JPH1047172A - Control device of internal combustion engine - Google Patents
Control device of internal combustion engineInfo
- Publication number
- JPH1047172A JPH1047172A JP8201927A JP20192796A JPH1047172A JP H1047172 A JPH1047172 A JP H1047172A JP 8201927 A JP8201927 A JP 8201927A JP 20192796 A JP20192796 A JP 20192796A JP H1047172 A JPH1047172 A JP H1047172A
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- air
- mixture layer
- switching
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/12—Other methods of operation
- F02B2075/125—Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combustion Methods Of Internal-Combustion Engines (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は運転状態に応じて燃
焼室内で混合気を成層化し、リーン燃焼を行う内燃機関
の制御装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control apparatus for an internal combustion engine that stratifies an air-fuel mixture in a combustion chamber according to an operation state and performs lean combustion.
【0002】[0002]
【従来の技術】燃焼室の点火栓の周辺に可燃混合気層、
その周囲にはほとんど燃料を含まない空気層を形成、つ
まり燃焼室内の一部に混合気を形成し、全体として超リ
ーンな混合気であっても安定した燃焼を可能とする成層
燃焼内燃機関が、例えば特開平4−241754号公報
等によって提案されている。2. Description of the Related Art A combustible air-fuel mixture layer is provided around an ignition plug in a combustion chamber.
A stratified combustion internal combustion engine that forms an air layer containing almost no fuel around it, that is, forms a mixture in a part of the combustion chamber and enables stable combustion even with an extremely lean mixture as a whole. For example, it is proposed in Japanese Patent Application Laid-Open No. 4-241754.
【0003】この場合、運転条件の低中負荷領域などで
行われる混合気の成層化は、吸入行程で空気のみを燃焼
室内に吸入し、圧縮行程の後半などにおいて点火栓近傍
に燃料を噴射することにより実現している。[0003] In this case, stratification of the air-fuel mixture, which is performed in a low-to-medium load region under operating conditions, involves injecting only air into the combustion chamber during an intake stroke and injecting fuel near the spark plug in the latter half of the compression stroke. This is achieved by:
【0004】このような内燃機関において、燃料タンク
などから蒸発した燃料が大気に拡散しないようにキャニ
スタに溜め、これを吸気通路から燃焼室へと還流する場
合、蒸発燃料は空気と予混合状態で燃焼室に吸入される
ことから、空気層にも蒸発燃料が存在することになる。In such an internal combustion engine, when fuel evaporated from a fuel tank or the like is stored in a canister so as not to diffuse into the atmosphere, and the fuel is returned from an intake passage to a combustion chamber, the evaporated fuel is premixed with air. Since the fuel is sucked into the combustion chamber, the evaporated fuel also exists in the air layer.
【0005】しかし、この空気層の空燃比は、可燃限界
をはるかにリーン側に越えているため、燃焼火炎は空気
層の蒸発燃料に伝播することなく消炎し、したがって蒸
発燃料を含む空気はそのまま外部に排出されてしまい、
排気中のHCを増加させることになる。However, since the air-fuel ratio of this air layer far exceeds the flammability limit to the lean side, the combustion flame extinguishes without propagating to the vaporized fuel in the air layer, and the air containing the vaporized fuel remains unchanged. Is discharged outside,
This will increase the HC in the exhaust gas.
【0006】そこで、特開平5−223017号公報に
より、内燃機関の運転条件が、成層燃焼を行う低・中負
荷領域にあっては、蒸発燃料の吸気中への還流を停止、
つまり蒸発燃料のパージを行わないようにした提案がさ
れている。According to Japanese Patent Application Laid-Open No. Hei 5-223017, when the operating condition of the internal combustion engine is in a low / medium load region where stratified combustion is performed, the recirculation of the evaporated fuel into the intake air is stopped.
That is, a proposal has been made not to purge the fuel vapor.
【0007】このようにすることにより、蒸発燃料は成
層燃焼を行わない高負荷領域などにおいて吸気中に還流
され、燃焼除去される。[0007] By doing so, the evaporated fuel is recirculated into the intake air in a high load region where stratified combustion is not performed, and is combusted and removed.
【0008】[0008]
【発明が解決しようとする課題】ところが、キャニスタ
に対する燃料の吸着は運転中にも継続し、もしこのよう
に吸気中への蒸発燃料の還流を停止している低・中負荷
での運転が長時間にわたり継続して行われる場合には、
キャニスタの蒸発燃料が飽和状態となり、一部が吸気系
に逆流したり、外部に漏れ出るという問題を起こす。However, the adsorption of fuel to the canister is continued during operation, and if the operation at low / medium load where the recirculation of the evaporated fuel into the intake air is stopped is long as described above. If it takes place over time,
The fuel vapor in the canister becomes saturated, causing a problem that a part of the fuel flows back into the intake system or leaks to the outside.
【0009】これでは成層燃焼時にせっかくパージを停
止しても、HCの排出抑制機能は薄れてしまう。In this case, even if the purging is stopped during stratified combustion, the function of suppressing the emission of HC is weakened.
【0010】本発明はこのような問題を解決するため
に、蒸発燃料の吸着量が飽和状態に達したら、限定的に
混合気を存在させての成層燃焼を一時的に停止し、全域
的な混合気による燃焼(予混合燃焼)に切換えると共に
蒸発燃料の還流を行い、HCの排出を抑制することを目
的とする。According to the present invention, in order to solve such a problem, when the amount of adsorbed fuel vapor reaches a saturated state, stratified combustion with a limited mixture of fuel is temporarily stopped to temporarily stop the stratified combustion. It is an object of the present invention to switch over to combustion using a mixture (premixed combustion) and to recirculate the evaporated fuel to suppress the emission of HC.
【0011】[0011]
【課題を解決するための手段】第1の発明は、燃焼室内
の一部の領域に混合気を存在させる限定的混合気層と燃
焼室内の全域的に混合気を存在させる全域的混合気層と
のいずれかを運転状態に応じて選択的に切換える混合気
層形成手段と、燃料タンク等からの蒸発燃料を吸着貯留
手段を経由して吸気系に還流する手段と、限定的混合気
層による運転時には蒸発燃料の吸気系への還流を停止す
る手段とを備えた内燃機関において、前記蒸発燃料の貯
留量を算出する手段と、限定的混合気層による運転時に
蒸発燃料の貯留量が所定値を越えたときは限定的混合気
層から全域的混合気層に切換える制御手段とを備える。According to a first aspect of the present invention, there is provided a limited air-fuel mixture layer in which an air-fuel mixture is present in a partial area of a combustion chamber, and a global air-fuel mixture layer in which an air-fuel mixture is entirely present in a combustion chamber. A means for selectively switching either one of the above according to the operation state, a means for returning the fuel vapor from the fuel tank or the like to the intake system via the adsorption storage means, and a limited gas mixture layer. In an internal combustion engine having a means for stopping the return of the evaporated fuel to the intake system during operation, a means for calculating the storage amount of the evaporated fuel; And control means for switching from the limited gas mixture layer to the entire gas mixture layer when the pressure exceeds the limit.
