JPH1018890A - Electrically controlled fuel injection device of internal combustion engine - Google Patents

Electrically controlled fuel injection device of internal combustion engine

Info

Publication number
JPH1018890A
JPH1018890A JP17048496A JP17048496A JPH1018890A JP H1018890 A JPH1018890 A JP H1018890A JP 17048496 A JP17048496 A JP 17048496A JP 17048496 A JP17048496 A JP 17048496A JP H1018890 A JPH1018890 A JP H1018890A
Authority
JP
Japan
Prior art keywords
fuel
fuel ratio
pulse width
air
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17048496A
Other languages
Japanese (ja)
Inventor
Noriyuki Abe
典之 阿部
Toru Kitayama
亨 北山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Unisia Jecs Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unisia Jecs Corp filed Critical Unisia Jecs Corp
Priority to JP17048496A priority Critical patent/JPH1018890A/en
Publication of JPH1018890A publication Critical patent/JPH1018890A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)

Abstract

PROBLEM TO BE SOLVED: To avoid the decrease of an injection pulse width till the accuracy of quantity measurement in a fuel injection valve becomes low caused by a canister purge in a direct injection engine. SOLUTION: While a basic injection pulse width TP corresponding to a target air-fuel ratio is calculated (S1), the basic injection pulse width TP is corrected so as to suppress richness in an air-fuel ratio caused by a canister purge and then a final injection pulse width Ti (S2) is set. During injection control under a relatively lean target air-fuel ratio condition at which injection is performed in a compression stroke (S5) and at the time when the injection pulse width Ti become smaller than a minimum pulse width A (S4), the target air-fuel ratio is forcedly corrected to a relatively rich air-fuel ratio at which the injection is performed in an intake stroke (S6).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は内燃機関の電子制御
燃料噴射装置に関し、詳しくは、噴射パルス幅(開弁時
間)によって燃料噴射弁による燃料噴射量を制御するよ
う構成された電子制御燃料噴射装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electronically controlled fuel injection device for an internal combustion engine, and more particularly to an electronically controlled fuel injection device configured to control the amount of fuel injected by a fuel injection valve by an injection pulse width (valve opening time). Related to the device.

【0002】[0002]

【従来の技術】従来から、機関の運転条件に応じて演算
された噴射パルス幅に応じて燃料噴射弁を開駆動させる
ことで、前記噴射パルス幅に比例した量の燃料を機関に
供給させるよう構成された電子制御燃料噴射装置が知ら
れている。また、上記のように噴射パルス幅により燃料
量を制御する構成であって、かつ、各気筒の燃焼室内に
直接燃料を噴射するよう構成された直噴式ガソリン機関
が知られている。
2. Description of the Related Art Conventionally, a fuel injection valve is driven to open in accordance with an injection pulse width calculated in accordance with operating conditions of an engine, so that an amount of fuel proportional to the injection pulse width is supplied to the engine. A configured electronically controlled fuel injection device is known. Further, there is known a direct-injection gasoline engine which is configured to control the fuel amount by the injection pulse width as described above and configured to inject fuel directly into the combustion chamber of each cylinder.

【0003】前記直噴式ガソリン機関では、例えば圧縮
行程後期に燃料を噴射させることで、燃料の分散を抑え
て点火栓近傍に着火に充分な濃い混合気を形成させるこ
とができ、かかる層状給気によって希薄な空燃比(例え
ば空燃比=40)の混合気であっても安定燃焼を行なわせ
ることができる(特開昭60−30420号公報等参
照)。また、かかる直噴式ガソリン機関においても、出
力が必要とされる運転条件では、吸気行程噴射によって
比較的濃い均質な混合気を形成させて出力が確保できる
ようにしている。
In the direct-injection gasoline engine, for example, by injecting fuel in the latter stage of the compression stroke, it is possible to suppress the dispersion of the fuel and form a rich mixture sufficient for ignition near the spark plug. Accordingly, stable combustion can be performed even with a mixture having a lean air-fuel ratio (for example, air-fuel ratio = 40) (see Japanese Patent Application Laid-Open No. Sho 60-30420). Also, in such a direct injection gasoline engine, under operating conditions that require output, a relatively rich and homogeneous air-fuel mixture is formed by the intake stroke injection so that the output can be secured.

【0004】[0004]

【発明が解決しようとする課題】ところで、燃料タンク
から発生した蒸発燃料をキャニスタに吸着捕集し、該キ
ャニスタに吸着捕集した蒸発燃料を吸気通路にパージさ
せて燃焼させる蒸発燃料処理装置が備えられる場合に
は、前記キャニスタパージによって機関に供給される燃
料によって空燃比がリッチ化して目標空燃比からずれる
ため、燃料噴射弁から噴射される燃料量、即ち、噴射パ
ルス幅をより短く修正して目標空燃比を維持させる必要
がある。
By the way, there is provided an evaporative fuel processing device which adsorbs and collects evaporative fuel generated from a fuel tank in a canister, purges the evaporative fuel adsorbed and collected in the canister into an intake passage and burns the evaporative fuel. In this case, the fuel supplied to the engine by the canister purge enriches the air-fuel ratio and deviates from the target air-fuel ratio.Therefore, the fuel amount injected from the fuel injection valve, that is, the injection pulse width is corrected to be shorter. It is necessary to maintain the target air-fuel ratio.

【0005】ところが、前記直噴式ガソリン機関におい
て、圧縮行程での噴射による希薄燃焼を行わせる場合に
は、高い噴射圧力が要求されるため、単位時間当たりの
噴射量が多く、然も、目標空燃比が40程度の希薄空燃比
であるから、噴射パルス幅の要求が元々短い。このた
め、アイドル状態等の要求燃料量が少ない条件での希薄
燃焼状態で、前記キャニスタパージが行われると、目標
空燃比を維持させるための噴射パルス幅の減少修正によ
って、燃料計量の直線性が確保できなくなるまで噴射パ
ルス幅を短くさせる必要性が生じる場合があった(図6
参照)。
[0005] However, in the direct injection gasoline engine, when performing lean combustion by injection in the compression stroke, a high injection pressure is required, so that the amount of injection per unit time is large, and the target idle Since the fuel-air ratio is a lean air-fuel ratio of about 40, the requirement for the injection pulse width is originally short. For this reason, when the canister purge is performed in a lean burn state under a condition where the required fuel amount is small, such as an idle state, the linearity of the fuel measurement is reduced by correcting the decrease of the injection pulse width to maintain the target air-fuel ratio. In some cases, it is necessary to shorten the injection pulse width until it is no longer possible to secure the width (FIG. 6).
reference).

【0006】前記直線性とは、噴射パルス幅に対して燃
料量が比例的に変化することを示し、直線性が確保でき
ないとは、噴射パルス幅に対する燃料の計量精度がばら
つくことを示す(図5参照)。従って、前記キャニスタ
パージに伴う噴射パルス幅の減少修正によって直線性が
確保できなくなると、噴射量がばらついて空燃比の変動
が発生し、運転性,排気性状を悪化させる惧れがあっ
た。
The linearity indicates that the fuel amount changes in proportion to the injection pulse width, and that the linearity cannot be ensured indicates that the measurement accuracy of the fuel with respect to the injection pulse width varies. 5). Therefore, if the linearity cannot be ensured due to the correction of the decrease of the injection pulse width due to the canister purge, the injection amount varies and the air-fuel ratio fluctuates, and there is a concern that the operability and the exhaust characteristics are deteriorated.

