JPH1043550A - Purifying method of nitrogen oxides in waste gas and purifying catalyst - Google Patents

Purifying method of nitrogen oxides in waste gas and purifying catalyst

Info

Publication number
JPH1043550A
JPH1043550A JP8209587A JP20958796A JPH1043550A JP H1043550 A JPH1043550 A JP H1043550A JP 8209587 A JP8209587 A JP 8209587A JP 20958796 A JP20958796 A JP 20958796A JP H1043550 A JPH1043550 A JP H1043550A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
weight
porous carrier
nitrogen oxides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8209587A
Other languages
Japanese (ja)
Inventor
Hidehiro Iizuka
秀宏 飯塚
Osamu Kuroda
黒田  修
Ryota Doi
良太 土井
Hiroshi Hanaoka
博史 花岡
Toshio Ogawa
敏雄 小川
Hisao Yamashita
寿生 山下
Shigeru Azuhata
茂 小豆畑
Yuichi Kitahara
雄一 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8209587A priority Critical patent/JPH1043550A/en
Priority to EP97925297A priority patent/EP0904482B2/en
Priority to PCT/JP1997/001955 priority patent/WO1997047864A1/en
Priority to DE69730539T priority patent/DE69730539T2/en
Priority to CA002257949A priority patent/CA2257949C/en
Priority to KR1019980710129A priority patent/KR100290272B1/en
Priority to EP04006545A priority patent/EP1433933A3/en
Priority to US09/202,243 priority patent/US6161378A/en
Priority to EP00109189A priority patent/EP1039104B1/en
Priority to AU30485/97A priority patent/AU721398C/en
Priority to DE69703840T priority patent/DE69703840T3/en
Publication of JPH1043550A publication Critical patent/JPH1043550A/en
Priority to US09/620,650 priority patent/US6397582B1/en
Priority to US10/119,075 priority patent/US7093432B2/en
Priority to US10/900,320 priority patent/US20050089456A1/en
Priority to US11/746,313 priority patent/US20070204595A1/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To attain high NOX purifying performance and to improve heat resistance and anti-poisoning property by using a catalyst formed by carrying at least one kind of Rh, Pt or Pd, at least one kind of La or Ce and Mg and Na on a porous carrier. SOLUTION: The catalyst capable of withstanding the temp. change of a waste combustion gas or trace poisoning components (SOX, P, Pb) over a long period and excellent in heat resistance and anti-poisoning property is obtained by carrying at least one kind of Rh, Pt or Pd, at least one kind of La or Ce and Mg and Na on the porous carrier. The catalyst can be formed by carrying at least one kind of Rh, Pt or Pd, at least one kind of La or Ce, at least one kind of Sr or Ba and Mg and Na on the porous carrier. As the porous carrier, a carrier consisting of alumina and a carrier consisting of a multiple oxide of La and Al, in which the component ratio of La to Al is 1-20mol% and the sum of La and Al is 100mol%, are suitably used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車エンジン等
の内燃機関から排出される窒素酸化物を含有する排ガス
から窒素酸化物を効率良く浄化する方法に係わり、また
窒素酸化物を浄化する触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for efficiently purifying nitrogen oxides from exhaust gas containing nitrogen oxides discharged from an internal combustion engine such as an automobile engine, and to a catalyst for purifying nitrogen oxides. .

【0002】本発明の触媒は、理論空燃比で燃焼された
排ガスのみならず空気過剰で燃焼された酸素を含む排ガ
スに対しても高い窒素酸化物浄化性能を有し、しかも、
耐熱性,耐被毒性も優れている。従って、リーンバーン
自動車エンジンから排出される排ガスを浄化するための
触媒として好適である。
The catalyst of the present invention has high nitrogen oxide purification performance not only for exhaust gas burned at the stoichiometric air-fuel ratio but also for exhaust gas containing oxygen burned in excess air.
Excellent heat resistance and poisoning resistance. Therefore, it is suitable as a catalyst for purifying exhaust gas emitted from a lean burn automobile engine.

【0003】[0003]

【従来の技術】近年、省資源・環境保護の流れの中で、
自動車用ガソリンエンジンをリーンバーンで動かす社会
的要求がある。これに伴いリーンバーンエンジンから排
出される酸素を含む排ガス中のNOxを効果的に浄化す
る触媒(リーンNOx触媒)の開発が進められている。
2. Description of the Related Art In recent years, in the course of resource saving and environmental protection,
There is a social demand to run a gasoline engine on a lean burn. Accordingly, development of a catalyst (lean NOx catalyst) for effectively purifying NOx in exhaust gas containing oxygen discharged from a lean burn engine has been promoted.

【0004】リーンバーンエンジン用の排ガス浄化触媒
としては、リーンNOxをリーンバーン時に吸蔵しスト
イキ燃焼時に吸蔵NOxを放出して還元するNOx吸収
剤であるアルカリ土類金属,アルカリ金属等の粒径を制
御した触媒(特開平8−24643号公報),アルカリ金属酸
化物を担持した触媒(特開平6−31139号公報)等多数が
報告されている。
[0004] As an exhaust gas purifying catalyst for a lean burn engine, a particle size of an alkaline earth metal, an alkali metal or the like, which is a NOx absorbent that occludes lean NOx during lean burn and releases and reduces occluded NOx during stoichiometric combustion, is used. Numerous reports have been reported, such as a controlled catalyst (JP-A-8-24643) and a catalyst supporting an alkali metal oxide (JP-A-6-31139).

【0005】[0005]

【発明が解決しようとする課題】自動車に対する環境規
制が強化される中、リーンNOx触媒はさらに高いNOx
浄化性能が求められると同時に、様々に変化する車速に
伴う燃焼排ガスの温度変化や燃焼排ガスに含まれる微量
被毒成分(SOx,P,Pb)に長期間耐える耐熱性お
よび耐被毒性が求められている。
As environmental regulations on automobiles are tightened, lean NOx catalysts are becoming increasingly expensive.
At the same time as the purification performance is required, heat resistance and poisoning resistance are required that can withstand the temperature change of the combustion exhaust gas due to various changing vehicle speeds and trace poisoning components (SOx, P, Pb) contained in the combustion exhaust gas for a long time. ing.

