JPH1043588A - Catalyst for purification of exhaust gas - Google Patents

Catalyst for purification of exhaust gas

Info

Publication number
JPH1043588A
JPH1043588A JP8218128A JP21812896A JPH1043588A JP H1043588 A JPH1043588 A JP H1043588A JP 8218128 A JP8218128 A JP 8218128A JP 21812896 A JP21812896 A JP 21812896A JP H1043588 A JPH1043588 A JP H1043588A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
alumina
gas purifying
activated alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8218128A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kanesaka
浩行 金坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP8218128A priority Critical patent/JPH1043588A/en
Publication of JPH1043588A publication Critical patent/JPH1043588A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a catalyst for purification of exhaust gas excellent in HC removing performance especially at a time immediately after starting by coating the top of a coating layer of a catalyst compsn. contg. Pt or Pd with an HC desorption inhibiting layer contg. a refractory inorg. material and allowing hydrocarbons to diffuse in various directions. SOLUTION: A coating layer of a catalyst compsn. contg. Pt or Pd and a refractory inorg. oxide based on activated alumina is formed on a catalyst carrier and the top of the coating layer is coated with an HC desorption inhibiting layer contg. a refractory inorg. material and allowing hydrocarbons to diffuse in various directions to obtain the objective catalyst for purification of exhaust gas. The HC desorption inhibiting layer is, e.g. a layer contg. two or more kinds of inorg. materials different from each other in the peaks of the pore diameter distributions, e.g. α-alumina, activated alumina, silica, a rare earth metal oxide, zirconium oxide, a metallic silicate and an arbitrary mixture of them.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車エンジン
(ガソリン、ディーゼル)、ボイラーなどの内燃機関か
ら排出される排気ガスを浄化する排気ガス浄化用触媒に
係り、更に詳細には、始動直後に排出される炭化水素
(HC)量を低減することができる排気ガス浄化用触媒
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst for purifying exhaust gas discharged from an internal combustion engine such as an automobile engine (gasoline or diesel), a boiler or the like. The present invention relates to an exhaust gas purifying catalyst capable of reducing the amount of hydrocarbons (HC) to be discharged.

【0002】[0002]

【従来の技術】近年、大気汚染問題や地球温暖化問題か
ら、排出ガス規制がますます厳しくなっているため、排
気ガス浄化手段の開発がますます注目されている。例え
ば、特開昭63−185451号公報には、5〜30重
量%の白金と1〜20重量%のロジウムとを担持してな
る耐火性無機酸化物を平均粒径が0.5〜20μmの粒
子の形で含有する触媒組成物を、ハニカム担体に担持し
た排気ガス浄化用触媒が提案されている。
2. Description of the Related Art In recent years, due to the problem of air pollution and global warming, exhaust gas regulations have become more and more strict, and therefore, development of exhaust gas purifying means has been receiving more and more attention. For example, JP-A-63-185451 discloses a refractory inorganic oxide having 5 to 30% by weight of platinum and 1 to 20% by weight of rhodium and having an average particle size of 0.5 to 20 μm. There has been proposed an exhaust gas purifying catalyst in which a catalyst composition containing particles is supported on a honeycomb carrier.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、かかる
排気ガス浄化用触媒では、耐火性無機酸化物の平均粒径
を0.5〜20μmとすることにより、貴金属の分散性
を制御して耐久後の性能を向上させてはいるものの、無
機酸化物の細孔径ピークには、何ら注意が払われていな
かった。このため、内燃機関の始動直後における排気ガ
スの低温度域においては、HCが触媒成分である貴金属
に吸着してしまい、排気ガスの温度上昇に伴って、吸着
していたHCが一気に排出されるため、触媒性能を充分
に発揮できず、HCの浄化が不十分となるという課題が
あった。本発明は、このような従来技術の有する課題に
鑑みてなされたものであり、その目的とするところは、
特に始動直後におけるHC浄化性能に優れた排気ガス浄
化用触媒を提供することにある。
However, in such an exhaust gas purifying catalyst, the average particle size of the refractory inorganic oxide is set to 0.5 to 20 μm to control the dispersibility of the noble metal and to improve the durability. Although the performance was improved, no attention was paid to the pore diameter peak of the inorganic oxide. For this reason, in the low temperature range of the exhaust gas immediately after the start of the internal combustion engine, HC is adsorbed by the noble metal as a catalyst component, and the adsorbed HC is exhausted at a stretch as the temperature of the exhaust gas rises. Therefore, there has been a problem that the catalyst performance cannot be sufficiently exhibited and the purification of HC becomes insufficient. The present invention has been made in view of such problems of the related art, and the purpose thereof is to:
In particular, it is an object of the present invention to provide an exhaust gas purifying catalyst having excellent HC purifying performance immediately after starting.

