operation of the third embodiment.
【0054】ここで電解槽1内は横方向の移動のない層
流が形成されており、電極板5または電極板6の塩水供
給部32aまたは32bから静かに塩水23を供給する
と、塩水は電極板5または電極板6の表面に沿って流
れ、実施の形態4と同様に電極板5、または電極板6の
表面付近がより高いクロル(Cl)イオン濃度となってお
り、かつ、塩水23を供給する塩水供給部32aまたは
塩水供給部32bの切り替えを電圧極性切り替えと同期
させることによって、より高効率で、かつ、連続的に強
酸性水を生成することが可能となる。Here, a laminar flow without lateral movement is formed in the electrolytic cell 1, and when the salt water 23 is gently supplied from the salt water supply part 32a or 32b of the electrode plate 5 or 6, the salt water is discharged. It flows along the surface of the plate 5 or the electrode plate 6 and the vicinity of the surface of the electrode plate 5 or the electrode plate 6 has a higher chlor (Cl) ion concentration as in the fourth embodiment. By synchronizing the switching of the salt water supply unit 32a or the salt water supply unit 32b to be supplied with the voltage polarity switching, it is possible to generate the highly acidic water more efficiently and continuously.
【0055】[0055]
【発明の効果】本発明の電解水生成装置は、電解槽内の
電極板表面から塩水を供給できるようにする。According to the present invention, the electrolyzed water generator can supply the salt water from the surface of the electrode plate in the electrolyzer.
【0056】これによって、電極板表面近傍のクロル
(Cl)イオン濃度を増加させて電解効率を改善すると
ともに消費する塩水量を少なくして、塩害の抑制および
塩水追加頻度の削減に有効となる。Thus, the concentration of chlor (Cl) ions in the vicinity of the electrode plate surface is increased to improve the electrolysis efficiency and reduce the amount of salt water consumed, which is effective for suppressing salt damage and reducing the frequency of salt water addition.
【0057】また、電極を中空として内部を塩水の通路
とし、電極両面から塩水を供給できるようにする。これ
によって電解槽の小型化を可能にする。Further, the electrode is made hollow so that the inside is a passage for salt water, so that salt water can be supplied from both sides of the electrode. This makes it possible to reduce the size of the electrolytic cell.
【0058】または、表面から塩水を供給できる電極板
を電解槽の両側に用いて、電極の極性切り替えと同期さ
せて塩水の供給電極を選択させるようにする。Alternatively, electrode plates capable of supplying salt water from the surface are used on both sides of the electrolytic cell, and the salt water supply electrode is selected in synchronization with the switching of the electrode polarity.
【0059】これによって、電極切り替えを行いながら
連続的に強酸性水を生成できる。また、電解槽内の流れ
の状態を層流とし、電極表面付近の乱流を抑制する電解
槽に前記電極表面から塩水を供給できる手段を用いるよ
うにする。Thus, it is possible to continuously generate strongly acidic water while switching the electrodes. Further, the flow state in the electrolytic cell is set to be a laminar flow, and a means capable of supplying salt water from the electrode surface to the electrolytic cell for suppressing turbulence near the electrode surface is used.
【0060】これによって、電解槽内の下流側であって
も電極板付近のクロル(Cl)イオン濃度を高く維持す
ることができ、より一層効率を改善することができる。As a result, the chlor (Cl) ion concentration in the vicinity of the electrode plate can be kept high even on the downstream side in the electrolytic cell, and the efficiency can be further improved.
【0061】また、電解槽内の流れの状態を層流とし、
電極表面付近の乱流を抑制する電解槽に前記電極表面か
ら塩水を供給できる手段において、電極を中空として内
部を塩水の通路とし、電極両面から塩水を供給できるよ
うにする。Further, the state of the flow in the electrolytic cell is assumed to be laminar,
In the means capable of supplying salt water from the electrode surface to the electrolytic cell that suppresses turbulence near the electrode surface, the electrode is hollow and the inside is a passage for salt water, so that salt water can be supplied from both sides of the electrode.