【0007】本発明は上記問題点に鑑みなされたもので
あり、キャニスタパージによって噴射パルス幅を減少さ
せる要求が発生しても、燃料計量の直線性が確保できる
範囲内で噴射パルス幅を確実に制御できるようにし、以
て、噴射量のばらつきによる空燃比変動の発生を回避で
きるようにすることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and even if a demand for reducing the injection pulse width due to canister purging is generated, the injection pulse width can be reliably maintained within a range where the linearity of fuel measurement can be ensured. It is an object of the present invention to control the air-fuel ratio and thereby to prevent the occurrence of air-fuel ratio fluctuation due to the variation of the injection amount.

【0008】[0008]

【課題を解決するための手段】そのため、請求項1記載
の発明は、図1に示すように構成される。図1におい
て、基本噴射パルス幅演算手段は、機関運転条件に基づ
いて目標空燃比相当の基本噴射パルス幅を演算する。ま
た、パルス幅補正手段は、燃焼混合気の空燃比を目標空
燃比に維持すべく、前記演算された基本噴射パルス幅を
補正して最終的な噴射パルス幅を設定する。
Therefore, the invention according to claim 1 is configured as shown in FIG. In FIG. 1, a basic injection pulse width calculating means calculates a basic injection pulse width corresponding to a target air-fuel ratio based on engine operating conditions. The pulse width correction means corrects the calculated basic injection pulse width to set a final injection pulse width so as to maintain the air-fuel ratio of the combustion mixture at the target air-fuel ratio.

【0009】そして、噴射制御手段は、前記最終的な噴
射パルス幅に基づいて燃料噴射弁を制御する。一方、目
標空燃比修正手段は、前記最終的な噴射パルス幅が、予
め設定された最小パルス幅を下回るようになったとき
に、前記目標空燃比を強制的によりリッチ側に修正す
る。
[0009] The injection control means controls the fuel injection valve based on the final injection pulse width. On the other hand, the target air-fuel ratio correcting means forcibly corrects the target air-fuel ratio to a richer side when the final injection pulse width falls below a preset minimum pulse width.

【0010】即ち、噴射パルス幅が、直線性を維持でき
る最小パルス幅(図5に示すA)よりも短くなるような
ときには、目標空燃比をリッチ修正することで、目標空
燃比を維持できる噴射パルス幅を増大させ、直線性が確
保できる範囲内で噴射パルス幅を制御できるようにする
ものである。請求項2記載の発明では、前記パルス幅補
正手段が、排気成分濃度に基づいて機関の燃焼混合気の
空燃比を検出する空燃比検出手段と、該空燃比検出手段
で検出される実際の空燃比が目標空燃比に近づくよう
に、前記基本噴射パルス幅をフィードバック補正する空
燃比フィードバック手段と、を含んで構成されるものと
した。
That is, when the injection pulse width is shorter than the minimum pulse width (A shown in FIG. 5) capable of maintaining the linearity, the target air-fuel ratio is richly corrected to thereby maintain the target air-fuel ratio. The pulse width is increased so that the injection pulse width can be controlled within a range where linearity can be ensured. According to the second aspect of the present invention, the pulse width correction means detects the air-fuel ratio of the combustion mixture of the engine based on the exhaust gas component concentration, and the actual air detected by the air-fuel ratio detection means. Air-fuel ratio feedback means for feedback-correcting the basic injection pulse width so that the fuel ratio approaches the target air-fuel ratio.

【0011】かかる構成によると、例えばキャニスタパ
ージによって空燃比が目標空燃比よりもリッチ化する
と、かかる空燃比のリッチ化が前記空燃比検出手段で検
出され、目標空燃比を維持するように噴射パルス幅がフ
ィードバック補正されることになる。請求項3記載の発
明では、燃料タンクから発生した蒸発燃料をキャニスタ
に吸着捕集し、該キャニスタに吸着捕集した蒸発燃料を
吸気通路にパージする蒸発燃料処理装置を備え、前記パ
ルス幅補正手段が、前記蒸発燃料処理装置による蒸発燃
料のパージ制御に基づいて前記基本噴射パルス幅を補正
する構成とした。
According to this configuration, when the air-fuel ratio becomes richer than the target air-fuel ratio due to, for example, canister purging, the air-fuel ratio enrichment is detected by the air-fuel ratio detecting means, and the injection pulse is maintained so as to maintain the target air-fuel ratio. The width will be feedback corrected. According to the third aspect of the present invention, there is provided an evaporative fuel processing device which adsorbs and collects the evaporative fuel generated from the fuel tank in the canister and purges the evaporative fuel which is adsorbed and collected in the canister into the intake passage. However, the basic injection pulse width is corrected based on the vaporized fuel purge control by the vaporized fuel processing device.

【0012】かかる構成では、キャニスタパージによる
空燃比のリッチ化を見込んで、噴射パルス幅をフィード
ホワード補正することになる。請求項4記載の発明で
は、上記蒸発燃料のパージ制御に基づいた基本噴射パル
ス幅の補正制御において、前記パルス幅補正手段が、前
記蒸発燃料処理装置におけるパージ状態において、機関
の温度とパージ開始からの経過時間との少なくとも一方
に基づいて、前記基本噴射パルス幅の補正度合いを変化
させる構成とした。
In such a configuration, the injection pulse width is subjected to feedforward correction in anticipation of enrichment of the air-fuel ratio due to the canister purge. According to a fourth aspect of the present invention, in the correction control of the basic injection pulse width based on the purge control of the evaporated fuel, the pulse width correcting means may be configured to control the temperature of the engine and the start of the purge in the purge state of the evaporated fuel processing apparatus. The correction degree of the basic injection pulse width is changed based on at least one of the elapsed time and the elapsed time.

【0013】即ち、機関温度やパージ開始からの経過時
間によってキャニスタパージによる空燃比への影響度合
いが異なるため、かかる影響度の変化に対応して基本噴
射パルス幅を補正する構成とした。請求項5記載の発明
では、前記燃料噴射弁が燃焼室内に直接燃料を噴射供給
する構成である一方、前記目標空燃比が、機関の運転領
域毎に設定される構成であって、かつ、吸気行程で燃料
噴射を行わせる目標空燃比と、該目標空燃比よりもリー
ンであって圧縮行程で燃料噴射を行わせる目標空燃比と
に分けられ、前記目標空燃比修正手段が、前記圧縮行程
で燃料噴射を行わせる目標空燃比から前記吸気行程で燃
料噴射を行わせる目標空燃比へ強制的な変更によって、
目標空燃比を強制的によりリッチ側に修正する構成とし
た。
That is, since the degree of influence of the canister purge on the air-fuel ratio varies depending on the engine temperature and the elapsed time from the start of the purge, the basic injection pulse width is corrected in accordance with such a change in the degree of influence. In the invention described in claim 5, the fuel injection valve is configured to directly inject fuel into the combustion chamber, while the target air-fuel ratio is set for each operating region of the engine, and A target air-fuel ratio for performing fuel injection in a stroke, and a target air-fuel ratio leaner than the target air-fuel ratio and performing fuel injection in a compression stroke. By forcibly changing the target air-fuel ratio for performing the fuel injection from the target air-fuel ratio for performing the fuel injection to the target air-fuel ratio for performing the fuel injection in the intake stroke,
The target air-fuel ratio is forcibly corrected to the rich side.