【0004】[0004]

【課題を解決するための手段】本発明者は、上記課題を
解決すべく鋭意研究した結果、特定のHC脱離抑制層を
設けることにより、上記課題が解決されることを見出
し、本発明を完成するに至った。即ち、本発明の排気ガ
ス浄化触媒は、触媒担体上に、白金及び/又はパラジウ
ムを含む活性アルミナを主成分とする耐火性無機酸化物
を含有する触媒組成物をコートして成る排気ガス浄化用
触媒において、上記触媒組成物コート層上に、耐火性無
機物を含有し、炭化水素が種々の方向に拡散する炭化水
素脱離抑制層をコートして成ることを特徴とする。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above problems, and as a result, have found that the above problems can be solved by providing a specific HC desorption suppressing layer. It was completed. That is, the exhaust gas purifying catalyst of the present invention is an exhaust gas purifying catalyst obtained by coating a catalyst support with a catalyst composition containing a refractory inorganic oxide mainly composed of activated alumina containing platinum and / or palladium. The catalyst is characterized in that the catalyst composition coating layer is coated with a hydrocarbon desorption suppressing layer containing a refractory inorganic substance and in which hydrocarbons diffuse in various directions.

【0005】[0005]

【作用】本発明においては、触媒組成物をコートした担
体上に、更に、代表的には、細孔径ピークの異なる少な
くとも2種以上の耐火性無機物を主成分とするHC脱離
抑制層をコートすることとしたため、排気ガス温度上昇
時に一気に排出されるHC成分を有効に浄化することが
できる。
In the present invention, a HC desorption-suppressing layer mainly composed of at least two or more refractory inorganic substances having different pore diameter peaks is coated on a carrier coated with the catalyst composition. Therefore, it is possible to effectively purify HC components discharged at a stretch when the temperature of the exhaust gas rises.

【0006】例えば、貴金属成分を含む活性アルミナを
コートされた触媒は、内燃機関用の三元触媒として広く
用いられているが、内燃機関の冷間始動時の排気ガス温
度が低い条件下においては、貴金属成分表面の温度が充
分に上昇せず触媒の活性化温度にまで達しないため触媒
反応が起こらず、貴金属表面にHC成分が吸着してしま
う。この吸着HC成分は、排気ガス温度の上昇に伴い、
貴金属成分表面が触媒反応温度に達する前に脱離し、浄
化されずに一気に排出されてしまうため、このようなH
C成分について充分な浄化能を得られない。
For example, a catalyst coated with activated alumina containing a noble metal component is widely used as a three-way catalyst for an internal combustion engine. Since the temperature of the surface of the noble metal component does not rise sufficiently to reach the activation temperature of the catalyst, no catalytic reaction occurs, and the HC component is adsorbed on the surface of the noble metal. This adsorbed HC component, with the rise of the exhaust gas temperature,
Since the noble metal component surface desorbs before reaching the catalytic reaction temperature and is discharged at once without being purified, such H
Sufficient purification ability cannot be obtained for the C component.

【0007】これに対して、本発明によれば、通常の三
元触媒などの触媒層の上に細孔径分布のピークが異なる
2種以上の耐火性無機物をコートすることにより、上述
のように離脱してくるHC成分を離脱時に当該HC脱離
抑制層中で種々の方向にガス拡散させ、一気に離脱する
のを抑制できるため、貴金属成分が有する本来のHC浄
化機能を充分に発揮させることが可能になる。
On the other hand, according to the present invention, as described above, two or more kinds of refractory inorganic substances having different peaks in the pore size distribution are coated on a catalyst layer such as an ordinary three-way catalyst. The desorbed HC component can be gas-diffused in the HC desorption suppressing layer at the time of desorption in various directions and can be prevented from desorbing at once, so that the original HC purification function of the noble metal component can be sufficiently exhibited. Will be possible.

