JPH10231720A - Regenerating method of exhaust emission control catalyst of internal combustion engine in automobile - Google Patents

Regenerating method of exhaust emission control catalyst of internal combustion engine in automobile

Info

Publication number
JPH10231720A
JPH10231720A JP9031716A JP3171697A JPH10231720A JP H10231720 A JPH10231720 A JP H10231720A JP 9031716 A JP9031716 A JP 9031716A JP 3171697 A JP3171697 A JP 3171697A JP H10231720 A JPH10231720 A JP H10231720A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
engine
gas purifying
regenerating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9031716A
Other languages
Japanese (ja)
Inventor
Hiroshi Hanaoka
博史 花岡
Osamu Kuroda
黒田  修
Ryota Doi
良太 土井
Hidehiro Iizuka
秀宏 飯塚
Toshio Ogawa
敏雄 小川
Hisao Yamashita
寿生 山下
Shigeru Azuhata
茂 小豆畑
Yuichi Kitahara
雄一 北原
Toshifumi Hiratsuka
俊史 平塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9031716A priority Critical patent/JPH10231720A/en
Publication of JPH10231720A publication Critical patent/JPH10231720A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce sulfur poisoning resistance by automatically stopping an engine after an engine switch is turned off and then regenerating operation of an exhaust emission control catalyst is carried out. SOLUTION: A lean NOx catalyst A is arranged on the way of an exhaust pipe, and a material added thiophene of 400ppm as sulfur in gasoline is used as fuel. An automobile is traveled for 10 hours at 50km per hour and in a lean operating condition, the engine switch is turned off, and regenerating treatment of an exhaust emission control catalyst is carried out by automatic control. The regenerating treatment is controlled in such a way that operation of engine only is changed from 5 seconds to 10 minutes without traveling the automobile in a condition of an stoichiometric air-fuel ratio or in a fuel excessive condition, and the temperature of the exhaust emission control catalyst is set to 250 to 600 deg.C. When the regenerating treatment time is set to 1 minute and the air-fuel ratio is set to 14.0, the more the regenerating treatment temperature is high, the more a NOx purifying ratio is high, and also the sulfur rate in the catalyst is reduced. It is thus possible to separate and reduce sulfur in the exhaust emission control catalyst, and it is also possible to suppress deterioration of the exhaust emission control catalyst.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は自動車内燃機関の排
ガス浄化触媒の硫黄化合物による劣化からの再生方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for regenerating an exhaust gas purifying catalyst of an automobile internal combustion engine from deterioration caused by sulfur compounds.

【0002】[0002]

【従来の技術】自動車等の内燃機関から排出される排ガ
ス中に含まれる、一酸化炭素(以下CO),炭化水素
(以下HC),NOx等は大気汚染物質として人体に悪
影響を及ぼす他、植物の発育を妨げる等の問題をもたら
す。そこで従来より、これら有害物質の排出量低減のた
め、数多くの研究が行われ、内燃機関における燃焼条件
等の改善による有害物質発生量の低減,排出された有害
物質を触媒で浄化する方法等の開発が進められてきた。
現在、自動車排ガスの場合、Pt,Rh,Pd等の貴金
属を主成分とした三元触媒により、HC及びCOを酸化
すると同時に、NOxを還元して無害化する方法が主流
となっている。
2. Description of the Related Art Carbon monoxide (hereinafter referred to as CO), hydrocarbons (hereinafter referred to as HC), NOx, and the like contained in exhaust gas discharged from an internal combustion engine of an automobile or the like have an adverse effect on the human body as air pollutants and plants. Causes problems such as hindering the growth of Therefore, a number of studies have been conducted to reduce the emission of these harmful substances, such as reducing the amount of harmful substances generated by improving combustion conditions in internal combustion engines, and purifying exhausted harmful substances with catalysts. Development has been advanced.
Currently, in the case of automobile exhaust gas, a method of oxidizing HC and CO and reducing NOx to make it harmless at the same time as a three-way catalyst containing a noble metal such as Pt, Rh, and Pd as a main component is mainly used.