【0014】所謂直噴式機関であって、圧縮行程での燃
料噴射による層状給気によって例えば空燃比40程度の希
薄燃焼を実現する一方、出力が要求される運転条件では
吸気行程噴射によって混合気の均質化を図るよう構成さ
れるものにおいて、圧縮行程で燃料噴射を行わせる希薄
燃焼中に、噴射パルス幅が最小パルス幅を下回るように
なったときには、吸気行程で燃料噴射を行わせる比較的
リッチな目標空燃比に強制的に切換えて、前記最小パル
ス幅以上の噴射パルス幅で燃料噴射制御を行える条件を
強制的に作り出すものである。
In a so-called direct injection type engine, lean combustion with an air-fuel ratio of, for example, about 40 is realized by stratified charge by fuel injection in a compression stroke, while in an operating condition requiring an output, air-fuel mixture is injected by intake stroke injection. When the injection pulse width becomes smaller than the minimum pulse width during lean burn in which fuel injection is performed in the compression stroke, a relatively rich fuel injection is performed in the intake stroke. Thus, the conditions for performing the fuel injection control with the injection pulse width equal to or larger than the minimum pulse width are forcibly created by forcibly switching to the target air-fuel ratio.

【0015】尚、圧縮行程での燃料噴射と吸気行程での
燃料噴射とで、通常、燃料噴射弁に対する燃料の供給圧
を切り換える場合には、前記強制的な目標空燃比のリッ
チ補正に伴って吸気行程噴射に切り換える場合には、通
常に運転条件の変化に伴って目標空燃比を切り換える場
合と同様に、燃料圧力も切り換えることが好ましい。請
求項6記載の発明では、燃料タンクから発生した蒸発燃
料をキャニスタに吸着捕集し、該キャニスタに吸着捕集
した蒸発燃料を吸気通路にパージする蒸発燃料処理装置
を備える一方、前記目標空燃比修正手段によって目標空
燃比が強制的によりリッチ側に修正されたときに、前記
蒸発燃料処理装置におけるパージエア量を増大修正させ
るパージエア量修正手段を設ける構成とした。
In general, when the fuel supply pressure to the fuel injection valve is switched between the fuel injection in the compression stroke and the fuel injection in the intake stroke, the forcible rich correction of the target air-fuel ratio is performed. When switching to the intake stroke injection, it is preferable to switch the fuel pressure as in the case where the target air-fuel ratio is normally switched with a change in the operating conditions. According to a sixth aspect of the present invention, there is provided an evaporative fuel processing device for adsorbing and collecting evaporative fuel generated from a fuel tank in a canister and purging the evaporative fuel adsorbed and collected in the canister into an intake passage, while the target air-fuel ratio A purge air amount correcting means is provided for increasing and correcting the purge air amount in the evaporated fuel processing device when the target air-fuel ratio is forcibly corrected to the rich side by the correcting means.

【0016】キャニスタパージに伴って目標空燃比を維
持するために噴射パルス幅を最小パルス幅以下にまで小
さくする必要が生じ、目標空燃比をリッチ側に修正した
場合には、パージエア量を増やしても、最小パルス幅以
上での噴射制御を行わせることが可能である場合がある
ので、パージエア量を増やしてキャニスタパージの促進
を図るようにした。
In order to maintain the target air-fuel ratio with the canister purging, it is necessary to reduce the injection pulse width to the minimum pulse width or less. When the target air-fuel ratio is corrected to a rich side, the purge air amount is increased. In some cases, it is possible to perform the injection control with the minimum pulse width or more. Therefore, the purge air amount is increased to promote the canister purge.

【0017】[0017]

【発明の効果】請求項1記載の発明によると、噴射パル
ス幅が、燃料計量の直線性を維持できる最小パルス幅以
下になることを回避できるので、噴射量のばらつきを回
避して、空燃比変動の発生を未然に防止し、運転性,排
気性状を良好に保つことができるという効果がある。
According to the first aspect of the present invention, it is possible to prevent the injection pulse width from being equal to or less than the minimum pulse width capable of maintaining the linearity of the fuel metering. This has the effect of preventing the occurrence of fluctuations and maintaining good operability and exhaust properties.

【0018】請求項2記載の発明によると、例えばキャ
ニスタパージなどが行われても、噴射量のばらつきを発
生させることなく、実際の空燃比を目標空燃比に高精度
に維持できるという効果がある。請求項3記載の発明に
よると、キャニスタパージによる空燃比ずれの発生を抑
止しつつ、噴射量のばらつきが発生することを回避でき
るという効果がある。
According to the second aspect of the present invention, there is an effect that the actual air-fuel ratio can be maintained at the target air-fuel ratio with high accuracy without causing a variation in the injection amount even when, for example, canister purging is performed. . According to the third aspect of the invention, there is an effect that it is possible to prevent the occurrence of the variation in the injection amount while suppressing the occurrence of the air-fuel ratio deviation due to the canister purge.

【0019】請求項4記載の発明によると、キャニスタ
パージの空燃比への影響度合いが、機関温度やパージ開
始からの経過時間によって変化することに対応して、基
本噴射パルス幅を補正することができ、以て、キャニス
タパージによる空燃比ずれの発生を精度良く抑制できる
という効果がある。請求項5記載の発明によると、圧縮
行程での噴射による希薄燃焼と、吸気行程での噴射によ
る出力空燃比での燃焼とが行われる直噴式機関におい
て、圧縮行程噴射におけるリーン目標空燃比では最小パ
ルス幅を下回るようなときに、吸気行程噴射による比較
的リッチな目標空燃比の下での噴射パルス制御に切り換
えるので、噴射パルス幅が最小パルス幅を下回ることに
よる燃料噴射量のばらつきを確実に回避できるという効
果がある。
According to the fourth aspect of the invention, the basic injection pulse width can be corrected in response to the degree of influence of the canister purge on the air-fuel ratio depending on the engine temperature and the elapsed time from the start of the purge. Accordingly, there is an effect that the occurrence of the air-fuel ratio deviation due to the canister purge can be accurately suppressed. According to the fifth aspect of the present invention, in the direct injection engine in which the lean combustion by the injection in the compression stroke and the combustion at the output air-fuel ratio by the injection in the intake stroke are performed, the lean target air-fuel ratio in the compression stroke injection is minimum. When the pulse width is smaller than the pulse width, the control is switched to the injection pulse control under the relatively rich target air-fuel ratio by the intake stroke injection, so that the variation in the fuel injection amount due to the injection pulse width being smaller than the minimum pulse width is ensured. There is an effect that it can be avoided.

【0020】請求項6記載の発明によると、目標空燃比
のリッチ修正に伴ってパージエア量を増大させるように
するので、噴射量のばらつき発生を回避しつつ、キャニ
スタパージを促進させることができるという効果があ
る。
According to the present invention, since the purge air amount is increased in accordance with the rich correction of the target air-fuel ratio, it is possible to promote canister purging while avoiding the occurrence of variation in the injection amount. effective.