【0012】第2の発明は、前記蒸発燃料の算出手段
が、少なくともエンジン停止時の燃料温度条件から貯留
量の初期値を算出する。In a second aspect of the present invention, the evaporative fuel calculating means calculates an initial value of the stored amount from at least the fuel temperature condition when the engine is stopped.
【0013】第3の発明は、前記蒸発燃料の算出手段
が、蒸発燃料の吸気系への還流時には貯留量から変化量
を減算し、還流停止時には加算する。In a third aspect of the present invention, the evaporative fuel calculating means subtracts the amount of change from the stored amount when the evaporative fuel is recirculated to the intake system, and adds it when the recirculation is stopped.
【0014】第4の発明は、前記混合気層の切換制御手
段が、混合気層切換時に吸入空気量を調整し、同一の出
力トルクを維持するように空燃比を調整する。According to a fourth aspect of the present invention, the switching control means for the mixture layer adjusts the amount of intake air when the mixture layer is switched, and adjusts the air-fuel ratio so as to maintain the same output torque.
【0015】第5の発明は、前記混合気層の切換制御手
段が、限定的混合気層から全域的混合気層に切換えると
きには吸入空気量を目標値よりも一時的に大きく減少さ
せる。According to a fifth aspect of the present invention, when the switching control means for the gas mixture layer switches from the limited gas mixture layer to the global gas mixture layer, the intake air amount is temporarily reduced to a value larger than the target value.
【0016】第6の発明は、前記混合気層の切換制御手
段が、切換時の運転条件が、同一トルクを維持したまま
いずれの混合気層によっても安定燃焼される領域にある
かどうかを判断する手段と、この安定燃焼領域にあると
きに限り混合気層の切換を実行する手段とを含む。According to a sixth aspect of the present invention, the switching control means for the gas mixture layer determines whether or not the operating condition at the time of switching is in a region where stable combustion can be performed by any of the gas mixture layers while maintaining the same torque. And means for switching the air-fuel mixture only when in the stable combustion region.
【0017】第7の発明は、前記混合気層の形成手段
が、燃焼室に直接的に燃料を噴射する燃料噴射弁と、こ
の燃料噴射弁の噴射タイミングを吸気行程と圧縮行程と
の間で切換える手段とを含む。According to a seventh aspect of the present invention, the means for forming an air-fuel mixture layer includes a fuel injection valve for directly injecting fuel into a combustion chamber, and an injection timing of the fuel injection valve between an intake stroke and a compression stroke. Switching means.
【0018】[0018]
【作用・効果】第1の発明において、機関の低・中負荷
領域など、燃焼室には限定的に混合気層が形成され、成
層燃焼により、全体的には超リーンな混合気であっても
安定した燃焼が確保され、燃費の改善が図れる。この成
層燃焼による運転時には、燃料タンクからの蒸発燃料の
吸気系への還流が停止され、成層化した混合気層のう
ち、ほとんど燃料を含まない空気層に蒸発燃料が混在し
たときに発生するHCの排出を抑制する。According to the first aspect of the present invention, an air-fuel mixture layer is limitedly formed in the combustion chamber, such as in a low-to-medium-load region of the engine. As a result, stable combustion is ensured and fuel efficiency can be improved. During the operation by the stratified charge combustion, the recirculation of the fuel vapor from the fuel tank to the intake system is stopped, and the HC generated when the fuel vapor is mixed with the air layer containing almost no fuel in the stratified air-fuel mixture layer. Control emissions.
【0019】しかし、蒸発燃料の貯留量が所定値を越え
たときは、混合気の成層化を停止して、燃焼室の全域的
に混合気が存在するように混合気層を形成し、同時に蒸
発燃料の吸気系への還流を行い、蒸発燃料貯留手段の飽
和状態を解消し、蒸発燃料の発散を防ぎ、還流された蒸
発燃料は混合気の一部として確実に燃焼させることで、
HCの生成を減少させる。However, when the storage amount of the fuel vapor exceeds a predetermined value, the stratification of the air-fuel mixture is stopped, and the air-fuel mixture layer is formed so that the air-fuel mixture exists throughout the combustion chamber. By returning the evaporated fuel to the intake system, eliminating the saturated state of the evaporated fuel storage means, preventing the divergence of the evaporated fuel, and reliably burning the recirculated evaporated fuel as a part of the air-fuel mixture,
Reduces the production of HC.
【0020】第2の発明において、燃料タンクからの蒸
発燃料は主としてエンジン停止時に貯留手段に蓄えられ
るが、その蒸発燃料量はほぼ燃料温度に比例して増加
し、したがってこの燃料温度に基づいて貯留量を推定す
ることにより、正確に貯留量を算出できる。In the second aspect of the present invention, the fuel vapor from the fuel tank is mainly stored in the storage means when the engine is stopped, and the amount of the fuel vapor increases substantially in proportion to the fuel temperature. By estimating the amount, the storage amount can be accurately calculated.
【0021】第3の発明において、貯留量を算出するに
あたり、蒸発燃料の吸気系への還流時には減らし、還流
停止時には増やすようにしたので、運転条件によって変
動する現在の蒸発燃料の貯留量が正確に算出できる。In the third aspect of the present invention, when calculating the stored amount, the fuel amount is reduced when the fuel vapor is recirculated to the intake system and is increased when the fuel recirculation is stopped. Can be calculated.
【0022】第4の発明において、混合気層切換時に吸
入空気量を調整し、同一の出力トルクを維持するように
空燃比を調整するため、切換時に出力トルクの変動が避
けられ、円滑な運転性が維持される。In the fourth aspect of the invention, the amount of intake air is adjusted at the time of switching the air-fuel mixture and the air-fuel ratio is adjusted so as to maintain the same output torque. Sex is maintained.