【0006】本発明の目的は、上記技術的課題に鑑み、
高いNOx浄化性能を有し、かつ耐熱性,耐被毒性に優
れた触媒材料と排ガス浄化方法を提供することにある。
An object of the present invention is to solve the above technical problems,
An object of the present invention is to provide a catalyst material having high NOx purification performance and excellent heat resistance and poisoning resistance, and an exhaust gas purification method.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
の第一の発明は、多孔質担体にRh,Pt,Pdの少な
くとも1種と、La,Ceの少なくとも1種と、Mg及
びNaを担持した触媒を用いることにある。
According to a first aspect of the present invention, at least one of Rh, Pt, and Pd, at least one of La and Ce, and Mg and Na are contained in a porous carrier. It is to use a supported catalyst.

【0008】該触媒は、多孔質担体に活性成分を担持し
た構造を有し、PtとRhとCeとMgとNaを使用す
ることで特に好適に実施できる。
The catalyst has a structure in which an active ingredient is supported on a porous carrier, and can be particularly preferably implemented by using Pt, Rh, Ce, Mg, and Na.

【0009】さらに、多孔質担体にCeを担持した後、
MgとNaを担持し、さらにPtとRhを担持し、最後
にMgを担持することで好適な触媒が得られる。
Further, after Ce is supported on the porous carrier,
A suitable catalyst can be obtained by supporting Mg and Na, further supporting Pt and Rh, and finally supporting Mg.

【0010】また、第二の発明は、多孔質担体にRh,
Pt,Pdの少なくとも1種、La,Ceの少なくとも
1種、Sr,Baの少なくとも1種とMgとNaを担持
した触媒を用いることにある。
[0010] Further, the second invention provides a porous carrier comprising Rh,
It is to use a catalyst that carries at least one of Pt and Pd, at least one of La and Ce, at least one of Sr and Ba, and Mg and Na.

【0011】第二の発明における触媒は、多孔質担体に
活性成分を担持した構造を有し、PtとRhとCeとM
gとSrとNaを使用することにより特に好適に実施さ
れる。
The catalyst according to the second invention has a structure in which an active ingredient is supported on a porous carrier, and comprises Pt, Rh, Ce, and M.
It is particularly preferably carried out by using g, Sr and Na.

【0012】さらに、多孔質担体にCeを担持した後、
MgとNaとSrを担持し、さらにPtとRhを担持
し、最後にMgを担持することで好適な触媒が得られ
る。
Further, after Ce is supported on the porous carrier,
A suitable catalyst can be obtained by supporting Mg, Na and Sr, further supporting Pt and Rh, and finally supporting Mg.

【0013】多孔質担体には、チタニア,シリカ,シリ
カ−アルミナ,マグネシア等の金属酸化物や複合酸化物
を用いることができる。また、高温度においても高い比
表面積を有するAlと希土類金属やアルカリ土類金属と
の複合酸化物を用いることもできる。これらの中では、
アルミナからなる担体、或いはLaとAlの構成比をL
aは1〜20モル%、LaとAlの合計では100モル
%としたLaとAlの複合酸化物からなる担体が特に好
適である。
As the porous carrier, metal oxides or composite oxides such as titania, silica, silica-alumina, and magnesia can be used. Further, a composite oxide of Al having a high specific surface area even at a high temperature and a rare earth metal or an alkaline earth metal can also be used. Among these,
The carrier made of alumina or the composition ratio of La and Al is L
A carrier composed of a composite oxide of La and Al, in which a is 1 to 20 mol% and the total of La and Al is 100 mol%, is particularly preferred.

【0014】触媒の調製方法は、含浸法,混練法,共沈
法,ゾルゲル法,イオン交換法,蒸着法等の物理的調製
方法や化学反応を利用した調製方法などいずれも適用可
能である。
As a method for preparing the catalyst, any of a physical preparation method such as an impregnation method, a kneading method, a coprecipitation method, a sol-gel method, an ion exchange method, and a vapor deposition method, and a preparation method utilizing a chemical reaction can be applied.

【0015】触媒調製の出発原料としては、硝酸化合
物,酢酸化合物,塩化物,硫化物,炭酸化合物,有機化
合物などの種々の化合物や金属及び金属酸化物を用いる
ことができる。
As starting materials for preparing the catalyst, various compounds such as nitric acid compounds, acetic acid compounds, chlorides, sulfides, carbonate compounds, organic compounds and the like, metals and metal oxides can be used.

【0016】各成分の担持量は、多孔質担体100重量
部に対して、Naが5〜20重量% MgがMg/(Na+Mg)の重量比で、1重量%〜4
0重量% La,Ceが5〜30重量% Ptが0.5〜3重量% Rhが0.05〜0.3重量% Pdが0.5〜15重量% とすることが好ましい。
The loading amount of each component is as follows: Na is 5 to 20% by weight based on 100 parts by weight of the porous carrier;
0% by weight La, Ce is 5 to 30% by weight Pt is 0.5 to 3% by weight Rh is preferably 0.05 to 0.3% by weight Pd is preferably 0.5 to 15% by weight.

【0017】また、Sr,Baの少なくとも一つを担持
する場合には、多孔質担体100重量部に対して、1重
量%〜20重量%であることが望ましい。
In the case where at least one of Sr and Ba is carried, it is desirable that the content is 1 to 20% by weight based on 100 parts by weight of the porous carrier.

【0018】本発明の触媒は、Naとアルカリ土類金属
との複合効果により、リーンNOxに対する高い親和力
が創出され、高いNOx浄化性能が発現する。さらに、
前記複合化により、Naとアルカリ土類金属の構造安定
化が進み、耐熱性,耐被毒性が発現する。
The catalyst of the present invention creates a high affinity for lean NOx due to the combined effect of Na and the alkaline earth metal, and exhibits high NOx purification performance. further,
The complexing promotes the stabilization of the structure of Na and the alkaline earth metal, and develops heat resistance and poisoning resistance.

【0019】長期間の使用により触媒が被毒されたなら
ば、還元雰囲気すなわち理論空燃比以下の燃焼排ガスを
用いて、400℃〜800℃に触媒を加熱することで再
活性化することが好ましい。触媒活性が低下した場合に
も、同様の再活性化処理にて、触媒を再活性化すること
ができる。
If the catalyst has been poisoned by use for a long period of time, it is preferable to reactivate the catalyst by heating the catalyst to 400 ° C. to 800 ° C. using a reducing atmosphere, ie, a combustion exhaust gas having a stoichiometric air-fuel ratio or less. . Even when the catalyst activity decreases, the catalyst can be reactivated by the same reactivation process.