【0021】[0021]

【発明の実施の形態】以下、本発明の実施の形態を図に
基づいて説明する。実施形態のシステム構成を図2に示
す。内燃機関1の各燃焼室に臨ませて燃料噴射弁2をそ
れぞれ設けてある。この燃料噴射弁2は、噴射パルス信
号によって間欠的に開駆動し、開弁時間(噴射パルス
幅)に比例する量の燃料(ガソリン)を直接燃焼室内に
噴射供給するものであり、該燃焼室内への直接噴射方式
により層状燃焼を行なわせ、希薄燃焼を可能としてい
る。即ち、機関1は、所謂直噴式ガソリン機関である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 shows a system configuration of the embodiment. A fuel injection valve 2 is provided to face each combustion chamber of the internal combustion engine 1. The fuel injection valve 2 is opened intermittently by an injection pulse signal, and directly injects fuel (gasoline) in an amount proportional to the valve opening time (injection pulse width) into the combustion chamber. The stratified combustion is performed by a direct injection method to the fuel, thereby enabling lean combustion. That is, the engine 1 is a so-called direct injection gasoline engine.

【0022】前記機関1には、吸気通路3に介装された
スロットル弁4で調整された空気が吸引され、前記燃料
噴射弁2から噴射された燃料とによって混合気が形成さ
れる。前記混合気は、点火栓5による火花点火によって
着火燃焼し、燃焼排気は、排気通路6を介して排出され
る。機関1には、燃料タンク9の蒸発燃料処理装置10が
備えられている。前記蒸発燃料処理装置10は、キャニス
タ11内に充填された活性炭などの吸着剤に、燃料タンク
9内で発生した蒸発燃料を吸着捕集させ、該吸着剤に吸
着された燃料をパージし、該パージエアをパージ通路12
を介してスロットル弁4下流側の吸気通路3に供給する
ものである。
In the engine 1, air adjusted by a throttle valve 4 interposed in an intake passage 3 is sucked, and an air-fuel mixture is formed by the fuel injected from the fuel injection valve 2. The air-fuel mixture is ignited and burned by spark ignition by a spark plug 5, and the combustion exhaust is discharged through an exhaust passage 6. The engine 1 is provided with a fuel vapor treatment device 10 for a fuel tank 9. The evaporative fuel processing apparatus 10 causes an adsorbent such as activated carbon filled in the canister 11 to adsorb and collect the evaporative fuel generated in the fuel tank 9 and purges the fuel adsorbed by the adsorbent. Purge passage 12 for purge air
Is supplied to the intake passage 3 on the downstream side of the throttle valve 4 through the throttle valve 4.

【0023】前記キャニスタ11には、燃料タンク9内の
圧力が所定以上になったときに開くチェックバルブ13が
介装された蒸発燃料通路14を介して燃料タンク9内の蒸
発燃料が導入されるようになっており、また、前記パー
ジ通路12には、パージバルブ15が介装されている。前記
キャニスタ11,パージ通路12,チェックバルブ13,蒸発
燃料通路14,パージバルブ15によって蒸発燃料処理装置
が構成される。
The evaporative fuel in the fuel tank 9 is introduced into the canister 11 through an evaporative fuel passage 14 in which a check valve 13 which opens when the pressure in the fuel tank 9 becomes higher than a predetermined value. The purge passage 12 is provided with a purge valve 15. The canister 11, the purge passage 12, the check valve 13, the evaporated fuel passage 14, and the purge valve 15 constitute an evaporated fuel processing device.

【0024】前記燃料噴射弁2による燃料噴射,点火栓
5による点火時期を制御すると共に、前記蒸発燃料処理
装置10におけるキャニスタパージ(パージバルブ15の開
閉)を制御するコントロールユニット16は、マイクロコ
ンピュータを含んで構成され、後述する各種センサから
の信号に基づいて各種制御を行なう。前記各種センサと
しては、以下のようなものが設けられている。
The control unit 16 for controlling the fuel injection by the fuel injection valve 2 and the ignition timing by the spark plug 5 and controlling the canister purge (opening and closing of the purge valve 15) in the evaporative fuel treatment device 10 includes a microcomputer. And performs various controls based on signals from various sensors described later. The following are provided as the various sensors.

【0025】エアフローメータ17は、スロットル弁4の
上流側で外気からの吸入空気量を検出する。クランク角
センサ18は、単位クランク角毎の単位角度信号及び基準
角度信号を発生する。ここで、前記単位角度信号の単位
時間当りの発生数を計測することにより、或いは、前記
基準角度信号の発生周期を計測することにより、機関回
転速度Neを検出できる。
The air flow meter 17 detects the amount of intake air from outside air on the upstream side of the throttle valve 4. The crank angle sensor 18 generates a unit angle signal and a reference angle signal for each unit crank angle. Here, the engine rotation speed Ne can be detected by measuring the number of occurrences of the unit angle signal per unit time, or by measuring the generation cycle of the reference angle signal.

【0026】水温センサ19は、機関1の冷却水温度Tw
を検出する。空燃比センサ20は、燃焼混合気の空燃比と
相関がある排気中の酸素濃度を検出して空燃比を検出す
るセンサであり、空燃比検出手段に相当する。前記コン
トロールユニット16は、エアフローメータ17で検出され
る吸入空気量Qと機関回転速度Neとに基づいて目標空
燃比相当の基本噴射パルス幅Tpを演算する一方(基本
噴射パルス幅演算手段)、冷却水温度等に応じた各種補
正係数CO,空燃比センサ20の検出結果と目標空燃比と
の比較に基づき設定される空燃比フィードバック補正係
数α(空燃比フィードバック手段),バッテリ電圧に応
じた電圧補正分Tsなどを演算し、前記基本噴射パルス
幅Tpを前記各種補正係数CO,空燃比フィードバック
補正係数α,電圧補正分Tsなどで補正して最終的な噴
射パルス幅Tiを演算する(パルス幅補正手段)。そし
て、この噴射パルス幅Tiの噴射パルス信号を、前記燃
料噴射弁2に対して所定タイミングで出力して、噴射パ
ルス幅Tiに相当する燃料を燃料噴射弁2から燃焼室内
に噴射させる(噴射制御手段)。
The water temperature sensor 19 detects the cooling water temperature Tw of the engine 1.
Is detected. The air-fuel ratio sensor 20 is a sensor that detects the oxygen concentration in the exhaust gas that is correlated with the air-fuel ratio of the combustion mixture to detect the air-fuel ratio, and corresponds to an air-fuel ratio detecting unit. The control unit 16 calculates the basic injection pulse width Tp corresponding to the target air-fuel ratio based on the intake air amount Q detected by the air flow meter 17 and the engine rotation speed Ne (basic injection pulse width calculating means), while cooling. Various correction coefficients CO according to the water temperature, etc., an air-fuel ratio feedback correction coefficient α (air-fuel ratio feedback means) set based on a comparison between the detection result of the air-fuel ratio sensor 20 and the target air-fuel ratio, and a voltage correction according to the battery voltage The final injection pulse width Ti is calculated by correcting the basic injection pulse width Tp with the various correction coefficients CO, the air-fuel ratio feedback correction coefficient α, and the voltage correction Ts (pulse width correction). means). Then, an injection pulse signal having this injection pulse width Ti is output to the fuel injection valve 2 at a predetermined timing, and fuel corresponding to the injection pulse width Ti is injected from the fuel injection valve 2 into the combustion chamber (injection control). means).