【0023】第5の発明において、限定的混合気層から
全域的混合気層に切換えるときには吸入空気量を目標値
よりも一時的に大きく減少させることで、吸入空気量の
切換応答性を高め、空燃比を目標値に応答よく収束させ
られる。In the fifth invention, when switching from the limited air-fuel mixture layer to the entire air-fuel mixture layer, the intake air amount is temporarily reduced to a value larger than the target value, so that the switching response of the intake air amount is improved. The air-fuel ratio can converge to the target value with good response.
【0024】第6の発明において、混合気層の切換えが
同一トルクを維持したまま安定燃焼する領域でのみ実行
されるので、切換時の燃焼特性の変動がなく、円滑な運
転性が確保される。In the sixth aspect, the switching of the air-fuel mixture layer is performed only in a region where stable combustion is performed while maintaining the same torque, so that there is no change in combustion characteristics at the time of switching and smooth operability is ensured. .
【0025】第7の発明において、混合気層の形成が、
燃料噴射弁の噴射タイミングの切換えにより簡単かつ確
実に実現できる。[0025] In the seventh invention, the formation of the air-fuel mixture layer is as follows.
Switching can be achieved simply and reliably by switching the injection timing of the fuel injection valve.
【0026】[0026]
【発明の実施の形態】図1において、吸気通路6を流れ
る吸入空気量を測定するエアフローメータ1の下流に
は、吸入空気量を調整するためのスロットルバルブ4が
設けられ、さらにこのスロットルバルブ4をバスパスす
る補助空気通路2が設けられ、この補助空気通路2には
補助空気流量を制御する補助空気制御バルブ3が介装さ
れる。したがって、機関に吸入される吸入空気量はスロ
ットルバルブ4と補助空気制御バルブ3との開度に比例
して制御される。補助空気制御バルブ3の開度は後述す
るコントロールユニット(ECU)19によって運転状
況に応じて制御される。1, a throttle valve 4 for adjusting the amount of intake air is provided downstream of an air flow meter 1 for measuring the amount of intake air flowing through an intake passage 6. Is provided, and an auxiliary air control valve 3 for controlling the flow rate of the auxiliary air is interposed in the auxiliary air passage 2. Therefore, the amount of intake air taken into the engine is controlled in proportion to the opening of the throttle valve 4 and the auxiliary air control valve 3. The opening degree of the auxiliary air control valve 3 is controlled by a control unit (ECU) 19 described later in accordance with the driving situation.
【0027】シリンダヘッド9とシリンダブロック8と
ピストン11によって燃焼室10が画成され、この燃焼
室10には点火栓16の近傍に向けて直接的に燃料を噴
射する燃料噴射弁15が設けられる。A combustion chamber 10 is defined by the cylinder head 9, the cylinder block 8, and the piston 11. The combustion chamber 10 is provided with a fuel injection valve 15 for directly injecting fuel toward the vicinity of an ignition plug 16. .
【0028】13は吸気弁、14は排気弁を示し、また
排気通路7には排気中の空燃比を検出するための空燃比
センサ17が設けられる。Reference numeral 13 denotes an intake valve, 14 denotes an exhaust valve, and an exhaust passage 7 is provided with an air-fuel ratio sensor 17 for detecting an air-fuel ratio in exhaust gas.
【0029】前記コントロールユニット19にはエアフ
ローメータ1からの吸入空気量信号、クランク軸に取付
けたクランク角度センサ21からの回転角度信号等が入
力し、これらに基づいて燃料噴射弁15から所定のタイ
ミングでもって燃料を噴射させる。詳しくは後で述べる
が、機関運転条件の低・中負荷領域において機関の圧縮
行程で燃料を噴射させ、主として点火栓16の近傍に燃
料を集中させ、点火性近傍の可燃混合気層とその周囲の
ほとんど燃料を含まない空気層とにより、燃焼室内に限
定的に混合気を存在させ、成層燃焼を行わせる。これに
対して高出力を要求される高負荷領域では、吸気行程に
おいて燃料を噴射させ、吸気行程から圧縮行程にかけて
空気と燃料を予め混合撹拌し、燃焼室内全域で均一的濃
度の混合気層を形成し、予混合燃焼を行わせるのであ
る。The control unit 19 receives an intake air amount signal from the air flow meter 1, a rotation angle signal from a crank angle sensor 21 attached to a crankshaft, and the like. Then inject the fuel. As will be described in detail later, fuel is injected in the compression stroke of the engine in the low / medium load region of the engine operating condition, the fuel is mainly concentrated near the spark plug 16, and the combustible mixture layer near the ignitability and its surroundings With the air layer containing almost no fuel, the air-fuel mixture is limitedly present in the combustion chamber to perform stratified combustion. On the other hand, in a high load region where high output is required, fuel is injected during the intake stroke, and air and fuel are mixed and stirred in advance from the intake stroke to the compression stroke, thereby forming a mixed gas layer having a uniform concentration throughout the combustion chamber. It forms and performs premix combustion.
【0030】一方、吸気通路6に燃料タンク41から蒸
発した燃料を導くために、蒸発燃料管路42を介して蒸
発燃料を一時的に蓄えるキャニスタ43が設けられ、キ
ャニスタ43の活性炭層44に蒸発燃料を吸着する。こ
の活性炭層44に吸着された蒸発燃料は、スロットルバ
ルブ4の上流から管路45を介して取り入れた空気と共
にスロットルバルブ4の下流に管路46を経由して放出
(パージ)されるが、管路46の途中にはその流路面積
を調整してパージ量を制御するパージ制御弁47が設け
られる。On the other hand, in order to guide the fuel evaporated from the fuel tank 41 to the intake passage 6, a canister 43 for temporarily storing the evaporated fuel is provided through an evaporated fuel pipe 42, and the canister 43 is evaporated to an activated carbon layer 44 of the canister 43. Adsorb fuel. The vaporized fuel adsorbed on the activated carbon layer 44 is discharged (purged) via the pipe 46 to the downstream of the throttle valve 4 together with the air taken in from the upstream of the throttle valve 4 via the pipe 45. A purge control valve 47 for adjusting the flow passage area and controlling the purge amount is provided in the middle of the passage 46.