【0020】本発明の触媒を内燃機関エンジンの排気系
統に搭載することにより、窒素酸化物が車外へ排出され
るのを著しく抑制することができる。
By mounting the catalyst of the present invention in the exhaust system of an internal combustion engine, the emission of nitrogen oxides to the outside of the vehicle can be significantly suppressed.

【0021】本発明の触媒は、ディーゼル自動車のディ
ーゼルエンジンから排出される排ガスの処理にも効果を
発揮する。ディーゼルエンジンは、酸素過剰の高空燃比
で運転されており、本発明の触媒は酸素含有下において
も優れた活性を示すので、ディーゼルエンジンから排出
される排ガスであっても窒素酸化物を効率良く浄化する
ことができる。
The catalyst of the present invention is also effective for treating exhaust gas discharged from a diesel engine of a diesel vehicle. Diesel engines are operated at a high air-fuel ratio with excess oxygen, and the catalyst of the present invention exhibits excellent activity even in the presence of oxygen, so that even the exhaust gas discharged from the diesel engine can efficiently purify nitrogen oxides. can do.

【0022】本発明の触媒は、200℃以上,600℃
以下の温度域において優れた活性を有し、特に200℃
〜500℃の温度域において高い活性を有する。従っ
て、触媒とガス流とを接触させる温度いわゆる反応ガス
温度は、前記温度範囲に設定することが有効である。
The catalyst of the present invention has a temperature of 200 ° C. or more and 600 ° C.
Excellent activity in the following temperature range, especially 200 ° C
It has high activity in the temperature range of ~ 500 ° C. Therefore, it is effective to set the temperature at which the catalyst is brought into contact with the gas stream, the so-called reaction gas temperature, within the above temperature range.

【0023】[0023]

【発明の実施の形態】図1は燃料噴射方式の自動車ガソ
リンエンジンのシステム図である。図1において、燃焼
に必要な空気は吸気口2から取り入れられ、エアクリー
ナー1,吸気流量制御のための絞り弁5を経て、吸気管
8内でガソリンと混合され、シリンダー内に導入され
る。
FIG. 1 is a system diagram of a fuel injection type automobile gasoline engine. In FIG. 1, air required for combustion is taken in from an intake port 2, passes through an air cleaner 1, a throttle valve 5 for controlling intake flow rate, is mixed with gasoline in an intake pipe 8, and is introduced into a cylinder.

【0024】燃焼に必要なガソリンは、燃料タンク9か
ら燃料ポンプ10により吸引され、加圧された上で燃料
ダンパ11,燃料フィルタ12を経て、燃料噴射弁(イ
ンジェクタ)13から吸気管8内に噴射される。
Gasoline required for combustion is drawn from a fuel tank 9 by a fuel pump 10, pressurized, passes through a fuel damper 11 and a fuel filter 12, and flows from a fuel injection valve (injector) 13 into an intake pipe 8. It is injected.

【0025】吸気管内でガソリンと混合された空気は、
シリンダ内で電気着火により燃焼する。
The air mixed with gasoline in the intake pipe is
It burns by electric ignition in the cylinder.

【0026】燃焼により生じた排ガスは、排気管19,
排ガス浄化触媒20を経てシステム系外へ排出される。
Exhaust gas generated by the combustion is discharged to an exhaust pipe 19,
The exhaust gas is discharged outside the system through the exhaust gas purifying catalyst 20.

【0027】この燃焼の制御は、吸気流量計3により検
出された吸気量信号と、絞り弁5に設けられたスロット
ルセンサ18からの弁開度信号,配電器(ディストリビ
ュータ)16に設けられたクランク各センサからの角度
信号がコントロールユニット15に入力され、適切な燃
料噴射量,点火時期の算出をし、燃料噴射弁13および
点火装置を制御する。このとき、排気管19内に設けら
れた酸素センサ51からの酸素濃度信号により、シリン
ダー内の燃焼状態を検出し、フィードバック制御をする
ことにより精密な制御ができる。
The combustion is controlled by controlling an intake air amount signal detected by the intake air flow meter 3, a valve opening signal from a throttle sensor 18 provided on the throttle valve 5, and a crank provided on a distributor 16. An angle signal from each sensor is input to the control unit 15 to calculate an appropriate fuel injection amount and ignition timing, and control the fuel injection valve 13 and the ignition device. At this time, precise control can be performed by detecting the combustion state in the cylinder based on the oxygen concentration signal from the oxygen sensor 51 provided in the exhaust pipe 19 and performing feedback control.

【0028】この制御をするコントロールユニット15
のブロック図を図2に示す。上記入力信号は、I/Oを
介してMPUに渡される。MPUは適切な制御をするた
め、入力信号とROM,RAMの値を用いて演算し、演
算結果をI/Oを介して出力する。この出力が制御信号
となり、燃料噴射弁13および点火装置の制御をする。
The control unit 15 for performing this control
2 is shown in FIG. The input signal is passed to the MPU via the I / O. In order to perform appropriate control, the MPU performs a calculation using an input signal and values of the ROM and the RAM, and outputs a calculation result via an I / O. This output becomes a control signal, and controls the fuel injection valve 13 and the ignition device.

【0029】この制御方法により、シリンダー内の燃焼
状態は理論空燃比(ストイキ),燃料過剰状態(リッ
チ)及び空気過剰状態(リーン)の任意の状態に制御さ
れる。ここで、エンジン7より排出される排ガス中に
は、HC,CO,NOx等の有害成分が含まれているた
め、これらの有害成分を無害化したのち系外に排出しな
ければならない。
According to this control method, the combustion state in the cylinder is controlled to any state of a stoichiometric air-fuel ratio (stoichiometric), an excess fuel state (rich), and an excess air state (lean). Here, since harmful components such as HC, CO, and NOx are contained in the exhaust gas discharged from the engine 7, the harmful components must be detoxified and then discharged outside the system.