【0003】一般に三元触媒は、酸素濃度の低い理論空
燃比(A(空気の重量)/F(燃料の重量)=14.7
)近くでしか、有害物質の浄化に有効に作用しない。
このため、通常の自動車エンジンの場合、空燃比をこの
理論空燃比近くに制御して、有害物質の大気中への排出
を抑制してきた。
In general, a three-way catalyst has a low stoichiometric air-fuel ratio (A (weight of air) / F (weight of fuel) = 14.7).
) Effective only for purification of harmful substances nearby.
For this reason, in the case of a normal automobile engine, the air-fuel ratio has been controlled to be close to this stoichiometric air-fuel ratio to suppress emission of harmful substances into the atmosphere.

【0004】しかし、理論空燃比よりも希薄な空燃比で
運転すると、燃費が向上できることから、近年希薄空燃
比で運転するリーンバーン車の開発が進められている。
このリーンバーン車では、排ガス中に酸素を高濃度(3
〜10容量%)含むため、従来の三元触媒では、HCや
COは酸化して無害化できるものの、NOxを還元する
能力に乏しく、無害化できない。そこで、リーンバーン
対応のNOx浄化技術として、酸素共存下でもNOxを
還元浄化できる触媒(以下リーンNOx触媒)について
現在研究が進められている。一例としては、特開平6−3
1139号や特開平8−24643号公報に、アルカリ土類金属を
担持した触媒等が開示されている。
However, fuel efficiency can be improved by operating at an air-fuel ratio leaner than the stoichiometric air-fuel ratio. Therefore, in recent years, lean burn vehicles operating at a lean air-fuel ratio have been developed.
In this lean burn vehicle, high concentration of oxygen (3
Therefore, with the conventional three-way catalyst, HC and CO can be oxidized and made harmless, but the ability to reduce NOx is poor and cannot be made harmless. Therefore, as a NOx purification technology corresponding to lean burn, research is currently being conducted on a catalyst capable of reducing and purifying NOx even in the presence of oxygen (hereinafter, lean NOx catalyst). As an example, see JP-A-6-3
No. 1139 and JP-A-8-24643 disclose a catalyst supporting an alkaline earth metal and the like.

【0005】[0005]

【発明が解決しようとする課題】三元触媒やリーンNO
x触媒等の排ガス浄化触媒の共通の課題として、活性向
上,耐熱性向上,耐被毒性向上などがある。中でも、ガ
ソリン中に含まれる硫黄分による触媒の被毒は大きな問
題であり、耐硫黄被毒性の向上が重要な課題となってい
る。
SUMMARY OF THE INVENTION A three-way catalyst or lean NO
Common problems of exhaust gas purifying catalysts such as x catalysts include improving activity, improving heat resistance, and improving poisoning resistance. Above all, poisoning of the catalyst by sulfur contained in gasoline is a major problem, and improving sulfur poisoning resistance has become an important issue.

【0006】一般的に触媒は、SO2 よりもSO3 に対
して被毒されやすい。リーンバーン排ガスでは、高濃度
の酸素が共存するため、SO2 は容易にSO3 に酸化さ
れ、従来の理論空燃比で運転されるエンジン排ガスに比
べて、触媒を被毒しやすい。従って特にリーンNOx触
媒では、耐硫黄被毒性の向上が必要不可欠となる。
In general, catalysts are more susceptible to poisoning by SO 3 than SO 2 . In lean burn exhaust gas, high concentration of oxygen coexists, so SO 2 is easily oxidized to SO 3 , and is more likely to poison the catalyst than conventional engine exhaust gas operated at a stoichiometric air-fuel ratio. Therefore, especially in a lean NOx catalyst, improvement of sulfur poisoning resistance is indispensable.