【0031】このパージ制御弁47は後述するようにコ
ントロールユニット19からの信号により作動し、基本
的には低・中負荷領域で閉じてパージを停止し、高負荷
域で開いてパージを行うが、コントロールユニット19
はキャニスタ43における蒸発燃料の貯留量(推定値)
が所定値を越えたときには、低・中負荷領域でもパージ
制御弁47を開いてパージを行い、かつこのときには前
記燃料噴射弁15の燃料噴射時期を圧縮行程から吸気行
程に切換え、限定的混合気層による成層燃焼から、全域
的混合気層による予混合燃焼に切り換えるようになって
いる。The purge control valve 47 is operated by a signal from the control unit 19 as will be described later, and basically closes and stops purging in a low / medium load region, and opens and purges in a high load region. , Control unit 19
Is the amount of fuel vapor stored in the canister 43 (estimated value)
Exceeds a predetermined value, the purge control valve 47 is opened even in the low / medium load region to perform purging. At this time, the fuel injection timing of the fuel injection valve 15 is switched from the compression stroke to the intake stroke, and the limited mixture It switches from stratified combustion by stratified combustion to premixed combustion by a global mixture layer.
【0032】コントロールユニット19により実行され
るこれらの制御動作について、図2〜図3のフローチャ
ートにしたがって説明する。The control operations performed by the control unit 19 will be described with reference to the flowcharts of FIGS.
【0033】まず、図2は、キャニスタ43に貯留され
る蒸発燃料量の推定を行うルーチンであって、ステップ
11では内燃機関の始動後、この処理を実行するのが、
最初(1回目)であるかどうかを判断し、もし、初回で
あるならば、ステップ12で蒸発燃料の貯留量の初期値
をQevapに設定する(Qevap=Qevap in
t)。この初期値は前回のエンジン停止時の燃料温度あ
るいはその推定値の関数として与えられる。蒸発燃料の
推定量は、例えばエンジン停止時の冷却水温と、始動か
らのエンジン運転継続時間とから求め、各々が大きいほ
ど蒸発燃料量が多くなるものと推定する。First, FIG. 2 shows a state where the fuel is stored in the canister 43.
A routine for estimating the amount of evaporated fuel,
In step 11, after starting the internal combustion engine, this process is executed.
Judge whether it is the first (first time), and if
If there is, in step 12 the initial value of the stored amount of fuel vapor
Is set to Qevap (Qevap = Qevap in
t). This initial value corresponds to the fuel temperature at the time of the previous engine stop.
Or as a function of its estimate. Evaporative fuel
The estimated amount is, for example, the cooling water temperature when the engine is stopped,
From the engine operation continuation time.
It is estimated that the amount of evaporated fuel will increase.
【0034】ステップ13では蒸発燃料放出のためのパ
ージ制御弁47が閉じているかどうかを判断し、閉じて
いるときは貯留量Qevapが増加するものとして、ス
テップ14ではその増加量ΔQevap(正値)を推定
する。この推定量は、燃料温度またはその燃料温度推定
値の関数として求め、温度が高いほど大きくなるように
増加量を推定する。In step 13, it is determined whether or not the purge control valve 47 for discharging the fuel vapor is closed. When the purge control valve 47 is closed, it is assumed that the storage amount Qevap increases. In step 14, the increase amount ΔQevap (positive value) is used. Is estimated. The estimated amount is obtained as a function of the fuel temperature or an estimated value of the fuel temperature, and the increased amount is estimated so as to increase as the temperature increases.
【0035】これに対してパージ制御弁47が開いてい
るときは、パージにより貯留量が減少するので、ステッ
プ15でパージの減少量ΔQevap(負値)を推定す
る。この推定方法としては、ΔQevapをパージ制御
弁47の開度と吸入負圧の関数として与え、制御弁開度
が大きいほど、また吸入負圧が強いほど減少量が多くな
る。On the other hand, when the purge control valve 47 is open, the stored amount decreases due to the purge. Therefore, at step 15, the purge decrease amount ΔQevap (negative value) is estimated. As this estimation method, ΔQevap is given as a function of the opening of the purge control valve 47 and the suction negative pressure, and the amount of decrease increases as the control valve opening increases and the suction negative pressure increases.
【0036】ステップ16では、貯留量の初期値Qev
apに対して、このようにして求めた増加または減少量
である変化量ΔQevapを加算し、現在の蒸発燃料の
貯留量を推定する(Qevap=Qevap+ΔQev
ap)。In step 16, the initial value Qev of the storage amount
The change amount ΔQevap, which is the increase or decrease amount thus obtained, is added to ap to estimate the current storage amount of the fuel vapor (Qevap = Qevap + ΔQev).
ap).
【0037】以上により現在の段階でのキャニスタに貯
留されている蒸発燃料量が推定される。From the above, the amount of fuel vapor stored in the canister at the current stage is estimated.
【0038】次に図3のフローチャートに基づいて、混
合気層の形成を燃焼室内に限定的に混合気を存在させる
場合と、全域的にほぼ均質な混合気を存在させる場合と
に切換える動作を説明する。Next, based on the flow chart of FIG. 3, the operation of switching the formation of the mixture layer between the case where the mixture is limited in the combustion chamber and the case where the mixture is substantially uniform over the entire area is performed. explain.
【0039】ステップ21で運転条件、例えばエンジン
回転速度、負荷、冷却水温等を読み込み、これらに基づ
いてステップ22で限定的混合気層による成層化条件を
判定する。例えば、エンジンが比較的低速、低負荷で、
かつエンジン暖機後であれば、混合気の成層化条件が成
立したものと判断する。成層化条件が非成立のとき、例
えば高負荷領域などではステップ23に進み、全域的な
混合気層による均質混合気層を形成する。In step 21, operating conditions such as engine speed, load, cooling water temperature, etc. are read, and based on these, in step 22, the stratification condition by the limited gas mixture layer is determined. For example, if the engine is relatively slow,
And, after the engine is warmed up, it is determined that the stratification condition of the air-fuel mixture is satisfied. When the stratification condition is not satisfied, for example, in a high load region, the process proceeds to step 23, and a homogeneous mixture layer is formed by the entire mixture layer.
【0040】成層化条件が成立したときは、ステップ2
4で前述のようにして求められるキャニスタ43に貯留
されている蒸発燃料量Qevapの推定値を読み込む
か、あるいは推定を行う。そして、ステップ25でこの
蒸発燃料量Qevapを予め設定してあるレベルLev
el1と比較し、この所定レベルよりも小さい場合には
ステップ26に進んで限定的混合気層を形成する。If the stratification condition is satisfied, step 2
In step 4, the estimated value of the amount of evaporated fuel Qevap stored in the canister 43 obtained as described above is read or estimated. Then, in step 25, this evaporated fuel amount Qevap is set to a predetermined level Lev.
If it is smaller than the predetermined level as compared with el1, the routine proceeds to step 26, where a limited mixture layer is formed.