【0030】このため、排気管19内には排ガス浄化触
媒20が設けてある。本発明では、従来のストイキ,リ
ッチにおける燃焼排ガスの浄化に加えて新たにリーン排
ガスの浄化が可能となり、図1による燃焼システムの燃
焼状態を任意に設定できる。また、耐熱性と耐被毒性の
向上により図1による燃焼システムを安定して作動させ
ることができる。
Therefore, an exhaust gas purifying catalyst 20 is provided in the exhaust pipe 19. According to the present invention, lean exhaust gas can be newly purified in addition to conventional stoichiometric and rich combustion exhaust gas purification, and the combustion state of the combustion system shown in FIG. 1 can be arbitrarily set. In addition, the combustion system according to FIG. 1 can be operated stably by improving heat resistance and poisoning resistance.

【0031】以下、具体的な例で本発明を説明するが、
本発明はこれらの実施例により制限されるものではな
い。
Hereinafter, the present invention will be described with reference to specific examples.
The present invention is not limited by these examples.

【0032】「実施例1」アルミナ粉末及びその前駆体
からなる硝酸酸性アルミナスラリーをコージェライト製
ハニカム(400セル/inc2)にコーティングし、ハニ
カムの見掛けの容積1リットルあたり約150gのアル
ミナをコーティングしたアルミナコートハニカムを得
た。該アルミナコートハニカムに、硝酸Ce溶液を含浸
し、200℃で乾燥後、600℃で1時間焼成した。続
いて、硝酸Naと硝酸Mgを混合した水溶液を含浸し、
同様に乾燥,焼成をした。さらに、ジニトロジアンミン
Pt硝酸溶液と硝酸Rh溶液の混合溶液に含浸し、20
0℃で乾燥後、450℃で1時間焼成をした。最後に、
硝酸Mg溶液を含浸し、200℃で乾燥後、450℃で
1時間焼成をした。以上により、アルミナ100重量%
に対して、Ce18重量%,Na12重量%とMg1.
2重量%を同時に担持し、白金1.6重量%,Rh0.1
5重量%そしてMg1.5重量%を含有する実施例触媒
1を得た。
Example 1 A nitric acid alumina slurry comprising alumina powder and its precursor was coated on a cordierite honeycomb (400 cells / inc 2 ), and about 150 g of alumina was coated per liter of apparent honeycomb volume. The obtained alumina-coated honeycomb was obtained. The alumina-coated honeycomb was impregnated with a Ce nitrate solution, dried at 200 ° C, and fired at 600 ° C for 1 hour. Subsequently, impregnated with an aqueous solution of a mixture of Na nitrate and Mg nitrate,
Similarly, drying and firing were performed. Further, impregnated with a mixed solution of dinitrodiammine Pt nitric acid solution and Rh nitrate solution,
After drying at 0 ° C, baking was performed at 450 ° C for 1 hour. Finally,
It was impregnated with a Mg nitrate solution, dried at 200 ° C, and baked at 450 ° C for 1 hour. From the above, alumina 100% by weight
To 18% by weight of Ce, 12% by weight of Na and 1.
2% by weight, platinum 1.6% by weight, Rh 0.1
Example catalyst 1 was obtained which contained 5% by weight and 1.5% by weight of Mg.

【0033】同様の方法で、希土類金属をCe,La、
貴金属をRh,Pt,Pd、アルカリ土類金属をSr,
Ba,Mgとした実施例触媒2〜5を得た。また、実施
例触媒1と同様の触媒調製方法であるが、実施例1に対
する比較例触媒1,2を得た。
In the same manner, rare earth metals are converted to Ce, La,
Noble metals are Rh, Pt, Pd, alkaline earth metals are Sr,
Example catalysts 2 to 5 in which Ba and Mg were obtained were obtained. In addition, a catalyst preparation method similar to that of Example Catalyst 1 was used, but Comparative Examples 1 and 2 with respect to Example 1 were obtained.

【0034】調製した触媒の組成をまとめて表1に示
す。尚、表1中の担持順序は、第1成分を担持した後、
第2成分を担持することを示す。また、担持量は担持金
属種の前に表示する。
Table 1 summarizes the compositions of the prepared catalysts. In addition, the loading order in Table 1 is such that after loading the first component,
It shows that the second component is supported. The supported amount is indicated before the supported metal type.

【0035】[0035]

【表1】 [Table 1]

【0036】(実験例1)実施例触媒1〜6及び比較例
触媒1〜2について、以下の実験方法で窒素酸化物の浄
化性能実験をした。
(Experimental Example 1) Nitrogen oxide purifying performance experiments were conducted on the catalysts of Examples 1 to 6 and Catalysts 1 and 2 of Comparative Examples by the following experimental method.

【0037】実験方法: (1)ハニカム状触媒6cc(17mm角×21mm長さ)を
パイレックス製反応管に充填する。
Experimental method: (1) 6 cc (17 mm square × 21 mm length) of a honeycomb catalyst is charged into a Pyrex reaction tube.

【0038】(2)反応管を環状電気炉に入れて、30
0℃まで昇温する。温度はハニカム入口ガス温度を測定
する。温度が300℃に達し安定した時点で、ストイキ
燃焼モデル排ガス(ストイキモデル排ガスという)の流
通を開始する。流通3分後にストイキモデル排ガスの流
通を停止し、リーンバーンのモデル排ガス(リーンモデ
ル排ガスという)の流通を開始する。反応管から排出さ
れるガス中のNOxを化学発光法,HCをFID法によ
り測定する。このときのNOx浄化性能及びHC浄化性
能を初期性能とする。
(2) Put the reaction tube in an annular electric furnace,
Heat to 0 ° C. The temperature measures the honeycomb inlet gas temperature. When the temperature reaches 300 ° C. and stabilizes, the circulation of stoichiometric combustion model exhaust gas (referred to as stoichiometric model exhaust gas) is started. Three minutes after the circulation, the circulation of the stoichiometric model exhaust gas is stopped, and the circulation of the lean burn model exhaust gas (referred to as lean model exhaust gas) is started. NOx in the gas discharged from the reaction tube is measured by a chemiluminescence method, and HC is measured by a FID method. The NOx purification performance and HC purification performance at this time are defined as initial performance.