【0027】前記空燃比センサ20を用いて空燃比フィー
ドバック補正によって、キャニスタパージに伴う空燃比
のリッチ化を抑止して、実際の空燃比を目標空燃比付近
に保持させることが可能である(空燃比フィードバック
手段)。尚、キャニスタパージに伴う空燃比のリッチ化
を抑止すべく、フィードホワード補正によって基本噴射
パルス幅Tpを補正する構成であっても良く、例えばキ
ャニスタパージが行われるときに、所定の補正係数によ
って基本噴射パルス幅Tpを減少補正する構成とすれば
良く、好ましくは、図3又は図4に示すように、キャニ
スタパージの開始直後ほど、或いは、機関温度を代表す
る水温が低いときほど(換言すれば始動直後ほど)、基
本噴射パルス幅をより大きく減少補正する構成とすると
良い。
The air-fuel ratio feedback correction using the air-fuel ratio sensor 20 makes it possible to suppress the air-fuel ratio from being enriched due to the canister purge and to maintain the actual air-fuel ratio near the target air-fuel ratio (air). Fuel ratio feedback means). In order to suppress the air-fuel ratio from being enriched due to the canister purge, the basic injection pulse width Tp may be corrected by feedforward correction. For example, when the canister purge is performed, the basic injection pulse width Tp is corrected by a predetermined correction coefficient. The configuration may be such that the injection pulse width Tp is reduced and corrected. Preferably, as shown in FIG. 3 or FIG. 4, as soon as the canister purge starts, or as the water temperature representing the engine temperature becomes lower (in other words, as shown in FIG. 3 or FIG. 4). It is preferable that the basic injection pulse width is corrected to be reduced to a greater extent immediately after the engine is started.

【0028】ここで、前記目標空燃比は、予め機関負荷
と回転速度とによって区分される運転領域毎に記憶され
ており、低負荷,低回転側では、目標空燃比を40程度の
リーン空燃比に設定すると共に、該リーン目標空燃比で
の燃焼を可能とすべく噴射タイミングを圧縮行程中とし
て、点火栓近傍に着火に充分な濃い混合気を形成させる
べく層状給気を行わせるよう設定されている。また、高
負荷,高回転側では、目標空燃比を着火に充分な比較的
濃い空燃比(以下、出力空燃比という)に設定すると共
に、噴射タイミングを吸気行程中として燃焼室内で混合
気が均質化するよう設定されている。
Here, the target air-fuel ratio is stored in advance for each operating region divided by the engine load and the rotation speed. On the low load and low rotation side, the target air-fuel ratio is set to about 40 lean air-fuel ratio. At the same time, the injection timing is set during the compression stroke to enable combustion at the lean target air-fuel ratio, and the stratified supply is performed near the spark plug to form a rich mixture sufficient for ignition. ing. On the high-load, high-speed side, the target air-fuel ratio is set to a relatively rich air-fuel ratio (hereinafter referred to as the output air-fuel ratio) sufficient for ignition, and the mixture is homogeneous in the combustion chamber with the injection timing during the intake stroke. Is set to

【0029】尚、噴射タイミングの切換えに伴って、燃
料噴射弁2に供給される燃料の圧力を切り換える構成で
あっても良く、この場合、目標空燃比のリーン空燃比と
出力空燃比との間の切換えは、噴射タイミングの切換え
と燃料圧力の切換えとの双方を伴うことになる。ところ
で、前記燃料噴射弁2は、供給される燃料圧力の調整に
よって、噴射パルス幅(開弁時間)と実際の噴射量とが
比例関係になるよう構成されているが、図5に示すよう
に、所定の最小パルス幅A以下になると、噴射量と噴射
パルス幅との比例関係、即ち、直線性が崩れ、噴射パル
ス幅に対して一定の噴射量が得られなくなり、これによ
って空燃比変動を生じることになる。
The pressure of the fuel supplied to the fuel injection valve 2 may be switched according to the switching of the injection timing. In this case, the target air-fuel ratio between the lean air-fuel ratio and the output air-fuel ratio may be changed. Is accompanied by both the switching of the injection timing and the switching of the fuel pressure. By the way, the fuel injection valve 2 is configured so that the injection pulse width (valve opening time) and the actual injection amount are in a proportional relationship by adjusting the supplied fuel pressure, as shown in FIG. When the pulse width becomes equal to or less than the predetermined minimum pulse width A, the proportional relationship between the injection amount and the injection pulse width, that is, the linearity is broken, and a constant injection amount cannot be obtained with respect to the injection pulse width. Will happen.

【0030】特に、本実施形態における直噴式機関で、
目標空燃比を40程度のリーン空燃比としている状態にお
いて、キャニスタパージが行われ、かつ、アイドル運転
等の吸入空気量の少ない運転条件であるときには、噴射
パルス幅が前記最小パルス幅Aを下回るようになる惧れ
がある(図6参照)。そこで、コントロールユニット16
は、図7のフローチャートに示すようにして、噴射パル
ス幅Tiが前記最小パルス幅Aを下回ることがないよう
に制御する。
In particular, in the direct injection type engine according to this embodiment,
In a state where the target air-fuel ratio is set to a lean air-fuel ratio of about 40, when the canister purge is performed and the operation conditions such as the idling operation and the amount of intake air are small, the injection pulse width may be smaller than the minimum pulse width A. (See FIG. 6). Therefore, control unit 16
Controls the injection pulse width Ti so as not to fall below the minimum pulse width A as shown in the flowchart of FIG.

【0031】図7のフローチャートにおいて、まず、ス
テップ1(図中ではS1と記してある。以下同様)で
は、目標空燃比相当の基本噴射パルス幅Tpを演算する
(基本噴射パルス幅演算手段)。次のステップ2では、
前記各種補正係数CO,空燃比フィードバック補正係数
α,電圧補正分Tsなどによって前記基本噴射パルス幅
Tpを補正して最終的な噴射パルス幅Tiを演算する
(パルス幅補正手段)。尚、ここで、前記空燃比フィー
ドバック補正係数αによる補正に代えて、又は、補正係
数αによる補正と共に、前述したキャニスタパージに対
応するための噴射パルス幅のフィードホワード補正を実
行させるものとしても良い。
In the flowchart of FIG. 7, first, in step 1 (indicated as S1 in the figure, the same applies hereinafter), a basic injection pulse width Tp corresponding to the target air-fuel ratio is calculated (basic injection pulse width calculating means). In the next step 2,
The basic injection pulse width Tp is corrected by the various correction coefficients CO, the air-fuel ratio feedback correction coefficient α, the voltage correction Ts, and the like to calculate the final injection pulse width Ti (pulse width correction means). Here, instead of the correction by the air-fuel ratio feedback correction coefficient α, or together with the correction by the correction coefficient α, the feedforward correction of the injection pulse width for the above-described canister purge may be executed. .

【0032】ステップ3では、キャニスタパージの実行
中であるか否かを判別し、実行中であれば、ステップ4
で、前記最終的な噴射パルス幅Tiが前記最小パルス幅
A未満であるか否かを判別する。ステップ4で、最終的
な噴射パルス幅Tiが前記最小パルス幅A未満であると
判別されたときには、ステップ5へ進み、現在の目標空
燃比が、圧縮行程噴射を行わせるリーン空燃比であるか
否かを判別する。
In step 3, it is determined whether or not the canister purge is being executed.
Then, it is determined whether or not the final injection pulse width Ti is smaller than the minimum pulse width A. If it is determined in step 4 that the final injection pulse width Ti is smaller than the minimum pulse width A, the process proceeds to step 5 and determines whether the current target air-fuel ratio is a lean air-fuel ratio for performing the compression stroke injection. It is determined whether or not.