【0041】これに対して、蒸発燃料量が所定レベルよ
りも高いときは、混合気の成層化条件が成立しているに
もかかわらず、ステップ23に移行し、成層燃焼を行わ
ずに、燃焼室全域的に均質な混合気層を形成して予混合
燃焼を行う。On the other hand, when the fuel vapor amount is higher than the predetermined level, the process proceeds to step 23, even though the stratification condition of the air-fuel mixture is satisfied, and the stratified combustion is performed without performing the stratified combustion. Premixed combustion is performed by forming a homogeneous mixture layer throughout the chamber.
【0042】ここで全体的な作用について説明する。Here, the overall operation will be described.
【0043】一般に燃焼室で燃焼する混合気の空燃比が
リーンになるのに従って同一トルクを得るのに必要な吸
気量が相対的に増え、これに伴うポンピングロスの低減
により、燃費が向上する。Generally, as the air-fuel ratio of the air-fuel mixture burned in the combustion chamber becomes leaner, the amount of intake air required to obtain the same torque relatively increases, and the resulting reduction in pumping loss improves fuel efficiency.
【0044】通常のガソリンエンジンで、燃料と空気を
予混合し、燃焼させるタイプにあっては、燃焼安定性か
ら空燃比で25付近がリーン限界であるとされている。
しかし、点火栓近傍に可燃混合気層を形成し、その回り
には空気層のみを存在させるようにして混合気を成層化
し、燃焼させるタイプにあっては、実質的な空燃比は上
記リーン限界をはるかに越え、空燃比40付近でも運転
が可能となり、さらに燃費の向上が図れる。In a normal gasoline engine of a type in which fuel and air are premixed and burned, the lean limit is set at around 25 in the air-fuel ratio from the viewpoint of combustion stability.
However, in the case of a type in which a combustible air-fuel mixture layer is formed in the vicinity of the spark plug and only the air layer exists around the layer, the air-fuel mixture is stratified and burned, the actual air-fuel ratio is above the lean limit. , And can be operated even at an air-fuel ratio of around 40, further improving fuel efficiency.
【0045】そこで、低・中負荷領域では燃料噴射弁1
5からの燃料噴射を、機関の圧縮行程において行うこと
により、点火栓16の近傍にのみ噴射燃料の多くを滞留
させて燃焼室内の一部領域にのみ可燃混合気層を形成
し、成層燃焼を実現するのである。Therefore, in the low / medium load region, the fuel injection valve 1
By performing the fuel injection from the engine 5 in the compression stroke of the engine, most of the injected fuel is retained only in the vicinity of the ignition plug 16 to form a combustible mixture layer only in a partial region in the combustion chamber, and stratified combustion is performed. It does.
【0046】ただし、この成層化燃焼では、シリンダボ
リュームとの関係から、高出力運転時など、吸気量を最
大限に増加させても、燃料量は相対的に少ないため発生
トルクが不足するようにする。そこで、要求負荷が大き
い運転領域では成層化燃焼を中止し、燃料噴射弁15か
らの燃料噴射を吸気行程で行い、その後の圧縮行程にお
いて吸入空気と十分に混合撹拌することで、燃焼室10
の全域において、例えば空燃比22程度の均一的な混合
気層を形成し、予混合燃焼を行い、十分な出力を確保し
ている。However, in the stratified combustion, even if the intake air amount is increased to the maximum, for example, during a high output operation, the generated torque is insufficient because the fuel amount is relatively small due to the relationship with the cylinder volume. I do. Therefore, in the operation region where the required load is large, the stratified charge combustion is stopped, the fuel injection from the fuel injection valve 15 is performed in the intake stroke, and in the subsequent compression stroke, the fuel is sufficiently mixed and stirred with the intake air, so that the combustion chamber 10
In the entire region, a uniform air-fuel mixture layer having an air-fuel ratio of about 22, for example, is formed, and premixed combustion is performed to secure a sufficient output.
【0047】ところで、キャニスタ43に吸着される蒸
発燃料の多くはエンジン停止後に発生するが、通常走行
中でも燃料温度の上昇に伴い増加する。この蒸発燃料は
キャニスタ43からパージ制御弁47を介して吸気通路
6に導入されるが、導入状態によって空燃比が変動する
ので、この導入量はコントロールユニット19によりパ
ージ制御弁47の開度を運転条件に応じて制御すること
で、適正にコントロールされる。Incidentally, most of the evaporated fuel adsorbed by the canister 43 is generated after the engine is stopped, but increases with an increase in the fuel temperature even during normal running. The fuel vapor is introduced from the canister 43 into the intake passage 6 via the purge control valve 47. Since the air-fuel ratio varies depending on the introduced state, the amount of the introduced fuel is controlled by controlling the opening degree of the purge control valve 47 by the control unit 19. By controlling according to the conditions, it is controlled appropriately.
【0048】しかし、混合気の成層燃焼を行っている低
・中負荷領域にあっては、吸気中にこのような蒸発燃料
を混入することにより、点火栓16の近傍の可燃混合気
層の外側の空気層についても蒸発燃料が存在する。しか
し、成層燃焼時には蒸発燃料を含む極めてリーンの空気
層までは燃焼火炎が伝播せず、未燃HCの排出量が増大
する。そこで、このような成層燃焼時にはコントロール
ユニット19からの信号でパージ制御弁47を閉じ、蒸
発燃料の導入を停止し、HCの排出量を低下させるよう
にしている。However, in a low / medium load region where stratified combustion of the air-fuel mixture is performed, the mixing of such evaporated fuel into the intake air causes the outside of the combustible air-fuel mixture layer in the vicinity of the ignition plug 16. Evaporated fuel also exists in the air layer. However, during stratified combustion, the combustion flame does not propagate to the extremely lean air layer containing the evaporated fuel, and the amount of unburned HC emission increases. Therefore, at the time of such stratified combustion, the purge control valve 47 is closed by a signal from the control unit 19, the introduction of the evaporated fuel is stopped, and the emission amount of HC is reduced.
【0049】ところが、成層燃焼を行う運転条件が長時
間にわたり継続するときには、キャニスタ43に貯留し
た蒸発燃料の放出が行えず、飽和状態に達してしまい、
管路42を経由して吸気中に逆流することがある。この
場合に成層化燃焼を維持していると、上記したのと同じ
問題が発生する。However, when the operating conditions for performing stratified combustion continue for a long time, the fuel vapor stored in the canister 43 cannot be released, and a saturated state is reached.