【0008】[0008]

【発明の実施の形態】以下、本発明の排気ガス浄化用触
媒について詳細に説明する。上述の如く、本発明の排気
ガス浄化用触媒は、触媒担体上に、白金及び/又はパラ
ジウムを含む活性アルミナを主成分とする耐火性無機酸
化物を含有する触媒組成物コート層を備える。ここで、
触媒担体は、特に限定されるものではなく、従来公知の
種々の担体を使用できるが、自動車の排気ガス浄化用触
媒としては、ハニカム型担体を用いるのが好ましい。な
お、白金やパラジウムを含むのは、本発明が特にHC浄
化能の改善を意図しているからであり、HC浄化能を発
揮できさえすれば、これら以外にもロジウム等を付加し
た三元触媒の構成とすることも可能である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the exhaust gas purifying catalyst of the present invention will be described in detail. As described above, the exhaust gas purifying catalyst of the present invention includes, on a catalyst carrier, a catalyst composition coat layer containing a refractory inorganic oxide whose main component is activated alumina containing platinum and / or palladium. here,
The catalyst carrier is not particularly limited, and various conventionally known carriers can be used. However, it is preferable to use a honeycomb-type carrier as an exhaust gas purifying catalyst for an automobile. The reason why platinum or palladium is included is that the present invention particularly intends to improve the HC purification ability, and as long as the HC purification ability can be exerted, a three-way catalyst to which rhodium or the like is added in addition to these. It is also possible to adopt a configuration of

【0009】また、上述の如く、本発明の排気ガス浄化
用触媒は、上記触媒組成物コート層上に、耐火性無機物
を含有するHC脱離抑制層をコートして成り、白金及び
/又はパラジウムに吸着したHCは、このHC脱離抑制
層中で種々の方向にガス拡散させられる。かかるHC脱
離抑制層としては、上記ガス拡散を実現できるようなも
のであれば十分であるが、具体的には、細孔径分布のピ
ークが異なる2種以上の耐火性無機物を含有する層を挙
げることができる。耐火性無機物として、細孔径分布の
ピークが同じものや、単一種のものを用いると、ガス拡
散が速やかに起こり、HC脱離抑制効果が生じにくくな
るため好ましくない。
Further, as described above, the exhaust gas purifying catalyst of the present invention is obtained by coating the above-mentioned catalyst composition coating layer with an HC desorption suppressing layer containing a refractory inorganic substance, and comprising platinum and / or palladium. HC adsorbed on the gas is diffused in various directions in the HC desorption suppressing layer. As the HC desorption suppressing layer, any layer capable of realizing the above gas diffusion is sufficient. Specifically, a layer containing two or more types of refractory inorganic substances having different peaks in the pore diameter distribution is used. Can be mentioned. It is not preferable to use the same refractory inorganic substance having the same peak of the pore diameter distribution or a single kind of the refractory inorganic substance, because gas diffusion occurs promptly and the effect of suppressing HC desorption is hardly generated.

【0010】ここで、細孔径ピークの異なる少なくとも
2種以上の耐火性無機物としては、α−アルミナ、活性
アルミナ、シリカ、希土類金属酸化物、酸化ジルコニウ
ム、又は金属シリケイト及びこれらの任意の混合物を例
示することができる。なお、これら耐火性無機物として
は、細孔径のピークが異なっていれば十分であり、例え
ば、単一種であっても焼成前の活性アルミナと、空気雰
囲気中600゜C以上の温度で焼成し、該ピークを焼成
前のものから変化させたアルミナとを組み合わせて使用
してもよい。
Here, examples of the at least two or more kinds of refractory inorganic substances having different pore diameter peaks include α-alumina, activated alumina, silica, rare earth metal oxide, zirconium oxide, metal silicate and an arbitrary mixture thereof. can do. It is sufficient for these refractory inorganic substances to have different pore diameter peaks. For example, even if it is a single kind, activated alumina before firing and firing at a temperature of 600 ° C. or more in an air atmosphere, The peaks may be used in combination with alumina whose peak has been changed from that before firing.