【0062】これによって高効率で、かつ、電解槽の小
型化を可能にする。また、電解槽内の流れの状態を層流
とし、電極表面付近の乱流を抑制する電解槽に前記電極
表面から塩水を供給できる手段において、表面から塩水
を供給できる電極板を電解槽の両側に用いて、電極の極
性切り替えと同期させて塩水の供給電極を選択させるよ
うにする。This enables high efficiency and downsizing of the electrolytic cell. In the means for supplying salt water from the electrode surface to the electrolytic cell that suppresses turbulence near the surface of the electrode, the electrode plate capable of supplying salt water from the surface is provided on both sides of the electrolytic cell. The salt water supply electrode is selected in synchronization with the switching of the polarity of the electrode.
【0063】これによって、高効率で、かつ、電極切り
替えを行いながら連続的に強酸性水を生成する電解水生
成装置を提供することができる。As a result, it is possible to provide an electrolyzed water generating apparatus which is highly efficient and continuously generates strongly acidic water while switching electrodes.
【図1】本発明の実施の形態1の電解水生成装置の構成
図FIG. 1 is a configuration diagram of an electrolyzed water generation device according to a first embodiment of the present invention.
【図2】本発明における電解槽内のクロル(Cl)イオン
の濃度分布図FIG. 2 is a chlor (Cl) ion concentration distribution diagram in the electrolytic cell according to the present invention.
【図3】本発明の実施の形態2の電解水生成装置の電解
槽付近の構成図FIG. 3 is a configuration diagram near an electrolytic cell of an electrolyzed water generator according to Embodiment 2 of the present invention.
【図4】本発明の実施の形態3の電解水生成装置の構成
図FIG. 4 is a configuration diagram of an electrolyzed water generation device according to a third embodiment of the present invention.
【図5】本発明の実施の形態4の電解水生成装置の電解
槽付近の構成図FIG. 5 is a configuration diagram near an electrolytic cell of an electrolyzed water generator according to Embodiment 4 of the present invention.
【図6】本発明の実施の形態5の電解水生成装置の電解
槽付近の構成図FIG. 6 is a configuration diagram near an electrolytic cell of an electrolyzed water generation device according to a fifth embodiment of the present invention.
【図7】本発明の実施の形態6の電解水生成装置の構成
図FIG. 7 is a configuration diagram of an electrolyzed water generator according to Embodiment 6 of the present invention.
【図8】従来の電解水生成装置の構成図FIG. 8 is a configuration diagram of a conventional electrolyzed water generating apparatus.
1 電解槽 2 隔膜 3 第1室 4 第2室 5 電極板 6 電極板 7 原水供給手段 12 第1排水管 13 第2排水管 14 正逆電圧切り換え器 15 直流電源 22 ポンプ 23 塩水 24 電極端子 25 電極端子 30 塩水配管 32 塩水供給部 DESCRIPTION OF SYMBOLS 1 Electrolysis tank 2 Diaphragm 3 1st chamber 4 2nd chamber 5 Electrode plate 6 Electrode plate 7 Raw water supply means 12 1st drainage pipe 13 2nd drainage pipe 14 Forward / reverse voltage switch 15 DC power supply 22 Pump 23 Salt water 24 Electrode terminal 25 Electrode terminal 30 Salt water pipe 32 Salt water supply section
Claims (6)
前記電解槽に原水を通水する手段と、前記電解槽内の原
水に直流電圧を印加して直流電流を流す手段を備え、前
記電解槽内の原水に塩を添加する手段を設け、電気分解
によってジ亜塩素酸をふくむ強酸性水を生成することを
特徴とする電解水生成装置。An electrolytic cell having an electrode plate facing the inside thereof;
Means for passing raw water through the electrolytic cell, means for applying a DC voltage to the raw water in the electrolytic tank to flow a DC current, and means for adding a salt to the raw water in the electrolytic tank; An electrolyzed water generator characterized by producing strongly acidic water containing dichlorous acid.