【0007】これまでに触媒材料の観点から、特開平7
−51544号公報で分解しやすい複合硫酸塩をつくる方
法、特開平7−171349 号公報ではSO2 の酸化を抑制す
る方法等が提案されている。本発明は、硫黄化合物によ
り被毒劣化した排ガス浄化触媒の再生手段を提供するも
のであり、本発明により従来の排ガス浄化触媒でも耐硫
黄被毒性を軽減することができる。
Until now, from the viewpoint of catalyst materials, Japanese Patent Application Laid-Open
Japanese Patent Application Laid-Open No. 5-51544 proposes a method of producing a complex sulfate which is easily decomposed, and Japanese Patent Application Laid-Open No. 7-171349 proposes a method of suppressing the oxidation of SO 2 . The present invention provides a means for regenerating an exhaust gas purifying catalyst that has been poisoned and degraded by a sulfur compound. The present invention can reduce the sulfur poisoning resistance of a conventional exhaust gas purifying catalyst.

【0008】[0008]

【課題を解決するための手段】本発明者らは、従来の三
元触媒及びリーンNOx触媒で、硫黄分により被毒劣化
した触媒活性を再生する方法について鋭意検討した結
果、エンジンスイッチを切断した際、即座にエンジンを
停止するのではなく、排ガス浄化触媒の再生操作を行っ
た後、エンジンを自動停止させることが有効であること
を見いだした。本発明の特徴は、エンジンスイッチを切
断後、排ガス浄化触媒の再生操作を行った後、エンジン
を自動停止させる自動車内燃機関の排ガス浄化触媒の再
生方法にある。
Means for Solving the Problems The present inventors have made intensive studies on a method for regenerating the catalytic activity degraded by poisoning by sulfur in the conventional three-way catalyst and lean NOx catalyst, and as a result, switched off the engine switch. At that time, it was found that it is effective to automatically stop the engine after performing the regeneration operation of the exhaust gas purification catalyst instead of immediately stopping the engine. A feature of the present invention resides in a method of regenerating an exhaust gas purifying catalyst of an automobile internal combustion engine in which an engine switch is turned off, an exhaust gas purifying catalyst is regenerated, and then the engine is automatically stopped.

【0009】また本発明者らは、硫黄被毒の再生手段と
して、理論空燃比または燃料過多の状態で運転し、排ガ
ス浄化触媒中に含まれる硫黄化合物を脱離させることが
有効であることを見いだした。本発明の他の特徴は、理
論空燃比または燃料過多の状態で運転し、排ガス浄化触
媒中に含まれる硫黄化合物を脱離させる自動車内燃機関
の排ガス浄化触媒の再生方法にある。
The present inventors have found that it is effective as a means for regenerating sulfur poisoning to operate at a stoichiometric air-fuel ratio or in an excessive fuel state to desorb sulfur compounds contained in an exhaust gas purification catalyst. I found it. Another feature of the present invention is a method of regenerating an exhaust gas purifying catalyst for an automobile internal combustion engine, which operates in a stoichiometric air-fuel ratio or an excessive fuel state and desorbs sulfur compounds contained in the exhaust gas purifying catalyst.

【0010】上述の排ガス浄化触媒の硫黄化合物からの
再生方法は、エンジンスイッチ切断後の再生操作として
も有効である。本発明の他の特徴は、エンジンスイッチ
を切断後、理論空燃比または燃料過多の状態で運転し、
排ガス浄化触媒中に含まれる硫黄化合物を脱離させた
後、エンジンを自動停止させる自動車内燃機関の排ガス
浄化触媒の再生方法にある。
The above-described method for regenerating an exhaust gas purifying catalyst from a sulfur compound is also effective as a regenerating operation after an engine switch is turned off. Another feature of the present invention is that after turning off the engine switch, the engine is operated in the stoichiometric air-fuel ratio or in the state of excessive fuel,
The present invention relates to a method for regenerating an exhaust gas purifying catalyst for an automobile internal combustion engine, which automatically stops the engine after desorbing sulfur compounds contained in the exhaust gas purifying catalyst.