【0039】(3)前記(2)で使用したハニカム触媒
を充填した反応管を環状電気炉に入れて、300℃まで
昇温する。温度はハニカム入口ガス温度を測定する。温
度が300℃に達し安定した時点で、SO2 含有ストイ
キ燃焼モデル排ガス(被毒ガスという)の流通を開始す
る。SO2 被毒テストは被毒ガスを5時間流通させて終
了とする。前記SO2 被毒後のハニカム触媒を用いて
(2)と同様の試験をして、SO2 被毒後のNOx浄化
性能及びHC浄化性能を得る。
(3) The reaction tube filled with the honeycomb catalyst used in the above (2) is placed in an annular electric furnace and heated to 300 ° C. The temperature measures the honeycomb inlet gas temperature. When the temperature reaches 300 ° C. and becomes stable, the flow of SO 2 -containing stoichiometric combustion model exhaust gas (referred to as poisoning gas) is started. The SO 2 poisoning test is completed by passing poisoned gas for 5 hours. And the same tests as (2) using the SO 2 honeycomb catalyst after poisoning, obtain NOx purification performance and HC purification performance after SO 2 poisoning.

【0040】(4)前記(2)で使用したハニカム触媒
を焼成炉に入れて、空気雰囲気下、800℃で5時間焼
成する。冷却後、(2)と同様のNOx浄化性能及びH
C浄化性能を測定する。
(4) The honeycomb catalyst used in (2) is placed in a firing furnace and fired at 800 ° C. for 5 hours in an air atmosphere. After cooling, the same NOx purification performance and H
C Measure the purification performance.

【0041】ストイキモデル排ガスとしては、NOを
0.1vol%,C36を0.05vol%,COを0.6vol
%,O2 を0.6vol%,H2を0.2vol%,水蒸気を1
0vol%含み、残部が窒素からなるガスを使用した。ま
た、リーンモデル排ガスとしては、NOを0.06vol
%,C36を0.04vol%,COを0.1vol%、CO2
を10vol%,O2 を5vol%,水蒸気を10vol% 含
み、残部が窒素からなるガスを使用した。さらに、被毒
ガスとしては、NOを0.1vol%,C36を0.05vol
%,COを0.6vol%,O2 を0.6vol%,SO2
0.005vol%,水蒸気を10vol% 含み、残部が窒素
からなるガスを使用した。前記3種類のガスの空間速度
は、乾燥ガス(水蒸気を含まない)で30,000/h
とした。
As the stoichiometric model exhaust gas, 0.1 vol% of NO, 0.05 vol% of C 3 H 6 and 0.6 vol of CO were used.
%, The O 2 0.6 vol%, the H 2 0.2 vol%, steam 1
A gas containing 0 vol% and the balance nitrogen was used. In addition, as a lean model exhaust gas, NO is 0.06 vol.
%, 0.04vol% of C 3 H 6, 0.1vol% of CO, CO 2
10 vol%, O 2 5 vol%, water vapor 10 vol%, and the balance nitrogen was used. Further, as the poisoning gas, NO was 0.1 vol% and C 3 H 6 was 0.05 vol%.
%, CO was 0.6 vol%, O 2 was 0.6 vol%, SO 2 was 0.005 vol%, water vapor was 10 vol%, and the balance was nitrogen. The space velocity of the three gases is 30,000 / h for dry gas (not including water vapor).
And

【0042】表2に、初期およびSO2 被毒後のハニカ
ム触媒について、ストイキモデル排ガスからリーンモデ
ル排ガスに切り替えて1分後のNOx浄化率を示した。
NOx浄化率及びHC浄化率は、下記の式に従って算出し
た。
Table 2 shows the NOx purification rate of the honeycomb catalyst at the initial stage and after the SO 2 poisoning, after one minute from switching from the stoichiometric model exhaust gas to the lean model exhaust gas.
The NOx purification rate and the HC purification rate were calculated according to the following equations.

【0043】[0043]

【数1】 (Equation 1)

【0044】[0044]

【数2】 (Equation 2)

【0045】実施例触媒1〜5は比較例触媒に対し、初
期性能が高く、耐熱性と耐SOxを具備していた。
The catalysts of Examples 1 to 5 were higher in initial performance, heat resistance and SOx resistance than the catalysts of Comparative Example.

【0046】実施例1に対して第2成分をそれぞれ1種
だけとした比較例触媒1及び2では、初期性能,耐熱
性,耐SOx性が低下した。
In Comparative Examples 1 and 2, in which only one type of the second component was used, the initial performance, heat resistance and SOx resistance were reduced.

【0047】[0047]

【表2】 [Table 2]

【0048】「実施例2」実施例触媒1の担体を、La
とAlの構成比がLaは1〜20モル%、LaとAlの
合計では100モル%としたLaとAlの複合酸化物
(La−β−Al23)からなる実施例触媒6を得た。結
果を表3に示した。
"Example 2" The carrier of Example 1 catalyst was La
La and Al composite oxides in which the composition ratio of La and Al is 1 to 20 mol%, and the total of La and Al is 100 mol%.
An example catalyst 6 comprising (La-β-Al 2 O 3 ) was obtained. The results are shown in Table 3.

【0049】担体をLa−β−Al23とすることで、
耐熱性が向上した。
By making the carrier La-β-Al 2 O 3 ,
Heat resistance improved.

【0050】[0050]

【表3】 [Table 3]

【0051】「実施例3」実施例触媒1において、第2
成分のNaの担持量を変化させたときの400℃でのN
Ox浄化率の初期性能を測定した。触媒調製方法は実施
例触媒1と同じにし、実験方法は実験例1と同じにし
た。結果を図3に示した。高いNOx浄化率を得るため
には、Na担持量を担体100重量部に対して5〜20
重量%とすることが好適である。
"Example 3"
N at 400 ° C when the amount of supported Na as a component was changed
The initial performance of the Ox purification rate was measured. The catalyst preparation method was the same as in Example Catalyst 1, and the experimental method was the same as Experimental Example 1. The results are shown in FIG. In order to obtain a high NOx purification rate, the amount of supported Na is 5 to 20 parts by weight per 100 parts by weight of the carrier.
It is preferable to set it as a percentage by weight.