【0033】そして、キャニスタパージ中、噴射パルス
幅Ti<A、目標空燃比=リーン空燃比(圧縮行程噴射
の目標空燃比)であるときには、ステップ6へ進んで、
現在の運転条件としてはリーン空燃比を目標空燃比とし
て圧縮行程噴射を行わせるべき条件であっても、強制的
に目標空燃比を出力空燃比に切り換える処理を行う(目
標空燃比修正手段)。
If the injection pulse width Ti <A and the target air-fuel ratio = the lean air-fuel ratio (the target air-fuel ratio of the compression stroke injection) during the canister purge, the routine proceeds to step 6.
Even if the current operating condition is a condition in which the compression stroke injection is to be performed with the lean air-fuel ratio as the target air-fuel ratio, the processing for forcibly switching the target air-fuel ratio to the output air-fuel ratio is performed (target air-fuel ratio correcting means).

【0034】尚、前記ステップ6で目標空燃比をリーン
空燃比から出力空燃比に切り換えることに伴って、通常
に運転条件に基づいてリーン空燃比から出力空燃比に切
り換える場合と同様に、噴射タイミングも圧縮行程から
吸気行程に切り換えるものとし、更に、通常の目標空燃
比の切換え時に燃料圧力の切換えも行われる場合には、
前記ステップ6での目標空燃比の切換えに伴って燃料圧
力の切換えも行われるものとする。
When the target air-fuel ratio is switched from the lean air-fuel ratio to the output air-fuel ratio in step 6, the injection timing is normally changed in the same manner as when the lean air-fuel ratio is switched from the lean air-fuel ratio to the output air-fuel ratio based on the operating conditions. Is also switched from the compression stroke to the intake stroke, and further, when the fuel pressure is switched at the time of the normal switching of the target air-fuel ratio,
It is assumed that the switching of the fuel pressure is also performed along with the switching of the target air-fuel ratio in step 6.

【0035】上記のように目標空燃比を強制的によりリ
ッチ側に修正すれば、運転条件に変化がなくても、要求
される燃料量が増大し、これに伴って噴射パルス幅Ti
の要求が大きくなるから、前記最小パルス幅A以上のパ
ルス幅を与えて噴射を行わせることができるようになる
(図6参照)。従って、キャニスタパージに伴って噴射
パルス幅Tiが前記最小パルス幅A未満になって噴射量
のばらつきが発生することを回避できる。
If the target air-fuel ratio is forcibly corrected to the rich side as described above, the required fuel amount increases even if there is no change in the operating conditions, and the injection pulse width Ti
Therefore, the injection can be performed by giving a pulse width equal to or larger than the minimum pulse width A (see FIG. 6). Accordingly, it is possible to prevent the injection pulse width Ti from becoming smaller than the minimum pulse width A due to the canister purging, thereby preventing a variation in the injection amount.

【0036】尚、目標空燃比の切換えと共に、燃料圧力
が切換えられない構成の場合において、前記ステップ6
で目標空燃比をリーン空燃比から出力空燃比に切り換え
るときに、強制的に燃料圧力を低下させる構成としても
良い。この場合、目標空燃比をリッチ化させることで、
必要パルス幅が増大し、更に、燃料圧力の低下によって
も必要パルス幅が増大し(図5点線示参照)、噴射量ば
らつきが発生しない範囲で確実にパルス幅を制御するこ
とができるようになる。更に、出力空燃比で制御してい
る状態で、噴射パルス幅Tiが最小パルス幅Aを下回る
ようになったときには、燃料圧力を強制的に低下させる
ことで、必要パルス幅を増大させ、噴射量ばらつきが発
生しないパルス幅で燃料噴射を行なわせることが可能と
なる。
In the case where the fuel pressure is not switched together with the switching of the target air-fuel ratio, the above-mentioned step 6 is performed.
When the target air-fuel ratio is switched from the lean air-fuel ratio to the output air-fuel ratio, the fuel pressure may be forcibly reduced. In this case, by enriching the target air-fuel ratio,
The required pulse width increases, and the required pulse width also increases due to a decrease in fuel pressure (see the dotted line in FIG. 5), so that the pulse width can be reliably controlled within a range in which the injection amount variation does not occur. . Further, when the injection pulse width Ti becomes smaller than the minimum pulse width A while controlling the output air-fuel ratio, the required pulse width is increased by forcibly reducing the fuel pressure to increase the injection amount. Fuel injection can be performed with a pulse width that does not cause variation.

【0037】ステップ6で目標空燃比をリッチ側に修正
すると、次のステップ7では、前記パージバルブ15をデ
ューティ制御する場合の開弁デューティを強制的に増大
させ、パージエア量が増大し、キャニスタパージが促進
されるようにする(パージエア量修正手段)。前記目標
空燃比の強制的なリッチ修正によって、キャニスタパー
ジに伴う空燃比のリッチ化を吸収するための余裕代が大
きくなり、最小パルス幅Aを下回ることなく、増大させ
たパージエアによる空燃比のリッチ化を吸収できるよう
になるので、キャニスタパージを促進させることができ
るようにした。
When the target air-fuel ratio is corrected to the rich side in step 6, in step 7, the valve opening duty for duty control of the purge valve 15 is forcibly increased, the purge air amount increases, and the canister purge is reduced. It is promoted (purging air amount correcting means). Due to the forcible rich correction of the target air-fuel ratio, a margin for absorbing the air-fuel ratio enrichment caused by the canister purge is increased, and the air-fuel ratio is enriched by the increased purge air without falling below the minimum pulse width A. Therefore, the canister purge can be accelerated.

【0038】尚、上記のように、強制的に目標空燃比を
リッチ側に修正した後での、前記予め設定された目標空
燃比マップに従った目標空燃比設定への復帰は、例えば
以下のような条件になったときに行わせるものとする。 a.キャニスタパージの停止 b.空燃比フィードバック補正係数αの基準値付近への
復帰 c.キャニスタパージ開始からの経過時間が所定時間以
上になったとき d.機関の温度が所定温度以上になったとき e.機関負荷が増大したとき 即ち、a〜dは、キャニスタパージによって機関に供給
される蒸発燃料が充分に少なくなったこと(或いは全く
なくなったこと)を推定させるものであり、このような
ときには、基本噴射パルス幅をそれほど減少させなくて
も目標空燃比に維持できることになるから、目標空燃比
をリーン空燃比に戻しても、最小パルス幅A以上のパル
ス幅で噴射制御させることが可能である。
As described above, after the target air-fuel ratio is forcibly corrected to the rich side, the return to the target air-fuel ratio setting in accordance with the preset target air-fuel ratio map is performed, for example, as follows. It shall be performed when such conditions are met. a. Stop canister purge b. Return of the air-fuel ratio feedback correction coefficient α to near the reference value c. When the elapsed time from the start of the canister purge is equal to or longer than a predetermined time d. When the temperature of the engine exceeds a predetermined temperature e. When the engine load is increased, that is, a to d are for estimating that the evaporated fuel supplied to the engine by the canister purge has been sufficiently reduced (or completely eliminated). Since the target air-fuel ratio can be maintained without significantly reducing the injection pulse width, the injection control can be performed with the pulse width equal to or larger than the minimum pulse width A even if the target air-fuel ratio is returned to the lean air-fuel ratio.