より塩水を供給する手段を設け、前記電極板両面で強酸
性水生成反応を生じさせるようにしたことを特徴とする
請求項1記載の電解水生成装置。2. The electrode plate has a salt water passage section, and means for supplying salt water from the water passage section is provided, so that a strongly acidic water generation reaction is caused on both surfaces of the electrode plate. The electrolyzed water generation device according to claim 1.
前記電解槽に原水を通水する手段と、前記電解槽内の原
水に直流電圧を印加して直流電流を流す手段を備え、前
記対向する各電極板に印加する直流電圧の極性切り替え
手段と、前記対向する各電極板に形成した通水部より電
解槽内の原水に塩水を加える手段と、前記対向する各電
極板の通水部へ供給する塩水の供給切り替え手段とを設
け、前記極性切り替え手段と塩水の供給切り替え手段の
切り替え動作を同期させたことを特徴とする電解水生成
装置。3. An electrolytic cell having an electrode plate facing the inside thereof,
Means for passing raw water through the electrolytic cell, means for applying a DC voltage to the raw water in the electrolytic cell to flow a DC current, and a polarity switching means for the DC voltage applied to each of the opposed electrode plates, A means for adding salt water to raw water in the electrolytic cell from a water passage formed in each of the opposed electrode plates; and a supply switching means for supplying salt water to the water passage in each of the opposed electrode plates, wherein the polarity switching is performed. An electrolyzed water generating apparatus, wherein the switching operation of the means and the salt water supply switching means is synchronized.
を持たない電解槽と、前記電解槽に原水を通水する手段
と、前記電解槽内の原水に直流電圧を印加して直流電流
を流す手段と、前記電解槽内の原水に塩水を加える手段
を備え、電解槽内部の原水の通水時の流れを層流化する
手段を設け、電極板近傍の塩水の通水流れによる拡散を
抑制するようにしたことを特徴とする電解水生成装置。4. An electrolytic cell having an electrode plate facing inside and having no diaphragm, means for passing raw water through the electrolytic cell, and applying a DC voltage to the raw water in the electrolytic cell. A means for flowing a direct current; a means for adding salt water to the raw water in the electrolytic cell; a means for laminarizing the flow of the raw water in the electrolytic cell when flowing; An electrolyzed water generator characterized by suppressing diffusion due to water.
を持たない電解槽と、前記電解槽に原水を通水する手段
と、前記電解槽内の原水に直流電圧を印加して直流電流
を流す手段を備え、前記電解槽内の原水に前記電極板に
形成した通水部より塩水を加える手段と、電解槽内部の
原水の通水時の流れを層流化する手段を設け、電極板近
傍の塩水の通水流れによる拡散を抑制し、電極板両面で
強酸性水生成反応するようにしたことを特徴とする電解
水生成装置。5. An electrolytic cell having an electrode plate facing inside and having no diaphragm, means for passing raw water through the electrolytic cell, and applying a DC voltage to the raw water in the electrolytic cell. A means for flowing a direct current; a means for adding salt water to the raw water in the electrolytic cell from a water passage formed in the electrode plate; and a means for laminarizing the flow of the raw water in the electrolytic cell when the water flows. An electrolyzed water generating apparatus characterized in that diffusion due to a flowing flow of salt water near the electrode plate is suppressed, and a strong acidic water generation reaction occurs on both surfaces of the electrode plate.