Backflow may occur during intake via the line 42. In this case, if stratified combustion is maintained, the same problem as described above occurs.
【0050】そこで、キャニスタ43に蓄えられる蒸発
燃料量を、そのときの運転条件等から推定し、この推定
値が所定値を越えたならば、運転状況が成層燃焼条件で
あっても、混合気の成層化を停止すると共に、パージ制
御弁47を開いて蒸発燃料の吸気中への導入を行う。Therefore, the amount of fuel vapor stored in the canister 43 is estimated from the operating conditions and the like at that time. If the estimated value exceeds a predetermined value, even if the operating condition is a stratified combustion condition, the fuel-air mixture Is stopped, and the purge control valve 47 is opened to introduce the evaporated fuel into the intake air.
【0051】図4はこのときの状態を示すものである
が、キャニスタ43に貯留されている蒸発燃料量Qev
apが所定のレベルを越えると、限定的混合気層による
運転から全域的な均質混合気層による運転に切換える。
ただし、この場合、切換に伴って出力トルクが変動する
と、運転特性上、違和感が生じる。FIG. 4 shows the state at this time. The fuel vapor amount Qev stored in the canister 43 is shown in FIG.
When ap exceeds a predetermined level, the operation is switched from the operation with the limited gas mixture to the operation with the entire homogeneous gas mixture.
However, in this case, if the output torque fluctuates due to the switching, a sense of incongruity occurs in the driving characteristics.
【0052】そこで、切換前後においてトルク変動が生
じないように、燃料供給量については同一量を維持しつ
つ、例えば空燃比が40から22に切換わるように、ス
ロットルバルブ4の開度を減少させるか、または補助空
気制御バルブ3の開度を減少する。このようにすること
で、吸気系のダイナミクスに従いシリンダ吸入空気量は
ほぼ一次遅れで減少し、空燃比が40から22へと変化
する。Therefore, the opening degree of the throttle valve 4 is reduced so that the air supply ratio is switched from 40 to 22, for example, while maintaining the same fuel supply amount so that torque fluctuation does not occur before and after the switching. Alternatively, the opening degree of the auxiliary air control valve 3 is reduced. By doing so, the cylinder intake air amount decreases with a first-order lag according to the dynamics of the intake system, and the air-fuel ratio changes from 40 to 22.
【0053】そして空燃比が22になった時点で、燃料
噴射弁15からの燃料噴射タイミングを、それまでの圧
縮行程から吸入行程に早め、限定的混合気層から全域的
な均質混合気層へと切換えるのである。Then, when the air-fuel ratio becomes 22, the fuel injection timing from the fuel injection valve 15 is advanced from the compression stroke to the intake stroke, and from the limited gas mixture layer to the entire homogeneous gas mixture layer. It is switched.
【0054】燃焼室10において燃料と空気は十分に混
合撹拌されるので、パージ制御弁47からの吸気中に導
入された蒸発燃料も十分に混合され、燃焼室内全域にお
いて均一的な混合気となり、確実に燃焼されることにな
る。なお、蒸発燃料のパージにより空燃比が相対的に濃
くなるので、同一空燃比を維持するのに必要な燃料噴射
量としては、その分だけ減量すればよい。Since the fuel and air are sufficiently mixed and stirred in the combustion chamber 10, the fuel vapor introduced into the intake air from the purge control valve 47 is also sufficiently mixed, and a uniform air-fuel mixture is obtained throughout the combustion chamber. It will be surely burned. In addition, since the air-fuel ratio becomes relatively rich due to the purge of the evaporated fuel, the amount of fuel injection necessary to maintain the same air-fuel ratio may be reduced by that amount.
【0055】このようにして、成層燃焼の運転条件であ
っても、キャニスタ43での蒸発燃料の貯留量が所定値
を越えたときには、成層燃焼を停止し、蒸発燃料を吸気
系に還流して均質混合気による予混合燃焼をさせるの
で、還流された蒸発燃料を確実に燃焼させ、HCを低減
しつつ、キャニスタ43の飽和状態を解消し、常に適正
な機能を維持することができる。As described above, even if the stratified combustion operation condition is satisfied, when the storage amount of the evaporated fuel in the canister 43 exceeds a predetermined value, the stratified combustion is stopped, and the evaporated fuel is returned to the intake system. Since the premixed combustion is performed by the homogeneous mixture, the recirculated evaporative fuel is reliably burned, the HC is reduced, the saturated state of the canister 43 is eliminated, and the proper function can always be maintained.
【0056】このようにしてキャニスタ43に貯留され
ていた蒸発燃料が十分にパージされたものと判断された
ときは、運転条件が成層燃焼条件を満たす場合に、同一
の燃料噴射量を維持しつつ、スロットルバルブ4(また
は補助空気制御バルブ3)を開くと同時に燃料噴射タイ
ミングを切換えることにより、全域的な均質混合気層か
ら限定的混合気層の形成へと切換え、空燃比40での成
層燃焼に戻す。When it is determined that the evaporated fuel stored in the canister 43 has been sufficiently purged in this way, the same fuel injection amount is maintained while the operating conditions satisfy the stratified combustion conditions. By switching the fuel injection timing at the same time as opening the throttle valve 4 (or the auxiliary air control valve 3), the mixture is switched from a homogeneous gas mixture layer over the entire area to a limited gas mixture layer, and stratified combustion at an air-fuel ratio of 40 is performed. Return to
【0057】上記説明において、限定的混合気層による
成層燃焼から均質的混合気による予混合燃焼へと切換え
るにあたり、この切換中に変動する空燃比は排気性能上
からは、必ずしも好ましい状態にはない。したがって、
この空燃比の切換は可能な限り速やかに行うことが望ま
しい。In the above description, when switching from stratified combustion with a limited mixture mixture to premixed combustion with a homogeneous mixture, the air-fuel ratio that fluctuates during this switch is not necessarily in a favorable state from the viewpoint of exhaust performance. . Therefore,
It is desirable that the switching of the air-fuel ratio be performed as quickly as possible.
【0058】図5はこの空燃比の切換を可及的に速やか
に実行するため、切換時のスロットルバルブ4(または
補助空気制御バルブ3)の開度を、図4よりもいったん
大きく減少させ、速やかに空気量を減じ、その後に目標
空気量となるようにスロットルバルブ4の開度を開き方
向に戻すものである。FIG. 5 shows that the opening degree of the throttle valve 4 (or the auxiliary air control valve 3) at the time of the switching is temporarily reduced as compared with FIG. The amount of air is immediately reduced, and then the opening of the throttle valve 4 is returned to the opening direction so as to reach the target amount of air.