【0039】また、機関負荷が増大変化したとき、より
具体的には、アイドル運転状態から加速されたときに
は、要求噴射量が増大し、目標空燃比をリーン空燃比に
戻しても、最小パルス幅A以上のパルス幅で噴射制御さ
せることが可能である。但し、目標空燃比のハンチング
を回避するために、アイドル運転を脱してから所定時間
が経過してから通常の目標空燃比に復帰させることが好
ましい。
Further, when the engine load increases and changes, more specifically, when the engine is accelerated from the idling operation state, even if the required injection amount increases and the target air-fuel ratio returns to the lean air-fuel ratio, the minimum pulse width does not change. It is possible to control the injection with a pulse width of A or more. However, in order to avoid hunting of the target air-fuel ratio, it is preferable to return to the normal target air-fuel ratio after a lapse of a predetermined time after exiting the idling operation.

【0040】更に、実際に燃料噴射弁2に出力させる噴
射パルス幅Tiとは別に、目標空燃比の強制的な切換え
後も、運転条件に応じた通常の目標空燃比に従った噴射
パルス幅Tiを演算させておいて、この噴射パルス幅T
iが最小パルス幅A以上に安定したことが判別されたと
きに、通常の目標空燃比に復帰させるようにしても良
い。
In addition to the injection pulse width Ti actually output to the fuel injection valve 2, even after the forcible switching of the target air-fuel ratio, the injection pulse width Ti according to the normal target air-fuel ratio according to the operating conditions is obtained. Is calculated and the injection pulse width T
When it is determined that i has stabilized to the minimum pulse width A or more, the normal target air-fuel ratio may be returned.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1記載の発明の構成を示すブロック図。FIG. 1 is a block diagram showing a configuration of the invention according to claim 1;

【図2】実施の形態における直噴式ガソリン機関のシス
テム構成図。
FIG. 2 is a system configuration diagram of a direct injection gasoline engine according to the embodiment.

【図3】パージ開始からの経過時間とパルス幅の補正要
求との相関を示す線図。
FIG. 3 is a diagram showing a correlation between an elapsed time from the start of purge and a pulse width correction request.

【図4】機関温度(水温)とパルス幅の補正要求との相
関を示す線図。
FIG. 4 is a diagram showing a correlation between an engine temperature (water temperature) and a pulse width correction request.

【図5】燃料噴射弁の直線性の特性を示す線図。FIG. 5 is a diagram showing linearity characteristics of a fuel injection valve.

【図6】目標空燃比,キャニスタパージ,噴射パルス幅
の相関を示すタイムチャート。
FIG. 6 is a time chart showing a correlation among a target air-fuel ratio, a canister purge, and an injection pulse width.

【図7】目標空燃比制御の実施形態を示すフローチャー
ト。
FIG. 7 is a flowchart showing an embodiment of target air-fuel ratio control.

【符号の説明】[Explanation of symbols]

1 内燃機関 2 燃料噴射弁 3 吸気通路 4 スロットル弁 5 点火栓 6 排気通路 9 燃料タンク 10 蒸発燃料処理装置 11 キャニスタ 12 パージ通路 13 チェックバルブ 14 蒸発燃料通路 15 パージバルブ 16 コントロールユニット 17 エアフローメータ 18 クランク角センサ 19 水温センサ 20 空燃比センサ DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Fuel injection valve 3 Intake passage 4 Throttle valve 5 Ignition plug 6 Exhaust passage 9 Fuel tank 10 Evaporation fuel processor 11 Canister 12 Purge passage 13 Check valve 14 Evaporation fuel passage 15 Purge valve 16 Control unit 17 Air flow meter 18 Crank angle Sensor 19 Water temperature sensor 20 Air-fuel ratio sensor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F02M 25/08 F02M 25/08 E 301 301U 301J ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical display location F02M 25/08 F02M 25/08 E 301 301U 301J

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】機関運転条件に基づいて目標空燃比相当の
基本噴射パルス幅を演算する基本噴射パルス幅演算手段
と、 燃焼混合気の空燃比を目標空燃比に維持すべく、前記演
算された基本噴射パルス幅を補正して最終的な噴射パル
ス幅を設定するパルス幅補正手段と、 前記最終的な噴射パルス幅に基づいて燃料噴射弁を制御
する噴射制御手段と、 前記最終的な噴射パルス幅が、予め設定された最小パル
ス幅を下回るようになったときに、前記目標空燃比を強
制的によりリッチ側に修正する目標空燃比修正手段と、 を含んで構成されたことを特徴とする内燃機関の電子制
御燃料噴射装置。
1. A basic injection pulse width calculating means for calculating a basic injection pulse width corresponding to a target air-fuel ratio on the basis of engine operating conditions, and said calculation for maintaining an air-fuel ratio of a combustion mixture at a target air-fuel ratio. Pulse width correction means for correcting a basic injection pulse width to set a final injection pulse width; injection control means for controlling a fuel injection valve based on the final injection pulse width; and the final injection pulse Target air-fuel ratio correction means for forcibly correcting the target air-fuel ratio to a richer side when the width falls below a preset minimum pulse width. Electronically controlled fuel injection device for internal combustion engines.
【請求項2】前記パルス幅補正手段が、 排気成分濃度に基づいて機関の燃焼混合気の空燃比を検
出する空燃比検出手段と、 該空燃比検出手段で検出される実際の空燃比が目標空燃
比に近づくように、前記基本噴射パルス幅をフィードバ
ック補正する空燃比フィードバック手段と、 を含んで構成されることを特徴とする請求項1記載の内
燃機関の電子制御燃料噴射装置。
2. An air-fuel ratio detecting means for detecting an air-fuel ratio of a combustion air-fuel mixture of an engine on the basis of an exhaust gas component concentration, and an actual air-fuel ratio detected by the air-fuel ratio detecting means being a target. 2. The electronically controlled fuel injection system for an internal combustion engine according to claim 1, further comprising: air-fuel ratio feedback means for feedback-correcting the basic injection pulse width so as to approach the air-fuel ratio.
【請求項3】燃料タンクから発生した蒸発燃料をキャニ
スタに吸着捕集し、該キャニスタに吸着捕集した蒸発燃
料を吸気通路にパージする蒸発燃料処理装置を備え、 前記パルス幅補正手段が、前記蒸発燃料処理装置による
蒸発燃料のパージ制御に基づいて前記基本噴射パルス幅
を補正することを特徴とする請求項1記載の内燃機関の
電子制御燃料噴射装置。
3. An evaporative fuel processing device for adsorbing and collecting evaporative fuel generated from a fuel tank in a canister, and purging the evaporative fuel adsorbed and collected in the canister into an intake passage, wherein the pulse width correction means includes: 2. The electronically controlled fuel injection device for an internal combustion engine according to claim 1, wherein the basic injection pulse width is corrected based on purge control of the evaporated fuel by the evaporated fuel processing device.
【請求項4】前記パルス幅補正手段が、前記蒸発燃料処
理装置におけるパージ状態において、機関の温度とパー
ジ開始からの経過時間との少なくとも一方に基づいて、
前記基本噴射パルス幅の補正度合いを変化させることを
特徴とする請求項3記載の内燃機関の電子制御燃料噴射
装置。
4. The apparatus according to claim 1, wherein the pulse width correction means is configured to determine whether or not the evaporative fuel processing device is in a purge state based on at least one of an engine temperature and an elapsed time from the start of the purge.
4. The electronically controlled fuel injection device for an internal combustion engine according to claim 3, wherein a correction degree of the basic injection pulse width is changed.
【請求項5】前記燃料噴射弁が燃焼室内に直接燃料を噴
射供給する構成である一方、前記目標空燃比が、機関の
運転領域毎に設定される構成であって、かつ、吸気行程
で燃料噴射を行わせる目標空燃比と、該目標空燃比より
もリーンであって圧縮行程で燃料噴射を行わせる目標空
燃比とに分けられ、 前記目標空燃比修正手段が、前記圧縮行程で燃料噴射を
行わせる目標空燃比から前記吸気行程で燃料噴射を行わ
せる目標空燃比へ強制的な変更によって、目標空燃比を
強制的によりリッチ側に修正することを特徴とする請求
項1〜4のいずれか1つに記載の内燃機関の電子制御燃
料噴射装置。
5. The fuel injection valve according to claim 1, wherein said fuel injection valve directly injects and supplies fuel into a combustion chamber, while said target air-fuel ratio is set for each engine operating region, and said fuel is injected during an intake stroke. The target air-fuel ratio to be injected is divided into a target air-fuel ratio and a target air-fuel ratio that is leaner than the target air-fuel ratio and is used to perform fuel injection in a compression stroke.The target air-fuel ratio correction unit performs fuel injection in the compression stroke. The target air-fuel ratio is forcibly corrected to a richer side by forcibly changing the target air-fuel ratio to be performed to a target air-fuel ratio for performing fuel injection in the intake stroke. An electronically controlled fuel injection device for an internal combustion engine according to one of the preceding claims.
【請求項6】燃料タンクから発生した蒸発燃料をキャニ
スタに吸着捕集し、該キャニスタに吸着捕集した蒸発燃
料を吸気通路にパージする蒸発燃料処理装置を備える一
方、 前記目標空燃比修正手段によって目標空燃比が強制的に
よりリッチ側に修正されたときに、前記蒸発燃料処理装
置におけるパージエア量を増大修正させるパージエア量
修正手段を設けたことを特徴とする請求項1〜5のいず
れか1つに記載の内燃機関の電子制御燃料噴射装置。
6. An evaporative fuel processing device which adsorbs and collects evaporative fuel generated from a fuel tank in a canister and purges the evaporative fuel adsorbed and collected in the canister into an intake passage. 6. A purge air amount correcting means for increasing and correcting a purge air amount in said evaporative fuel treatment device when a target air-fuel ratio is forcibly corrected to a rich side. An electronically controlled fuel injection device for an internal combustion engine according to claim 1.
JP17048496A 1996-06-28 1996-06-28 Electrically controlled fuel injection device of internal combustion engine Pending JPH1018890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17048496A JPH1018890A (en) 1996-06-28 1996-06-28 Electrically controlled fuel injection device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17048496A JPH1018890A (en) 1996-06-28 1996-06-28 Electrically controlled fuel injection device of internal combustion engine