を持たない電解槽と、前記電解槽に原水を通水する手段
と、前記電解槽内の原水に前記各電極板により直流電圧
を印加して直流電流を流す手段と、前記各電極板に印加
する直流電圧の極性切り替え手段と、前記電解槽内の原
水に各電極板に形成した各通水部より塩水を加える手段
と、前記各通水部に供給する塩水の切り替え手段と、電
解槽内部の原水の通水時の流れを層流化する手段を設
け、前記極性切り替え手段と塩水の切り替え手段の切り
替え動作を同期させたことを特徴とする電解水生成装
置。6. An electrolytic cell having an electrode plate facing inside and having no diaphragm, means for passing raw water through the electrolytic cell, and direct current supplied to the raw water in the electrolytic cell by each of the electrode plates. Means for applying a voltage to flow a direct current, means for switching the polarity of the DC voltage applied to each of the electrode plates, and means for adding salt water to the raw water in the electrolytic cell from each of the water passages formed on each of the electrode plates. Means for switching the salt water to be supplied to each of the water passages, and means for laminating the flow of the raw water in the electrolytic cell when the water flows, and synchronizes the switching operation of the polarity switching means and the salt water switching means. An electrolyzed water generator characterized by the following.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15515896A JP3551625B2 (en) | 1996-06-17 | 1996-06-17 | Electrolyzed water generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15515896A JP3551625B2 (en) | 1996-06-17 | 1996-06-17 | Electrolyzed water generator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10472A true JPH10472A (en) | 1998-01-06 |
JP3551625B2 JP3551625B2 (en) | 2004-08-11 |
Family
ID=15599801
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15515896A Expired - Fee Related JP3551625B2 (en) | 1996-06-17 | 1996-06-17 | Electrolyzed water generator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3551625B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4718783A (en) * | 1986-01-30 | 1988-01-12 | Alps Electric Co., Ltd. | Thermal printer |
CN112811526A (en) * | 2020-12-31 | 2021-05-18 | 周廷云 | Acidic oxidation potential water continuous generator and generation method thereof |
-
1996
- 1996-06-17 JP JP15515896A patent/JP3551625B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4718783A (en) * | 1986-01-30 | 1988-01-12 | Alps Electric Co., Ltd. | Thermal printer |
CN112811526A (en) * | 2020-12-31 | 2021-05-18 | 周廷云 | Acidic oxidation potential water continuous generator and generation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3551625B2 (en) | 2004-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
MXPA03007923A (en) | Method and apparatus for producing negative and positive oxidative reductive potential (orp) water. | |
TWI732958B (en) | Electrolyzed water generator | |
JP2009268997A (en) | Electrolytic water generating device and electrolytic water generating method | |
KR101312879B1 (en) | Three-Compartment-Cell and One-Port typed Electrolysis Apparatus | |
JP2005334694A (en) | Electrolytic water producer | |
JP3551625B2 (en) | Electrolyzed water generator | |
JP3575713B2 (en) | Method and apparatus for generating electrolyzed water | |
JPH11319839A (en) | Electrolytic cell of electrolytic neutral water forming machine | |
JPH1076270A (en) | Method for simultaneous generation of strongly alkaline water and hypochlorous acid sterilizing water by electrolysis | |
JPH09192667A (en) | Electrolyzed water generating device | |
KR100651654B1 (en) | A water purifier using an electrolysis | |
JPH09122653A (en) | Apparatus for producing electrolytic water | |
JPS6351991A (en) | System for producing sterilizable electrolytic ionic water | |
JP2892120B2 (en) | Method for producing sterile water containing hypochlorous acid by electrolysis | |
JP3359661B2 (en) | Method for cleaning / sterilizing a continuous electrolytic water regulator and an electrolytic water regulator provided with a mechanism for performing the method | |
JPH09206755A (en) | Formation of alkaline ionized and hypochlorous acid sterilizing water and device therefor | |
KR20130062647A (en) | Apparatus for providing purified water and ionized water | |
JPH09262587A (en) | Method for simultaneously preparing hypochloric acid sterilizing water and strong alkali water in electrolytic cell and addition chemical solution used therein | |
JPH0970581A (en) | Ionic water producing device | |
JP2001246383A (en) | Electrolyzed water forming device | |
JP2004082078A (en) | Equipment for producing electrolytic water | |
JPH09187770A (en) | Method for forming electrolyzed water and its apparatus | |
JP3677331B2 (en) | Electrolyzed water generator | |
KR100825393B1 (en) | Device for generating sodium hypochloride | |
JP3733476B2 (en) | Cleaning method for continuous electrolyzed water generating device and continuous electrolyzed water generating device provided with mechanism for carrying out this method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040206 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040217 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040312 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040406 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040419 |
|
LAPS | Cancellation because of no payment of annual fees |