【0052】「実施例4」実施例触媒1において、第2
成分中のMg担持量を、Mg担持量/(Na担持量+M
g担持量)の重量比で変化させたときの400℃での初
期のNOx浄化率を測定した。結果を図4に示した。高
いNOx浄化率を得るためには、Mg担持量/(Na担
持量+Mg担持量)の重量比を1〜40重量%とするこ
とが好適である。
"Example 4"
The amount of Mg supported in the component was calculated by dividing the amount of supported Mg / (amount of supported Na + M
g carrying amount), the initial NOx purification rate at 400 ° C. was measured. The results are shown in FIG. In order to obtain a high NOx purification rate, it is preferable to set the weight ratio of the supported amount of Mg / (the supported amount of Na + the supported amount of Mg) to 1 to 40% by weight.

【0053】「実施例5」実施例触媒1において、第1
成分Ceの担持量を変化させたときの400℃での初期
のNOx浄化率を測定した。結果を図5に示した。高い
NOx浄化率を得るためにはCe担持量を1〜40重量
%とすることが好適である。
"Example 5"
The initial NOx purification rate at 400 ° C. when the supported amount of the component Ce was changed was measured. The results are shown in FIG. In order to obtain a high NOx purification rate, the amount of Ce supported is preferably set to 1 to 40% by weight.

【0054】「実施例6」実施例触媒1において、Pt
とRhの担持量を変化させた場合の400℃での初期の
NOx浄化率を測定した。結果を図6に示した。Ptの
担持量を0.5 〜3重量%,Rhの担持量を0.05〜
0.3重量%とすることで高いNOx浄化率が得られ
る。
Example 6 In Example 1, Pt was used.
And the initial NOx purification rate at 400 ° C. when the supported amount of Rh was changed. The results are shown in FIG. The loading amount of Pt is 0.5-3% by weight, and the loading amount of Rh is 0.05-5%.
By setting it to 0.3% by weight, a high NOx purification rate can be obtained.

【0055】「実施例7」実施例触媒1において、Pt
とPdの担持量を変化させた場合の400℃での初期の
NOx浄化率を測定した。結果を図7に示した。Ptの
担持量を0.5 〜3重量%,Pdの担持量を0.5 〜1
5重量%とすることで高いNOx浄化率が得られる。
Example 7 In Example 1, Pt was used.
And the initial NOx purification rate at 400 ° C. when the amount of Pd carried was changed. The results are shown in FIG. The loading amount of Pt is 0.5 to 3% by weight, and the loading amount of Pd is 0.5 to 1%.
By setting the content to 5% by weight, a high NOx purification rate can be obtained.

【0056】「実施例8」実施例触媒2において、第2
成分のSrの担持量をアルミナ100重量部に対して変
化させた場合の初期及び800℃焼成後の400℃にお
けるNOx浄化率を測定した。結果を図8に示した。S
rの担持量を1〜20重量%とすることで高いNOx浄
化率と耐熱性が得られる。
"Example 8"
The NOx purification rate at the initial stage and at 400 ° C. after firing at 800 ° C. was measured when the amount of Sr carried as the component was changed with respect to 100 parts by weight of alumina. The results are shown in FIG. S
By setting the supported amount of r to 1 to 20% by weight, a high NOx purification rate and high heat resistance can be obtained.

【0057】「実施例9」実施例触媒1を実験例1に示
す実験方法の中の(3)と同じ方法、但しSO2処理時
間を3時間としてSO2 被毒処理を行った。そしてリー
ン1分後のNOx浄化率を測定した。次に、実験例1に
記載の組成のストイキモデル排ガスを400℃で15分間
流通するストイキ処理をした。温度を300℃に冷却
後、リーンモデル排ガスを流通し、1分後のNOx浄化
率を測定した。結果を表4に示した。ストイキ処理で触
媒性能が回復した。
Example 9 The catalyst of Example 1 was subjected to SO 2 poisoning by the same method as (3) in the experimental method shown in Experimental Example 1, except that the SO 2 treatment time was 3 hours. Then, the NOx purification rate after one minute of lean was measured. Next, the stoichiometric model exhaust gas having the composition described in Experimental Example 1 was subjected to stoichiometric treatment at 400 ° C. for 15 minutes. After cooling the temperature to 300 ° C., a lean model exhaust gas was flown, and the NOx purification rate after one minute was measured. The results are shown in Table 4. The catalyst performance was restored by the stoichiometric treatment.

【0058】[0058]

【表4】 [Table 4]

【0059】「実施例10」実施例触媒1,2及び6に
ついてストイキ排ガス切替後1分後のNOx浄化率を測
定した。結果を表5に示した。
Example 10 The NOx purification rate of the catalysts of Examples 1, 2, and 6 was measured one minute after switching the stoichiometric exhaust gas. Table 5 shows the results.

【0060】[0060]

【表5】 [Table 5]

【0061】「実施例11」実施例触媒1,2及び6と
比較例触媒1についてHC浄化率を測定した。結果を表
6に示した。表1の第2成分がNaだけである比較例触
媒1に対して実施例触媒はHC浄化率も高かった。従っ
て、本発明はエンジンより排出される排ガス中のHC,
CO,NOxの有害成分を無害化して系外へ排出するの
に好適である。
Example 11 The HC purification rates of the example catalysts 1, 2, and 6 and the comparative example catalyst 1 were measured. The results are shown in Table 6. The HC of the example catalyst was higher than that of the comparative example catalyst 1 in which the second component in Table 1 was only Na. Accordingly, the present invention provides a method for controlling the amount of HC,
It is suitable for detoxifying harmful components of CO and NOx and discharging them out of the system.

【0062】[0062]

【表6】 [Table 6]

【0063】[0063]

【発明の効果】本発明によれば、酸素を含む排ガスか
ら、窒素酸化物を効率良く浄化することができ、かつ該
触媒は耐熱性と排ガス中に微量含まれる触媒被毒物質に
対して耐久性を持たせることができた。
According to the present invention, nitrogen oxides can be efficiently purified from exhaust gas containing oxygen, and the catalyst has heat resistance and resistance to catalyst poisoning substances contained in a trace amount in the exhaust gas. I was able to have the nature.

【図面の簡単な説明】[Brief description of the drawings]

【図1】NOx浄化装置の概念図。FIG. 1 is a conceptual diagram of a NOx purification device.

【図2】自動車用エンジンシステムコントロールユニッ
トのブロック図。
FIG. 2 is a block diagram of a vehicle engine system control unit.

【図3】Na担持量最適化におけるNOx浄化率を示す
図。
FIG. 3 is a diagram showing a NOx purification rate in optimizing the amount of Na carried.