Publications (1)

Publication Number Publication Date
JPH1018890A true JPH1018890A (en) 1998-01-20

Family

ID=15905815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17048496A Pending JPH1018890A (en) 1996-06-28 1996-06-28 Electrically controlled fuel injection device of internal combustion engine

Country Status (1)

Country Link
JP (1) JPH1018890A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000077375A1 (en) * 1999-06-09 2000-12-21 Robert Bosch Gmbh Method for operating an internal combustion engine
WO2001009501A1 (en) * 1999-07-31 2001-02-08 Robert Bosch Gmbh Method for operating an internal combustion engine
JP2007032312A (en) * 2005-07-25 2007-02-08 Toyota Motor Corp Controller of internal combustion engine
JP2007056849A (en) * 2005-08-26 2007-03-08 Toyota Motor Corp Engine control device
JP2012007566A (en) * 2010-06-25 2012-01-12 Denso Corp Fuel injection control device of internal combustion engine
JP2012052473A (en) * 2010-09-01 2012-03-15 Mazda Motor Corp Engine fuel pressure control device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000077375A1 (en) * 1999-06-09 2000-12-21 Robert Bosch Gmbh Method for operating an internal combustion engine
US6644266B1 (en) 1999-06-09 2003-11-11 Robert Bosch Gmbh Method for operating an internal combustion engine
KR100749591B1 (en) * 1999-06-09 2007-08-14 로베르트 보쉬 게엠베하 Method for operating an internal combustion engine
WO2001009501A1 (en) * 1999-07-31 2001-02-08 Robert Bosch Gmbh Method for operating an internal combustion engine
US6725836B1 (en) 1999-07-31 2004-04-27 Robert Bosch Gmbh Method of operating an internal combustion engine
JP2007032312A (en) * 2005-07-25 2007-02-08 Toyota Motor Corp Controller of internal combustion engine
JP4706368B2 (en) * 2005-07-25 2011-06-22 トヨタ自動車株式会社 Control device for internal combustion engine
JP2007056849A (en) * 2005-08-26 2007-03-08 Toyota Motor Corp Engine control device
US7853398B2 (en) 2005-08-26 2010-12-14 Toyota Jidosha Kabushiki Kaisha Fuel pressure control apparatus for an internal combustion engine
JP2012007566A (en) * 2010-06-25 2012-01-12 Denso Corp Fuel injection control device of internal combustion engine
JP2012052473A (en) * 2010-09-01 2012-03-15 Mazda Motor Corp Engine fuel pressure control device

Similar Documents

Publication Publication Date Title
US6314944B1 (en) Fuel property determination from accumulated intake air amount and accumulated fuel supply amount
US5090389A (en) Fuel delivery control apparatus for engine operable on gasoline/alcohol fuel blend
JP3496468B2 (en) Apparatus for determining evaporated fuel concentration of internal combustion engine
US6102003A (en) Apparatus for detecting concentration of fuel vapor in lean-burn internal combustion engine, and applied apparatus thereof
US4967713A (en) Air-fuel ratio feedback control system for internal combustion engine
US6039032A (en) Air-fuel ratio controller for an internal combustion engine
KR100306186B1 (en) Gasoline vapor purging system of interal combustion engine
JPH1018890A (en) Electrically controlled fuel injection device of internal combustion engine
US6302091B1 (en) Air-fuel ratio feedback control for engines having feedback delay time compensation
JP3620210B2 (en) Control device for internal combustion engine
JP3061277B2 (en) Air-fuel ratio learning control method and device
JP3337410B2 (en) Evaporative fuel treatment system for internal combustion engine
JP3152024B2 (en) Fuel injection control device for starting internal combustion engine
JP3106823B2 (en) Evaporative fuel processor for engine
JP3835975B2 (en) In-cylinder injection internal combustion engine control device
JP3376172B2 (en) Air-fuel ratio control device for internal combustion engine
JP2700128B2 (en) Evaporative fuel processing control device for internal combustion engine
JP2760175B2 (en) Evaporative fuel treatment system for internal combustion engines
JP3384303B2 (en) Air-fuel ratio control device for internal combustion engine
JPH09310643A (en) Controller for direct injection gasoline engine
JP3336080B2 (en) Engine control device
JPH0886250A (en) Exhaust recirculation control device for internal combustion engine
JPH04112959A (en) Evaporated fuel process controller
JP2633618B2 (en) Engine fuel supply system
JPH10141114A (en) Air-fuel ratio control device for internal combustion engine provided with evaporative fuel processing device