【0011】[0011]

【実施例】以下、本発明を実施例及び比較例により更に
詳細に説明する。 (実施例1)Pdを4重量%担持したγ−アルミナを主
成分とする活性アルミナ粉末940gと、γ−アルミナ
を主成分とする活性アルミナ粉末860gと、セリウム
粉末200gと、2%硝酸溶液2000gとを磁性ポッ
トに仕込み、振動ミル装置で混合粉砕し、第1ウォッシ
ュコートスラリーを製造した。このスラリーをコーディ
エライト製モノリス担体(1.3L、400セル)に塗
布し、乾燥後、空気雰囲気中400゜Cで1時間仮焼成
した。このコーティング作業を、塗布量が焼成後に約1
50g/Lになるまで繰り返し、Pd担持量が80g/
cfとなるようにして、触媒層を形成した。次に、α−
アルミナ粉末1000gと、γ−アルミナを主成分とす
る活性アルミナ粉末1000gと、2%硝酸溶液200
0gとを磁性ポットに仕込み、振動ミル装置で混合粉砕
し、第2ウォッシュコートスラリーを得た。このスラリ
ーを上記触媒層に塗布して、乾燥後、400゜Cで1時
間、空気雰囲気中にて仮焼成した。この時の塗布量が焼
成後に約50g/Lになるまでコーティング作業を繰り
返し、排気ガス浄化触媒No.1を得た。触媒コート層
構造を表1に示す。
The present invention will be described below in more detail with reference to examples and comparative examples. (Example 1) 940 g of activated alumina powder mainly composed of γ-alumina carrying 4% by weight of Pd, 860 g of activated alumina powder mainly composed of γ-alumina, 200 g of cerium powder, and 2000 g of 2% nitric acid solution Was charged into a magnetic pot, mixed and pulverized with a vibration mill device to produce a first washcoat slurry. The slurry was applied to a cordierite monolithic carrier (1.3 L, 400 cells), dried, and calcined at 400 ° C. for 1 hour in an air atmosphere. This coating operation is performed after the applied amount is about 1
Repeat until the amount of Pd becomes 80 g / L.
The catalyst layer was formed so as to be cf. Next, α-
1000 g of alumina powder, 1000 g of activated alumina powder mainly composed of γ-alumina, 200 g of 2% nitric acid solution
Was charged into a magnetic pot and mixed and pulverized with a vibration mill to obtain a second washcoat slurry. The slurry was applied to the catalyst layer, dried, and calcined at 400 ° C. for 1 hour in an air atmosphere. The coating operation was repeated until the coating amount at this time became about 50 g / L after firing, and the exhaust gas purification catalyst No. 1 was used. 1 was obtained. Table 1 shows the catalyst coat layer structure.

【0012】(実施例2)α−アルミナに代えてZSM
−5ゼオライト(SiO2/2Al23=30、H型)
を使用した以外は、実施例1と同様にして、排気ガス浄
化用触媒No.2を得た。
(Example 2) ZSM instead of α-alumina
-5 zeolite (SiO 2 / 2Al 2 O 3 = 30, H type)
Except that the exhaust gas purifying catalyst No. was used in the same manner as in Example 1 except that 2 was obtained.

【0013】(実施例3)α−アルミナに代えて、95
0゜Cで4時間、空気雰囲気中にて焼成した活性アルミ
ナ粉末を使用した以外は、実施例1と同様にして、排気
ガス浄化用触媒No.3を得た。
(Example 3) In place of α-alumina, 95
Exhaust gas purification catalyst No. 1 was prepared in the same manner as in Example 1, except that activated alumina powder calcined in an air atmosphere at 0 ° C. for 4 hours was used. 3 was obtained.