【図4】Mg担持量最適化におけるNOx浄化率を示す
図。
FIG. 4 is a diagram showing a NOx purification rate in optimizing a Mg carrying amount.

【図5】Ce担持量最適化におけるNOx浄化率を示す
図。
FIG. 5 is a diagram showing a NOx purification rate in optimizing the amount of Ce carried.

【図6】Rh,Pt担持量最適化におけるNOx浄化率
を示す図。
FIG. 6 is a diagram showing a NOx purification rate in optimizing Rh and Pt carrying amounts.

【図7】Pd,Pt担持量最適化におけるNOx浄化率
を示す図。
FIG. 7 is a diagram showing a NOx purification rate in optimizing the Pd and Pt carrying amounts.

【図8】Sr担持量最適化におけるNOx浄化率を示す
図。
FIG. 8 is a diagram showing a NOx purification rate in optimizing the amount of Sr carried.

【符号の説明】[Explanation of symbols]

1…エアークリーナー、2…吸気口、3…吸気流量計、
5…絞り弁、7…エンジン、8…吸気管、9…燃料タン
ク、10…燃料ポンプ、11…燃料ダンパ、12…燃料
フィルタ、13…燃料噴射弁、15…コントロールユニ
ット、16…配電器、18…スロットルセンサ、19…
排気管、20…排ガス浄化触媒、51…酸素センサ。
1 ... air cleaner, 2 ... intake port, 3 ... intake flow meter,
5 throttle valve, 7 engine, 8 intake pipe, 9 fuel tank, 10 fuel pump, 11 fuel damper, 12 fuel filter, 13 fuel injection valve, 15 control unit, 16 distributor 18 ... Throttle sensor, 19 ...
Exhaust pipe, 20: exhaust gas purification catalyst, 51: oxygen sensor.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/36 102B 104A (72)発明者 花岡 博史 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 小川 敏雄 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 山下 寿生 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 小豆畑 茂 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 北原 雄一 茨城県ひたちなか市大字高場2520番地 株 式会社日立製作所自動車機器事業部内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical indication B01D 53/36 102B 104A (72) Inventor Hiroshi Hanaoka 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Hitachi, Ltd.Hitachi Research Laboratories (72) Inventor Toshio Ogawa 7-1-1, Omikacho, Hitachi City, Ibaraki Prefecture Hitachi, Ltd.Hitachi Research Laboratory (72) Inventor Hisao Yamashita 7-chome, Omikacho, Hitachi City, Ibaraki Prefecture No. 1-1 Inside Hitachi, Ltd. Hitachi Research Laboratories (72) Inventor Shigeru Azumahata 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi, Ltd. Hitachi Research Laboratory Co., Ltd. (72) Inventor Yuichi Kitahara Hitachinaka City, Ibaraki Prefecture 2520 Oaza Takaba Inside the Automotive Equipment Division of Hitachi, Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】内燃機関からの燃焼排ガス中の窒素酸化物
を触媒の存在下で該排ガスに含まれている一酸化炭素と
炭化水素等の還元性ガスにより浄化する方法において、
多孔質担体にRh,Pt,Pdの少なくとも1種と、L
a,Ceの少なくとも1種と、Mg及びNaを担持して
なる触媒を用いることを特徴とする排ガス中の窒素酸化
物の浄化方法。
1. A method for purifying nitrogen oxides in combustion exhaust gas from an internal combustion engine with a reducing gas such as carbon monoxide and hydrocarbon contained in the exhaust gas in the presence of a catalyst.
At least one of Rh, Pt, and Pd on the porous carrier;
A method for purifying nitrogen oxides in exhaust gas, comprising using a catalyst supporting at least one of a and Ce, and Mg and Na.
【請求項2】内燃機関からの燃焼排ガス中の窒素酸化物
を触媒の存在下で該排ガスに含まれている一酸化炭素と
炭化水素等の還元性ガスにより浄化する方法において、
多孔質担体にRh,Pt,Pdの少なくとも1種と、L
a,Ceの少なくとも1種と、Sr,Baの少なくとも
1種とMg及びNaを担持してなる触媒を用いることを
特徴とする排ガス中の窒素酸化物の浄化方法。
2. A method for purifying nitrogen oxides in a combustion exhaust gas from an internal combustion engine with a reducing gas such as carbon monoxide and a hydrocarbon contained in the exhaust gas in the presence of a catalyst.
At least one of Rh, Pt, and Pd on the porous carrier;
A method for purifying nitrogen oxides in exhaust gas, comprising using a catalyst that carries at least one of a and Ce, at least one of Sr and Ba, and Mg and Na.
【請求項3】請求項1又は請求項2に記載の方法におい
て、前記多孔質担体が(イ)アルミナ,(ロ)LaとA
lの構成比がLaは1〜20モル%、LaとAlの合計
では100モル%となるようにした複合酸化物のいずれ
か一方からなることを特徴とする排ガス中の窒素酸化物
の浄化方法。
3. The method according to claim 1, wherein the porous carrier is (a) alumina, (b) La and A
1. A method for purifying nitrogen oxides in exhaust gas, characterized in that the composition ratio of La is 1 to 20 mol%, and the total of La and Al is 100 mol%. .
【請求項4】多孔質担体100重量部に対して、 Naを5〜20重量% Mgを、Mg担持量/(Na担持量+Mg担持量)の重
量比で、1重量%〜40重量% La,Ceを5〜30重量% Ptを0.5〜3重量% Rhを0.05〜0.3重量% Pdを0.5〜15重量% の範囲内で担持したことを特徴とする排ガス中の窒素酸
化物の浄化触媒。
4. An amount of 5 to 20% by weight of Na and 1 to 40% by weight of La in a weight ratio of Mg loading / (Na loading + Mg loading) based on 100 parts by weight of the porous carrier. , Ce 5 to 30% by weight Pt 0.5 to 3% by weight Rh 0.05 to 0.3% by weight Pd in a range of 0.5 to 15% by weight in exhaust gas Nitrogen oxide purification catalyst.
【請求項5】請求項4において、更にSr,Baの少な
くとも一つを、多孔質担体100重量部に対して、1重
量%〜20重量%の範囲内で担持したことを特徴とする
排ガス中の窒素酸化物の浄化触媒。
5. The exhaust gas according to claim 4, wherein at least one of Sr and Ba is supported within a range of 1% by weight to 20% by weight based on 100 parts by weight of the porous carrier. Nitrogen oxide purification catalyst.
JP8209587A 1996-06-10 1996-08-08 Purifying method of nitrogen oxides in waste gas and purifying catalyst Pending JPH1043550A (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
JP8209587A JPH1043550A (en) 1996-08-08 1996-08-08 Purifying method of nitrogen oxides in waste gas and purifying catalyst
US09/202,243 US6161378A (en) 1996-06-10 1997-06-09 Exhaust gas purification apparatus of internal combustion engine and catalyst for purifying exhaust gas internal combustion engine
EP00109189A EP1039104B1 (en) 1996-06-10 1997-06-09 Exhaust gas purification apparatus of internal combustion engine and catalyst for purifying exhaust gas of internal combustion engine
DE69730539T DE69730539T2 (en) 1996-06-10 1997-06-09 Emission control system of an internal combustion engine and catalyst for cleaning the exhaust gas of an internal combustion engine
CA002257949A CA2257949C (en) 1996-06-10 1997-06-09 Exhaust gas purification apparatus of internal combustion engine and catalyst for purifying exhaust gas of internal combustion engine
KR1019980710129A KR100290272B1 (en) 1996-06-10 1997-06-09 Exhaust gas purifying apparatus for internal combustion engine and exhaust gas purifying catalyst for internal combustion engine
EP04006545A EP1433933A3 (en) 1996-06-10 1997-06-09 Exhaust gas purification apparatus of internal combustion engine and catalyst for purifying exhaust gas of internal combustion engine
EP97925297A EP0904482B2 (en) 1996-06-10 1997-06-09 Exhaust gas purification apparatus of an internal combustion engine and catalyst for purifying exhaust gas of an internal combustion engine
PCT/JP1997/001955 WO1997047864A1 (en) 1996-06-10 1997-06-09 Exhaust gas purification apparatus of internal combustion engine and catalyst for purifying exhaust gas of internal combustion engine
AU30485/97A AU721398C (en) 1996-06-10 1997-06-09 Exhaust gas purification apparatus of internal combustion engine and catalyst for purifying exhaust gas of internal combustion engine
DE69703840T DE69703840T3 (en) 1996-06-10 1997-06-09 Exhaust gas purification device for an internal combustion engine and catalyst for purifying the exhaust gas of the internal combustion engine
US09/620,650 US6397582B1 (en) 1996-06-10 2000-07-20 Exhaust gas purification apparatus of internal combustion engine and catalyst for purifying exhaust gas of internal combustion engine
US10/119,075 US7093432B2 (en) 1996-06-10 2002-04-10 Exhaust gas purification apparatus of internal combustion engine and catalyst for purifying exhaust gas of internal combustion engine
US10/900,320 US20050089456A1 (en) 1996-06-10 2004-07-28 Exhaust gas purifcation apparatus of internal combustion engine and catalyst for purifying exhaust gas of internal combustion engine
US11/746,313 US20070204595A1 (en) 1996-06-10 2007-05-09 Exhaust Gas Purification Apparatus of Internal Combustion Engine and Catalyst for Purifying Exhaust Gas of Internal Combustion Engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8209587A JPH1043550A (en) 1996-08-08 1996-08-08 Purifying method of nitrogen oxides in waste gas and purifying catalyst

Publications (1)

Publication Number Publication Date
JPH1043550A true JPH1043550A (en) 1998-02-17

Family

ID=16575310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8209587A Pending JPH1043550A (en) 1996-06-10 1996-08-08 Purifying method of nitrogen oxides in waste gas and purifying catalyst

Country Status (1)

Country Link
JP (1) JPH1043550A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024150640A1 (en) * 2023-01-13 2024-07-18 三井金属鉱業株式会社 Exhaust gas purification catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024150640A1 (en) * 2023-01-13 2024-07-18 三井金属鉱業株式会社 Exhaust gas purification catalyst

Similar Documents

Publication Publication Date Title
JP3965711B2 (en) Nitrogen oxide purification catalyst and purification method
KR100290272B1 (en) Exhaust gas purifying apparatus for internal combustion engine and exhaust gas purifying catalyst for internal combustion engine
KR100481904B1 (en) Exhaust purifier and purification method for internal combustion engines
KR100370486B1 (en) Internal combustion engine exhaust gas purification apparatus, exhaust gas purification process and exhaust gas purification catalyst
KR100366993B1 (en) METHOD FOR TREATING NITROGEN OXIDE-CONTAINING EXHAUST GAS
CA2255889C (en) Method of purifying exhaust gas of internal combustion engine and apparatus thereof
JPH10118457A (en) Exhaust gas cleaning apparatus for internal combustion engine
JP3107294B2 (en) Exhaust gas purification device for internal combustion engine
JPH1043550A (en) Purifying method of nitrogen oxides in waste gas and purifying catalyst
JP3549687B2 (en) Exhaust gas purification catalyst, exhaust gas purification device, and exhaust gas purification method
JPH05115780A (en) Catalyst for cleaning exhaust gas
JP3925015B2 (en) Internal combustion engine exhaust gas purification device, purification method, and purification catalyst
JPH11169708A (en) Exhaust gas purification device for internal combustion engine
JPH09225308A (en) Exhaust gas purification catalyst for internal engine and exhaust gas treatment method
JP3368750B2 (en) Exhaust gas purification method and catalyst
JP3384255B2 (en) Internal combustion engine exhaust gas purification method
JP3435992B2 (en) Purification method of exhaust gas containing nitrogen oxides
JP2001009280A (en) Production of exhaust gas purification catalyst for internal combustion engine and exhaust gas purification catalyst
JP4617620B2 (en) Catalyst for oxidizing exhaust gas containing phosphorus, and exhaust gas oxidizer
JP2002115534A (en) Exhaust emission control device for internal combustion engine
JPH11114377A (en) Purifying method of exhaust gas from inner combustion engine and catalyst
JP2002256926A (en) Exhaust emission control method and exhaust emission control device of internal combustion engine
JPH10231720A (en) Regenerating method of exhaust emission control catalyst of internal combustion engine in automobile
JPH1181987A (en) Nox purifying method
JPH11156209A (en) Waste gas purifying device and production of the same