【0059】このようにすることにより、吸入空気量の
減少応答性が良好となり、空燃比は40から22の状態
により早く切換わり、これらの間の値に空燃比が維持さ
れる時間が短くなり、それだけ排気性能を向上させるこ
とができる。By doing so, the response to the decrease in the intake air amount is improved, and the air-fuel ratio is switched more rapidly from the state of 40 to 22, and the time during which the air-fuel ratio is maintained at a value between these becomes shorter. The exhaust performance can be improved accordingly.
【0060】なお、これをより精度よく行うためには、
吸気系のダイナミクスに基づいて、スロットルバルブ4
の開度制御に位相進み補償をかけるとよい。In order to perform this more accurately,
Based on the dynamics of the intake system, the throttle valve 4
It is advisable to apply phase lead compensation to the opening degree control.
【0061】また、以上の制御では空燃比が40から2
2に切換わった時点で燃料の噴射タイミングを切換え、
混合気層の形成方法を切り換えているが、全域的混合気
層と限定的混合気層のそれぞれについて、運転条件に基
づいて安定的に燃焼が可能な空燃比の帯域をプログラム
的に設定しておき、その帯域上で重なり合う空燃比があ
った場合にのみ、混合気形成方法を切換えることもでき
る。In the above control, the air-fuel ratio is from 40 to 2
When the fuel injection timing is switched to 2, the fuel injection timing is switched,
Although the method of forming the air-fuel mixture layer is switched, the air-fuel ratio band that enables stable combustion based on the operating conditions is set programmatically for each of the entire air-fuel mixture layer and the limited air-fuel mixture layer. Alternatively, the mixture formation method can be switched only when there is an overlapping air-fuel ratio on that zone.
【0062】この場合、運転条件が、変更後の混合気形
成方法で安定燃焼可能な空燃比帯域に移行したことを起
点として、燃料噴射タイミングを切換えるようにする。In this case, the fuel injection timing is switched based on the fact that the operating condition has shifted to the air-fuel ratio band in which stable combustion can be performed by the changed air-fuel mixture forming method.
【0063】このようにすると、いずれの混合気であっ
ても安定燃焼する状態においてのみ混合気形成方法の切
換えが行われるので、燃焼切換時に燃焼が悪化したり、
出力トルクの変動などが生じることがなく、円滑な運転
特性が維持される。In this way, the switching of the air-fuel mixture formation method is performed only in a state in which stable combustion occurs regardless of the air-fuel mixture.
The output torque does not fluctuate and the smooth running characteristics are maintained.
【0064】なお、以上の説明では燃焼室10に設けた
燃料噴射弁15からの噴射タイミングを変更することに
より、混合気形成方法の切換えるようにしているが、こ
れに限らず、スワール制御弁等により吸気流動を制御
し、燃焼室内混合気の成層化を実現するなど、公知の手
法を採用することを妨げるものではない。In the above description, the method of forming the air-fuel mixture is switched by changing the injection timing from the fuel injection valve 15 provided in the combustion chamber 10. However, the present invention is not limited to this. It does not prevent adoption of a known method such as controlling the intake air flow and stratifying the air-fuel mixture in the combustion chamber.
【0065】また、全域的混合気層の形成について、点
火栓近傍に濃い混合気を存在させ、その周囲には希薄な
混合気を存在させるように混合気を成層化してもよく、
必ずしも燃焼室全域において均質濃度の混合気を形成す
る必要はない。As for the formation of the entire mixture layer, the mixture may be stratified such that a rich mixture exists near the spark plug and a lean mixture exists around the spark plug.
It is not always necessary to form a homogeneous mixture in the entire combustion chamber.
【図1】本発明の実施形態を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention.
【図2】同じく蒸発燃料量の推定制御動作を示すフロー
チャートである。FIG. 2 is a flowchart showing an operation for estimating the amount of evaporated fuel.
【図3】同じく混合気形成方法の切換制御動作を示すフ
ローチャートである。FIG. 3 is a flowchart showing a switching control operation of the air-fuel mixture forming method.
【図4】同じく制御動作の作動特性を示すタイミングチ
ャートである。FIG. 4 is a timing chart showing operation characteristics of the control operation.
【図5】他の実施形態による制御動作の作動特性を示す
タイミングチャートである。FIG. 5 is a timing chart showing operation characteristics of a control operation according to another embodiment.
3 補助空気制御バルブ 4 スロットルバルブ 6 吸気通路 10 燃焼室 15 燃料噴射弁 16 点火栓 19 コントロールユニット 41 燃料タンク 43 キャニスタ 47 パージ制御弁 Reference Signs List 3 auxiliary air control valve 4 throttle valve 6 intake passage 10 combustion chamber 15 fuel injection valve 16 spark plug 19 control unit 41 fuel tank 43 canister 47 purge control valve
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F02D 41/02 330 F02D 41/02 330J 330F ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location F02D 41/02 330 F02D 41/02 330J 330F
Claims (7)
る限定的混合気層と燃焼室内の全域的に混合気を存在さ
せる全域的混合気層とのいずれかを運転状態に応じて選
択的に切換える混合気層形成手段と、 燃料タンク等からの蒸発燃料を吸着貯留手段を経由して
吸気系に還流する手段と、 限定的混合気層による運転時には蒸発燃料の吸気系への
還流を停止する手段とを備えた内燃機関において、 前記蒸発燃料の貯留量を算出する手段と、 限定的混合気層による運転時に蒸発燃料の貯留量が所定
値を越えたときは限定的混合気層から全域的混合気層に
切換える制御手段とを備えることを特徴とする内燃機関
の制御装置。An air-fuel mixture layer in which a mixture is present in a partial area of a combustion chamber and a gas-air mixture layer in which an air-fuel mixture is present in a whole area of a combustion chamber are selected according to operating conditions. Means for selectively switching the mixture gas layer; means for returning the fuel vapor from the fuel tank or the like to the intake system via the adsorption storage means; and means for returning the fuel vapor to the intake system when operating with the limited gas mixture layer Means for calculating the storage amount of the evaporative fuel, and when the storage amount of the evaporative fuel exceeds a predetermined value during operation with the limited air-fuel mixture layer, a limited air-fuel mixture layer And a control means for switching from an air-fuel mixture to an entire air-fuel mixture layer.