【0014】(実施例4)α−アルミナに代えて酸化セ
リウムを使用した以外は、実施例1と同様にして、排気
ガス浄化用触媒No.4を得た。
Example 4 Except that cerium oxide was used in place of α-alumina, an exhaust gas purifying catalyst No. 1 was used in the same manner as in Example 1. 4 was obtained.

【0015】(実施例5)α−アルミナに代えて、酸化
ジルコニウムを使用した以外は、実施例1と同様にし
て、排気ガス浄化用触媒No.5を得た。
Example 5 Exhaust gas purification catalyst No. 1 was prepared in the same manner as in Example 1 except that zirconium oxide was used instead of α-alumina. 5 was obtained.

【0016】(実施例6)第2ウォッシュコートスラリ
ー中に使用されるγ−アルミナに代えて、ZSM−5ゼ
オライトを使用した以外は、実施例5と同様にして、排
気ガス浄化用触媒No.6を得た。
(Example 6) Exhaust gas purification catalyst No. 5 was prepared in the same manner as in Example 5 except that ZSM-5 zeolite was used instead of γ-alumina used in the second washcoat slurry. 6 was obtained.

【0017】(実施例7)Pd4重量%担持アルミナの
代わりにPd8重量%担持アルミナを使用し、第1ウォ
ッシュコートスラリーのコーティング作業でPd担持量
が160g/cfとなるようにした以外は、実施例1と
同様にして、排気ガス浄化用触媒No.7を得た。
(Example 7) Pd 8 wt% was used instead of Pd 4 wt% alumina, and the amount of Pd carried was 160 g / cf in the first wash coat slurry coating operation. Exhaust gas purification catalyst No. 7 was obtained.

【0018】(実施例8)Pd4重量%担持アルミナ9
40gの代わりにPd4重量%担持アルミナ860gと
Rh2重量%担持アルミナ156gを使用し、γ−アル
ミナを主成分とする活性アルミナ粉末を714g、セリ
ウム粉末を270gとして、第1ウォッシュコートスラ
リーのコーティング作業でPd担持量が160g/cf
となるようにした以外は、実施例1と同様にして、排気
ガス浄化用触媒No.8を得た。
Example 8 4% by weight Pd supported alumina 9
Instead of 40 g, 860 g of Pd 4 wt% supported alumina and 156 g of Rh 2 wt% supported alumina were used, and 714 g of activated alumina powder containing γ-alumina as a main component and 270 g of cerium powder were used to coat the first washcoat slurry. 160g / cf Pd loading
In the same manner as in Example 1, except that the exhaust gas purifying catalyst No. was used. 8 was obtained.

【0019】(実施例9)Pd4重量%担持アルミナ9
40gの代わりにPd4重量%担持アルミナ781gと
Rh2重量%担持アルミナ156gを使用し、γ−アル
ミナを主成分とする活性アルミナ粉末を631g,セリ
ウム粉末を350gとして、第1ウォッシュコートスラ
リーのコーティング作業でPd担持量が160g/cf
となるようにした以外は、実施例1と同様にして、排気
ガス浄化用触媒No.9を得た。
(Example 9) 4% by weight of Pd supported alumina 9
Instead of 40 g, 781 g of Pd 4 wt% supported alumina and 156 g of Rh 2 wt% supported alumina were used, 631 g of activated alumina powder mainly composed of γ-alumina and 350 g of cerium powder were used to coat the first washcoat slurry. 160g / cf Pd loading
In the same manner as in Example 1, except that the exhaust gas purifying catalyst No. was used. 9 was obtained.

【0020】(実施例10)実施例1の表層のコーティ
ング量を50g/Lに代えて100g/Lにした以外
は、実施例1と同様にして、排気ガス浄化用触媒No.
10を得た。
(Example 10) Except that the coating amount of the surface layer of Example 1 was changed to 100 g / L instead of 50 g / L, the same procedure as in Example 1 was carried out.
10 was obtained.

【0021】(比較例1)Pdを4重量%担持したγ−
アルミナを主成分とする活性アルミナ粉末940gと、
γ−アルミナを主成分とする活性アルミナ粉末860g
と、セリウム粉末200gと、2%硝酸溶液2000g
とを磁性ポットに仕込み、振動ミル装置で混合粉砕し、
ウォッシュコートスラリーを製造した。このスラリーを
コーディエライト製モノリス担体(1.3L、400セ
ル)に塗布し、乾燥後、空気雰囲気中400゜Cで1時
間仮焼成した。このコーティング作業を、塗布量が焼成
後に約150g/Lになるまで繰り返し、Pd担持量が
80g/cfとなるようにして排気ガス浄化用触媒N
o.11を得た。
Comparative Example 1 γ-supporting 4% by weight of Pd
940 g of activated alumina powder containing alumina as a main component;
860 g of activated alumina powder mainly composed of γ-alumina
And 200 g of cerium powder and 2000 g of a 2% nitric acid solution
And into a magnetic pot, mixed and crushed with a vibration mill device,
A washcoat slurry was produced. The slurry was applied to a cordierite monolithic carrier (1.3 L, 400 cells), dried, and calcined at 400 ° C. for 1 hour in an air atmosphere. This coating operation is repeated until the applied amount becomes about 150 g / L after firing, and the Pd carrying amount becomes 80 g / cf so that the exhaust gas purifying catalyst N
o. 11 was obtained.

【0022】(比較例2)Pdを4重量%担持したγ−
アルミナを主成分とする活性アルミナ粉末940gと、
γ−アルミナを主成分とする活性アルミナ粉末860g
と、セリウム粉末200gと、2%硝酸溶液2000g
とを磁性ポットに仕込み、振動ミル装置で混合粉砕し、
第1ウォッシュコートスラリーを製造した。このスラリ
ーをコーディエライト製モノリス担体(1.3L 40
0セル)に塗布し、乾燥後、空気雰囲気中400゜Cで
1時間仮焼成した。このコーティング作業を、塗布量が
焼成後に約150g/Lになるまで繰り返し、Pd担持
量が80g/cfとなるようにして、触媒層を形成し
た。次に、α−アルミナ粉末2000gと、2%硝酸溶
液2000gとを磁性ポットに仕込み、振動ミル装置で
混合粉砕し、第2ウォッシュコートスラリーを得た。こ
のスラリーを上記触媒層に塗布して、乾燥後、400゜
Cで1時間、空気雰囲気中にて仮焼成した。この時の塗
布量が焼成後に約50g/Lになるまでコーティング作
業を繰り返し、排気ガス浄化用触媒No.12を得た。
(Comparative Example 2) γ-supporting 4% by weight of Pd
940 g of activated alumina powder containing alumina as a main component;
860 g of activated alumina powder mainly composed of γ-alumina
And 200 g of cerium powder and 2000 g of a 2% nitric acid solution
And into a magnetic pot, mixed and crushed with a vibration mill device,
A first washcoat slurry was produced. This slurry was used as a cordierite monolith carrier (1.3 L 40
0 cells), dried and calcined at 400 ° C. for 1 hour in an air atmosphere. This coating operation was repeated until the applied amount became about 150 g / L after firing, and the catalyst layer was formed such that the Pd carrying amount became 80 g / cf. Next, 2000 g of α-alumina powder and 2000 g of a 2% nitric acid solution were charged into a magnetic pot, and mixed and pulverized by a vibration mill to obtain a second washcoat slurry. The slurry was applied to the catalyst layer, dried, and calcined at 400 ° C. for 1 hour in an air atmosphere. The coating operation was repeated until the coating amount at this time became about 50 g / L after firing, and the catalyst for exhaust gas purification No. 1 was used. 12 was obtained.

【0023】各例で得られた排気ガス浄化用触媒につ
き、下記の評価条件で、日産自動車(株)製車両(排気
量 3L)を用いて、HC浄化特性評価(FTP75
A−bag)を行い、得られた結果を表1に併記した。 性能評価条件 触媒容量 1.7L 評価車両 日産自動車株式会社製 V型6気筒3000ccエンジン 評価モード LA4−CH(A−bag) エンジン始動時に排出される(触媒入口のガス中の)炭化水素 炭素数 C2〜C3 21.2%(C1成分除く) C4〜C6 33.0% C7〜C9 45.8%
The exhaust gas purifying catalyst obtained in each example was evaluated for HC purification characteristics (FTP 75) using a vehicle (displacement 3 L) manufactured by Nissan Motor Co., Ltd. under the following evaluation conditions.
A-bag), and the obtained results are shown in Table 1. Performance evaluation conditions Catalyst capacity 1.7L Evaluation vehicle Nissan Motor Co., Ltd. V-type 6-cylinder 3000cc engine Evaluation mode LA4-CH (A-bag) Hydrocarbon (in gas at catalyst inlet) discharged at engine start Carbon number C 2 ~C 3 21.2% (excluding C1 component) C 4 ~C 6 33.0% C 7 ~C 9 45.8%

【0024】[0024]

【表1】 [Table 1]

【0025】以上、本発明を実施例及び比較例により詳
細に説明したが、本発明はこれら実施例に限定されるも
のではなく、本発明の要旨の範囲内において種々の変形
が可能である。例えば、各実施例、比較例においてはコ
ーディエライト製ハニカム担体を使用したが、金属製ハ
ニカム担体を使用することもできる。
Although the present invention has been described in detail with reference to examples and comparative examples, the present invention is not limited to these examples, and various modifications can be made within the scope of the present invention. For example, in each of Examples and Comparative Examples, a cordierite honeycomb carrier was used, but a metal honeycomb carrier can also be used.

【0026】[0026]

【発明の効果】以上説明してきたように、本発明によれ
ば、特定のHC脱離抑制層をコートすることとしたた
め、始動直後に一気に排出されるHC成分を有効に浄化
することができる排気ガス浄化用触媒を提供することが
できる。
As described above, according to the present invention, since the specific HC desorption suppressing layer is coated, the exhaust gas which can exhaustively purify the HC components discharged immediately after the start can be effectively purified. A gas purification catalyst can be provided.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 29/44 F01N 3/10 ZABA 35/10 301 3/20 ZABD F01N 3/10 ZAB B01D 53/36 104Z 3/20 ZAB B01J 23/56 301A ──────────────────────────────────────────────────の Continuation of the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical indication location B01J 29/44 F01N 3/10 ZABA 35/10 301 3/20 ZABD F01N 3/10 ZAB B01D 53 / 36 104Z 3/20 ZAB B01J 23/56 301A

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 触媒担体上に、白金及び/又はパラジウ
ムを含む活性アルミナを主成分とする耐火性無機酸化物
を含有する触媒組成物をコートして成る排気ガス浄化用
触媒において、 上記触媒組成物コート層上に、耐火性無機物を含有し、
炭化水素が種々の方向に拡散する炭化水素脱離抑制層を
コートして成ることを特徴とする排気ガス浄化用触媒。
1. An exhaust gas purifying catalyst comprising a catalyst support and a catalyst composition containing a refractory inorganic oxide mainly composed of activated alumina containing platinum and / or palladium, the catalyst composition comprising: On the material coat layer, contains a refractory inorganic material,
An exhaust gas purifying catalyst comprising a hydrocarbon desorption suppressing layer in which hydrocarbons diffuse in various directions.
【請求項2】 上記炭化水素脱離抑制層に含有される耐
火性無機物が、細孔径分布のピークが異なる少なくとも
2種以上の耐火性無機物から成ることを特徴とする請求
項1記載の排気ガス浄化用触媒。
2. The exhaust gas according to claim 1, wherein the refractory inorganic substance contained in the hydrocarbon desorption suppressing layer comprises at least two or more kinds of refractory inorganic substances having different pore diameter distribution peaks. Purification catalyst.
【請求項3】 上記細孔径分布のピークが異なる2種以
上の耐火性無機物が、α−アルミナ、活性アルミナ、シ
リカ、希土類金属酸化物、酸化ジルコニウム及び金属シ
リケイトから成る群より選ばれる少なくとも1種のもの
であることを特徴とする請求項2記載の排気ガス浄化用
触媒。
3. The at least one refractory inorganic substance having different pore diameter distribution peaks selected from the group consisting of α-alumina, activated alumina, silica, rare earth metal oxide, zirconium oxide and metal silicate. The exhaust gas purifying catalyst according to claim 2, characterized in that:
【請求項4】 上記細孔径分布のピークが異なる2種以
上の耐火性無機物が活性アルミナであり、この活性アル
ミナが、焼成前の活性アルミナと、空気中600゜C以
上の温度で焼成した活性アルミナとを含有することを特
徴とする請求項3記載の排気ガス浄化用触媒。
4. The two or more refractory inorganic substances having different peaks in the pore size distribution are activated alumina, and the activated alumina is mixed with activated alumina before firing at a temperature of 600 ° C. or higher in air. The exhaust gas purifying catalyst according to claim 3, comprising alumina.
【請求項5】 上記触媒担体が、ハニカム型担体である
ことを特徴とする請求項1〜4のいずれか1つの項に記
載の排気ガス浄化用触媒。
5. The exhaust gas purifying catalyst according to claim 1, wherein the catalyst carrier is a honeycomb type carrier.
【請求項6】 炭化水素低減率が、35%以上であるこ
とを特徴とする請求項1〜5のいずれか1つの項に記載
の排気ガス浄化用触媒。
6. The exhaust gas purifying catalyst according to claim 1, wherein the hydrocarbon reduction rate is 35% or more.
JP8218128A 1996-08-01 1996-08-01 Catalyst for purification of exhaust gas Pending JPH1043588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8218128A JPH1043588A (en) 1996-08-01 1996-08-01 Catalyst for purification of exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8218128A JPH1043588A (en) 1996-08-01 1996-08-01 Catalyst for purification of exhaust gas

Publications (1)

Publication Number Publication Date
JPH1043588A true JPH1043588A (en) 1998-02-17

Family

ID=16715081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8218128A Pending JPH1043588A (en) 1996-08-01 1996-08-01 Catalyst for purification of exhaust gas

Country Status (1)

Country Link
JP (1) JPH1043588A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8192517B2 (en) 2004-12-27 2012-06-05 Ibiden Co., Ltd. Ceramic honeycomb structural body
WO2024008078A1 (en) * 2022-07-05 2024-01-11 Basf Corporation Catalytic article for engine exhaust gas treatment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8192517B2 (en) 2004-12-27 2012-06-05 Ibiden Co., Ltd. Ceramic honeycomb structural body
WO2024008078A1 (en) * 2022-07-05 2024-01-11 Basf Corporation Catalytic article for engine exhaust gas treatment

Similar Documents

Publication Publication Date Title
JP3855266B2 (en) Exhaust gas purification catalyst
JP3904802B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3479980B2 (en) Exhaust gas purification method and exhaust gas purification catalyst
JPH10118458A (en) Catalyst and method for removing nitrogen oxide
JPH08281107A (en) Catalyst for purifying exhaust gas
AU615721B2 (en) Catalyst for purification of exhaust gas and process for production thereof
JPH07124468A (en) Production of hydrocarbon adsorbent and adsorption catalyst
JPH07174017A (en) Exhaust emission control device
JPH08224449A (en) Combined catalyst and hydrocarbon trap for preventing air pollution from occurring
JP3952617B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
JP3282344B2 (en) Exhaust gas purification device
JPH07332073A (en) Exhaust emission control device
JP2682404B2 (en) Method for producing hydrocarbon adsorbent and catalyst
KR101274468B1 (en) Oxidation Catalyst for purifying the exhaust gas of diesel engine
JPH1147596A (en) Catalyst for purifying exhaust gas
KR101094241B1 (en) Preparation process for oxidation Catalyst for purifying the exhaust gas of diesel engine
JPH07241471A (en) Production of adsorptive catalyst for purification of exhaust gas
JPH1043588A (en) Catalyst for purification of exhaust gas
JPH04293519A (en) Exhaust gas purification device
JP3695394B2 (en) Exhaust gas purification device and manufacturing method
JPH09225265A (en) Exhaust gas purifying device
JPH11123331A (en) Catalyst for cleaning exhaust gas
JP3321831B2 (en) Exhaust gas purification catalyst
JP2003135970A (en) Exhaust gas cleaning catalyst
JP2004322022A (en) Catalyst for cleaning exhaust gas