【0011】さらに本発明者らは、400℃以上の温度
領域で、硫黄被毒した排ガス浄化触媒の再生が有利に進
むことを見いだした。本発明のさらなる特徴は、エンジ
ンスイッチを切断後、排ガス浄化触媒の温度が400℃
以上となるように制御した状態で、理論空燃比または理
論空燃比よりも燃料過多の状態で運転した後、エンジン
を自動停止させる自動車内燃機関の排ガス浄化触媒の再
生方法にある。排ガス浄化触媒の温度を400℃以上に
制御するためには、エンジン回転数を上げることにより
可能であるが、外部からの加熱装置を用いることも可能
である。本発明は、排ガス浄化触媒の温度を400℃以
上に制御する手段によって制限されるものではない。
Further, the present inventors have found that the regeneration of the sulfur-poisoned exhaust gas purifying catalyst proceeds advantageously in a temperature range of 400 ° C. or higher. A further feature of the present invention is that after turning off the engine switch, the temperature of the exhaust gas purifying catalyst is 400 ° C.
A method for regenerating an exhaust gas purifying catalyst of an automobile internal combustion engine, in which the engine is automatically stopped after the engine is operated in a stoichiometric air-fuel ratio or a state in which the amount of fuel is higher than the stoichiometric air-fuel ratio in a state controlled as described above. In order to control the temperature of the exhaust gas purifying catalyst to 400 ° C. or higher, it is possible to increase the engine speed, but it is also possible to use an external heating device. The present invention is not limited by the means for controlling the temperature of the exhaust gas purifying catalyst to 400 ° C. or higher.

【0012】上述のいずれの排ガス浄化触媒の再生操作
は、従来の三元触媒やリーンNOx触媒で有効な方法で
あるが、排ガス浄化触媒が貴金属,アルカリ土類金属及
び希土類金属を担持した耐熱性金属酸化物であることに
より、極めて有効な手段として発揮することができる。
本発明では、排ガス浄化触媒が貴金属,アルカリ土類金
属及び希土類金属を担持した耐熱性金属酸化物であるこ
とも特徴としているが、本発明はこれにより制限される
ものではない。
Any of the above-mentioned regenerating operations of the exhaust gas purifying catalyst is an effective method using a conventional three-way catalyst or lean NOx catalyst. However, the exhaust gas purifying catalyst is a heat-resistant catalyst supporting a noble metal, an alkaline earth metal and a rare earth metal. By being a metal oxide, it can be exhibited as an extremely effective means.
The present invention is also characterized in that the exhaust gas purifying catalyst is a heat-resistant metal oxide supporting a noble metal, an alkaline earth metal and a rare earth metal, but the present invention is not limited to this.

【0013】[0013]

【発明の実施の形態】以下に本発明の実施例を示す。Embodiments of the present invention will be described below.

【0014】「触媒例1」ベーマイト粉末に水,希硝酸
を加えて撹拌混合し、コーティング用スラリーを得た。
該スラリーをコージェライト製ハニカムにウォッシュコ
ートし、乾燥後、600℃で1時間焼成しアルミナコー
ティングハニカムを得た。アルミナのコーティング量
は、ハニカム1リットルあたり150gとした。
"Catalyst Example 1" Water and diluted nitric acid were added to boehmite powder and mixed with stirring to obtain a slurry for coating.
The slurry was wash-coated on a cordierite honeycomb, dried, and fired at 600 ° C. for 1 hour to obtain an alumina-coated honeycomb. The coating amount of alumina was 150 g per liter of honeycomb.

【0015】上記アルミナコーティングハニカムを、硝
酸セリウム水溶液に浸漬し、乾燥後、600℃で1時間
焼成した。続いて硝酸ストロンチウム及びチタニアゾル
を含む水溶液に浸漬して、乾燥後、600℃で1時間焼
成した。次にジニトロジアミン白金及び硝酸ロジウムを
含む水溶液に浸漬し、乾燥後、450℃で1時間焼成し
た。最後に硝酸マグネシウム水溶液に浸漬し、乾燥後、
450℃で2時間焼成して、リーンNOx触媒Aを得
た。リーンNOx触媒Aの触媒組成は、アルミナに対し
て、Mg:1wt%,Rh:0.15wt%,Pt:1.
9wt%,Ti:5wt%,Sr:15wt%,Ce:
18wt%である。
The alumina coated honeycomb was immersed in an aqueous cerium nitrate solution, dried, and fired at 600 ° C. for 1 hour. Subsequently, it was immersed in an aqueous solution containing strontium nitrate and titania sol, dried, and fired at 600 ° C. for 1 hour. Next, it was immersed in an aqueous solution containing dinitrodiamine platinum and rhodium nitrate, dried, and baked at 450 ° C. for 1 hour. Finally, immerse in magnesium nitrate aqueous solution, and after drying,
The mixture was calcined at 450 ° C. for 2 hours to obtain a lean NOx catalyst A. The catalyst composition of the lean NOx catalyst A was: Mg: 1 wt%, Rh: 0.15 wt%, Pt: 1.
9 wt%, Ti: 5 wt%, Sr: 15 wt%, Ce:
18 wt%.

【0016】「触媒例2」従来の一般的な三元触媒を用
いた。(三元触媒B) 「実施例1」排気量1.8L のリーンバーンエンジンを
搭載した自動車に、触媒例1に示すリーンNOx触媒A
を排気管途中に設置した。燃料として、ガソリン中に硫
黄分として400ppm のチオフェンを添加したものを用
いた。耐久走行試験を行う前の初期の状態を(I)とす
る。続いて時速約50km,リーン運転状態で10時間
走行した後の状態を(II)とする。さらにエンジンスイ
ッチを切断し、自動制御で排ガス浄化触媒の再生処理を
行った後の状態を(III)とする。再生処理は、理論空燃
比(ストイキ)または燃料過多(リッチ)の状態で、自
動車を走行させることなくエンジンのみの運転を5秒か
ら10分に変化させて行った。また排ガス浄化触媒の温
度は、250〜600℃になるように制御した。
"Catalyst Example 2" A conventional general three-way catalyst was used. (Three-Way Catalyst B) Example 1 A vehicle equipped with a 1.8-liter lean burn engine was equipped with a lean NOx catalyst A shown in Catalyst Example 1.
Was installed in the middle of the exhaust pipe. As the fuel, gasoline obtained by adding 400 ppm of thiophene as a sulfur content to gasoline was used. The initial state before the endurance running test is defined as (I). Subsequently, the state after traveling for 10 hours in a lean operation state at about 50 km / h is defined as (II). Further, the state after the engine switch is turned off and the regeneration processing of the exhaust gas purifying catalyst is performed by the automatic control is defined as (III). The regeneration process was performed in a state of a stoichiometric air-fuel ratio (stoichiometric ratio) or an excessive amount of fuel (rich) by changing the operation of only the engine from 5 seconds to 10 minutes without running the automobile. Further, the temperature of the exhaust gas purifying catalyst was controlled to be 250 to 600 ° C.

【0017】触媒例1のリーンNOx触媒Aに代わって
触媒例2の三元触媒Bを排気管途中に設置した以外は実
施例1と同様の方法を実施した。
The same method as in Example 1 was carried out except that the three-way catalyst B of Catalyst Example 2 was provided in the middle of the exhaust pipe instead of the lean NOx catalyst A of Catalyst Example 1.

【0018】「試験例1」(I)〜(III)の各状態で、
時速約40kmで理論空燃比で運転し、希薄燃焼運転に
切り換え、1分後のNOx浄化率を測定した。(I)の
状態におけるNOx浄化率は、実施例1で90%、実施
例2で30%であった。(II)の状態におけるNOx浄
化率は、実施例1で41%、実施例2で3%であった。
"Test Example 1" In each of the conditions (I) to (III),
The engine was operated at a stoichiometric air-fuel ratio at a speed of about 40 km / h, switched to a lean burn operation, and the NOx purification rate after one minute was measured. In the state of (I), the NOx purification rate was 90% in Example 1 and 30% in Example 2. In the state (II), the NOx purification rate was 41% in Example 1 and 3% in Example 2.

【0019】「試験例2」(I)〜(III)の各状態に相
当する排ガス浄化触媒の一部を切り出し・粉砕して、排
ガス浄化触媒中の硫黄濃度を分析した。(I)の状態に
おける硫黄濃度は、実施例1,2のいずれでも0重量%
であった。(II)の状態における硫黄濃度は、実施例1
で2.1重量%、実施例2で1.2重量%であった。
"Test Example 2" A part of the exhaust gas purifying catalyst corresponding to each of the states (I) to (III) was cut out and pulverized, and the sulfur concentration in the exhaust gas purifying catalyst was analyzed. The sulfur concentration in the state of (I) was 0% by weight in both Examples 1 and 2.
Met. The sulfur concentration in the state (II) was determined in Example 1.
Was 2.1% by weight and Example 2 was 1.2% by weight.

【0020】実施例1及び2で、再生処理温度,再生処
理時間及び再生時の空燃比(重量比)を変化させ、(III)
の状態におけるNOx浄化率及び硫黄濃度を測定した。
図1は触媒Aを用い、再生処理時間1分,空燃比14.
0 とした時の、再生処理温度の依存性である。再生処
理温度が高いほどNOx浄化率が高くなるとともに触媒
中の硫黄量が低減され、特に400℃以上で効果が高い
ことがわかった。図2は触媒Aを用い、再生処理温度4
50℃,空燃比14.0 とした時の、再生処理時間の依
存性である。再生処理時間が長いほど効果が高い。図3
は触媒Aを用い、再生処理時間1分,再生処理温度45
0℃とした時の、空燃比の依存性である。理論空燃比か
ら燃料過多の状態にする(空燃比を低くする)ほど、再
生の効果が高い。図4は触媒Bを用い、再生処理温度4
50℃,空燃比14.0 とした時の、再生処理時間の依
存性である。従来の一般的な三元触媒の硫黄被毒に対し
ても本発明が効果をもつことがわかった。
In the first and second embodiments, the regeneration processing temperature, the regeneration processing time, and the air-fuel ratio (weight ratio) at the time of the regeneration were changed, and (III)
The NOx purification rate and sulfur concentration in the state of were measured.
FIG. 1 shows that the catalyst A was used, the regeneration processing time was 1 minute, and the air-fuel ratio was 14.
This is the dependence of the regeneration processing temperature on the case of 0. It was found that the higher the regeneration treatment temperature, the higher the NOx purification rate and the lower the amount of sulfur in the catalyst. FIG. 2 shows the case where the catalyst A was used and the regeneration treatment temperature was 4
This is the dependence of the regeneration processing time at 50 ° C. and an air-fuel ratio of 14.0. The effect is higher as the playback processing time is longer. FIG.
Uses catalyst A, regeneration processing time 1 minute, regeneration processing temperature 45
This is the dependence of the air-fuel ratio at 0 ° C. The more fuel is switched from the stoichiometric air-fuel ratio to the state of excessive fuel (the lower the air-fuel ratio), the higher the regeneration effect. FIG. 4 shows that the catalyst B was used and the regeneration treatment temperature 4
This is the dependence of the regeneration processing time at 50 ° C. and an air-fuel ratio of 14.0. It has been found that the present invention is also effective for sulfur poisoning of a conventional general three-way catalyst.

【0021】[0021]

【発明の効果】本発明によれば、エンジンスイッチ切断
後に一定時間の再生手段を講ずることによって、排ガス
浄化触媒中の硫黄分が脱離・低減し、排ガス浄化触媒の
劣化が抑制できる。即ち触媒の寿命を長くすることが可
能となる。
According to the present invention, by using a regeneration means for a certain period of time after the engine switch is turned off, the sulfur content in the exhaust gas purification catalyst is desorbed and reduced, and the deterioration of the exhaust gas purification catalyst can be suppressed. That is, the life of the catalyst can be extended.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例としての排ガス浄化触媒の再
生試験結果の特性図。
FIG. 1 is a characteristic diagram of a regeneration test result of an exhaust gas purifying catalyst as one example of the present invention.

【図2】本発明の一実施例としての排ガス浄化触媒の再
生試験結果の特性図。
FIG. 2 is a characteristic diagram of a regeneration test result of an exhaust gas purifying catalyst as one example of the present invention.

【図3】本発明の第二実施例としての排ガス浄化触媒の
再生試験結果の特性図。
FIG. 3 is a characteristic diagram of a regeneration test result of an exhaust gas purifying catalyst as a second embodiment of the present invention.

【図4】本発明の第三実施例としての排ガス浄化触媒の
再生試験結果の特性図。
FIG. 4 is a characteristic diagram of a regeneration test result of an exhaust gas purifying catalyst as a third embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F01N 3/10 ZAB F02D 29/02 321C 3/24 41/04 305A ZAB B01D 53/36 ZAB F02D 29/02 321 102E 41/04 305 102H (72)発明者 飯塚 秀宏 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 小川 敏雄 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 山下 寿生 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 小豆畑 茂 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 北原 雄一 茨城県ひたちなか市大字高場2520番地 株 式会社日立製作所自動車機器事業部内 (72)発明者 平塚 俊史 茨城県ひたちなか市大字高場2520番地 株 式会社日立製作所自動車機器事業部内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI F01N 3/10 ZAB F02D 29/02 321C 3/24 41/04 305A ZAB B01D 53/36 ZAB F02D 29/02 321 102E 41/04 305 102H (72) Inventor Hidehiro Iizuka 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi, Ltd. Hitachi Research Laboratory (72) Inventor Toshio Ogawa 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Hitachi, Ltd., Hitachi Research Laboratories (72) Inventor Toshio Yamashita 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi, Ltd. Hitachi Research Laboratory (72) Inventor Shigeru Azuhata 7-1, Omika-cho, Hitachi City, Ibaraki Prefecture No. 1 Inside Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Yuichi Kitahara 2520 No. Odaiba, Hitachinaka City, Ibaraki Prefecture Hitachi, Ltd. Automotive Equipment Division (72) Inventor Toshifumi Hiratsuka 2520, Oaza Takaba, Hitachinaka City, Ibaraki Prefecture Hitachi, Ltd. Automotive Equipment Division

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】自動車内燃機関において、エンジンスイッ
チを切断後、排ガス浄化触媒の再生操作を行った後、エ
ンジンを自動停止させることを特徴とする自動車内燃機
関の排ガス浄化触媒の再生方法。
1. A method for regenerating an exhaust gas purifying catalyst for an automobile internal combustion engine, comprising: after turning off an engine switch, performing an operation for regenerating the exhaust gas purifying catalyst, and then automatically stopping the engine.
【請求項2】自動車内燃機関において、理論空燃比また
は燃料過多の状態で運転し、排ガス浄化触媒中に含まれ
る硫黄化合物を脱離させることを特徴とする自動車内燃
機関の排ガス浄化触媒の再生方法。
2. A method for regenerating an exhaust gas purifying catalyst for an automobile internal combustion engine, comprising operating the engine at a stoichiometric air-fuel ratio or an excessive amount of fuel to desorb sulfur compounds contained in the exhaust gas purifying catalyst. .
【請求項3】自動車内燃機関において、エンジンスイッ
チを切断後、理論空燃比または燃料過多の状態で運転
し、排ガス浄化触媒中に含まれる硫黄化合物を脱離させ
た後、エンジンを自動停止させることを特徴とする自動
車内燃機関の排ガス浄化触媒の再生方法。
3. An internal combustion engine for an automobile, wherein after the engine switch is turned off, the engine is operated with a stoichiometric air-fuel ratio or an excessive amount of fuel to desorb sulfur compounds contained in the exhaust gas purification catalyst, and then the engine is automatically stopped. A method for regenerating an exhaust gas purifying catalyst for an automobile internal combustion engine, comprising:
【請求項4】自動車内燃機関において、エンジンスイッ
チを切断後、排ガス浄化触媒の温度が400℃以上とな
るように制御した状態で、理論空燃比または理論空燃比
よりも燃料過多の状態で運転した後、エンジンを自動停
止させることを特徴とする自動車内燃機関の排ガス浄化
触媒の再生方法。
4. An automobile internal combustion engine is operated with the stoichiometric air-fuel ratio or in a state where the fuel is more than the stoichiometric air-fuel ratio in a state where the temperature of the exhaust gas purifying catalyst is controlled to be 400 ° C. or higher after the engine switch is turned off. A method for regenerating an exhaust gas purifying catalyst for an automobile internal combustion engine, comprising automatically stopping the engine.
【請求項5】請求項1,2,3または4において、上記
排ガス浄化触媒が貴金属,アルカリ土類金属及び希土類
金属を担持した耐熱性金属酸化物である自動車内燃機関
の排ガス浄化触媒の再生方法。
5. A method for regenerating an exhaust gas purifying catalyst for an automobile internal combustion engine according to claim 1, wherein said exhaust gas purifying catalyst is a heat-resistant metal oxide carrying a noble metal, an alkaline earth metal and a rare earth metal. .
JP9031716A 1997-02-17 1997-02-17 Regenerating method of exhaust emission control catalyst of internal combustion engine in automobile Pending JPH10231720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9031716A JPH10231720A (en) 1997-02-17 1997-02-17 Regenerating method of exhaust emission control catalyst of internal combustion engine in automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9031716A JPH10231720A (en) 1997-02-17 1997-02-17 Regenerating method of exhaust emission control catalyst of internal combustion engine in automobile

Publications (1)

Publication Number Publication Date
JPH10231720A true JPH10231720A (en) 1998-09-02

Family

ID=12338795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9031716A Pending JPH10231720A (en) 1997-02-17 1997-02-17 Regenerating method of exhaust emission control catalyst of internal combustion engine in automobile

Country Status (1)

Country Link
JP (1) JPH10231720A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3064729A1 (en) 2015-03-04 2016-09-07 Toyota Jidosha Kabushiki Kaisha Exhaust gas control system for internal combustion engine
JP2018053897A (en) * 2013-03-22 2018-04-05 日本碍子株式会社 Reductant injector, exhaust gas treatment device and exhaust gas treatment method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018053897A (en) * 2013-03-22 2018-04-05 日本碍子株式会社 Reductant injector, exhaust gas treatment device and exhaust gas treatment method
EP3064729A1 (en) 2015-03-04 2016-09-07 Toyota Jidosha Kabushiki Kaisha Exhaust gas control system for internal combustion engine
US10202920B2 (en) 2015-03-04 2019-02-12 Toyota Jidosha Kabushiki Kaisha Exhaust gas control system for internal combustion engine

Similar Documents

Publication Publication Date Title
US5727385A (en) Lean-burn nox catalyst/nox trap system
US7799298B2 (en) Catalyst arrangement and method of purifying the exhaust gas of internal combustion engines operated under lean conditions
US6471924B1 (en) Method and apparatus for NOx abatement in lean gaseous streams
JP4590733B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the catalyst
JPH10118458A (en) Catalyst and method for removing nitrogen oxide
EP1188908B1 (en) Exhaust gas purifying system
JP2013176774A (en) Catalytic trap
JP3433956B2 (en) Exhaust gas purification method
US5972828A (en) Method of manufacturing catalyst for cleaning exhaust gas released from internal combustion engine, and catalyst for the same
JPH0810573A (en) Exhaust gas purifying device
JP2002168117A (en) Exhaust emission control system
JPH10231720A (en) Regenerating method of exhaust emission control catalyst of internal combustion engine in automobile
JPH06165920A (en) Exhaust gas purifying method
JP3395525B2 (en) Internal combustion engine exhaust gas purification catalyst and purification method
JP2002119831A (en) Nox trap for suppressing emission of automobile
JPH0871424A (en) Catalyst for purification of exhaust gas
JPH1136847A (en) Regeneration of exhaust gas purifying catalyst of internal combustion engine
JP3435992B2 (en) Purification method of exhaust gas containing nitrogen oxides
JPH0326343A (en) Catalyst for purification of exhaust gas
JP3391569B2 (en) Exhaust gas purification method
JPS5817645B2 (en) Automotive exhaust gas purification device
JPH10338A (en) Purifying method for exhaust gas and catalyst
JPH11285624A (en) Use of platinum/alumina-nitrogen oxide trap for reducing automobile exhaust product
CN114762828A (en) Anti-sulfur poisoning catalyst, LNT device, tail gas treatment system and vehicle
JP2003148139A (en) Exhaust emission control device and method for internal combustion engine