ンジン停止時の燃料温度条件から貯留量の初期値を算出
する請求項1に記載の内燃機関の制御装置。2. The control device for an internal combustion engine according to claim 1, wherein said evaporative fuel calculating means calculates an initial value of the storage amount from at least a fuel temperature condition when the engine is stopped.
流時には貯留量から変化量を減算し、還流停止時には加
算する請求項1または2に記載の内燃機関の制御装置。3. The control device for an internal combustion engine according to claim 1, wherein said evaporative fuel calculating means subtracts the amount of change from the stored amount when the evaporative fuel is recirculated, and adds it when the evaporative fuel is stopped.
切換時に吸入空気量を調整し、同一の出力トルクを維持
するように空燃比を調整する請求項1に記載の内燃機関
の制御装置。4. The internal combustion engine according to claim 1, wherein the switching control of the air-fuel mixture layer adjusts the amount of intake air at the time of switching the air-fuel mixture and adjusts the air-fuel ratio so as to maintain the same output torque. Control device.
合気層から全域的混合気層に切換えるときには吸入空気
量を目標値よりも一時的に大きく減少させる請求項1ま
たは4に記載の内燃機関の制御装置。5. The air-fuel mixture switching control means according to claim 1 or 4, wherein when switching from the limited air-fuel mixture layer to the entire air-fuel mixture layer, the intake air amount is temporarily reduced to a value larger than the target value. Internal combustion engine control device.
運転条件が、同一トルクを維持したままいずれの混合気
層によっても安定燃焼される領域にあるかどうかを判断
する手段と、この安定燃焼領域にあるときに限り混合気
層の切換を実行する手段とを含む請求項1、4または5
に記載の内燃機関の制御装置。6. A means for controlling the switching of the air-fuel mixture to determine whether the operating condition at the time of the switching is in a region where stable combustion can be performed by any of the air-fuel mixtures while maintaining the same torque. Means for switching the gas mixture only when in the stable combustion region.
3. The control device for an internal combustion engine according to claim 1.
的に燃料を噴射する燃料噴射弁と、この燃料噴射弁の噴
射タイミングを吸気行程と圧縮行程との間で切換える手
段とを含む請求項1〜6のいずれか一つに記載の内燃機
関の制御装置。7. A fuel supply system comprising: a fuel injection valve for directly injecting fuel into a combustion chamber; and means for switching the injection timing of the fuel injection valve between an intake stroke and a compression stroke. The control device for an internal combustion engine according to any one of claims 1 to 6, including:
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20192796A JP3748629B2 (en) | 1996-07-31 | 1996-07-31 | Control device for internal combustion engine |
KR1019970036413A KR100209176B1 (en) | 1996-07-31 | 1997-07-31 | Engine combustion controller |
US08/903,952 US6012435A (en) | 1996-07-31 | 1997-07-31 | Engine combustion controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20192796A JP3748629B2 (en) | 1996-07-31 | 1996-07-31 | Control device for internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1047172A true JPH1047172A (en) | 1998-02-17 |
JP3748629B2 JP3748629B2 (en) | 2006-02-22 |
Family
ID=16449107
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20192796A Expired - Fee Related JP3748629B2 (en) | 1996-07-31 | 1996-07-31 | Control device for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3748629B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999001657A1 (en) * | 1997-07-04 | 1999-01-14 | Robert Bosch Gmbh | Method for operating an internal combustion engine, especially of an automobile |
JP2010144531A (en) * | 2008-12-16 | 2010-07-01 | Honda Motor Co Ltd | Evaporation fuel processing device and control method therefor |
US8770175B2 (en) | 2008-11-28 | 2014-07-08 | Honda Motor Co., Ltd. | Evaporation fuel processing system and purging method therefor |
-
1996
- 1996-07-31 JP JP20192796A patent/JP3748629B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999001657A1 (en) * | 1997-07-04 | 1999-01-14 | Robert Bosch Gmbh | Method for operating an internal combustion engine, especially of an automobile |
US6148802A (en) * | 1997-07-04 | 2000-11-21 | Robert Bosch Gmbh | Method for operating an internal combustion engine, especially of an automobile |
US8770175B2 (en) | 2008-11-28 | 2014-07-08 | Honda Motor Co., Ltd. | Evaporation fuel processing system and purging method therefor |
JP2010144531A (en) * | 2008-12-16 | 2010-07-01 | Honda Motor Co Ltd | Evaporation fuel processing device and control method therefor |
Also Published As
Publication number | Publication date |
---|---|
JP3748629B2 (en) | 2006-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3211677B2 (en) | Ignition timing control system for in-cylinder injection internal combustion engine | |
JP4063197B2 (en) | Injection control device for internal combustion engine | |
US20070039598A1 (en) | Control of lean burn engine using exhaust gas recirculation | |
JP2008157044A (en) | Control device of internal combustion engine | |
JPH11280568A (en) | Evaporation fuel concentration detecting device for lean combustion internal combustion engine and its applied device | |
JP3503479B2 (en) | Evaporative fuel treatment system for lean burn internal combustion engines | |
KR100306186B1 (en) | Gasoline vapor purging system of interal combustion engine | |
JP4470838B2 (en) | Control device for hydrogen engine | |
US6363908B1 (en) | Method for ensuring combustion of evaporative fuel in a stratified charge engine using multiple fuel injection pulses | |
JP2001355523A (en) | Internal combustion engine | |
US6351942B1 (en) | Control system for a direct injection engine of spark ignition type | |
JP4438715B2 (en) | Hydrogen engine fuel control system | |
JPH1047172A (en) | Control device of internal combustion engine | |
JP3846481B2 (en) | In-cylinder injection internal combustion engine control device | |
JPH11132083A (en) | Cylinder injection type fuel controller for internal combustion engine | |
JP2001263126A (en) | Internal combustion engine | |
JP3278225B2 (en) | Gas fuel engine | |
JP3562241B2 (en) | Control device for internal combustion engine | |
JP3955142B2 (en) | Evaporative purge control method for internal combustion engine | |
JP2012077713A (en) | Multi-cylinder internal combustion engine control device | |
JP3835975B2 (en) | In-cylinder injection internal combustion engine control device | |
JPH1018890A (en) | Electrically controlled fuel injection device of internal combustion engine | |
JP3106823B2 (en) | Evaporative fuel processor for engine | |
JPH1054310A (en) | Intake control device for internal combustion engine | |
JP2915255B2 (en) | Air-fuel ratio control device for gas engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20040409 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051129 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091209 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |