JPH1042421A - Manufacture of reinforced insulator block for power cable connecting section and structure of power cable connecting section using the block - Google Patents

Manufacture of reinforced insulator block for power cable connecting section and structure of power cable connecting section using the block

Info

Publication number
JPH1042421A
JPH1042421A JP8207889A JP20788996A JPH1042421A JP H1042421 A JPH1042421 A JP H1042421A JP 8207889 A JP8207889 A JP 8207889A JP 20788996 A JP20788996 A JP 20788996A JP H1042421 A JPH1042421 A JP H1042421A
Authority
JP
Japan
Prior art keywords
block
power cable
reinforcing insulator
cross
insulator block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8207889A
Other languages
Japanese (ja)
Inventor
Katsuhiko Takahashi
克彦 高橋
Shuichi Sugiyama
秀一 杉山
Izumi Ishikawa
泉 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP8207889A priority Critical patent/JPH1042421A/en
Priority to MYUI9703261 priority patent/MY135015A/en
Publication of JPH1042421A publication Critical patent/JPH1042421A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Terminals (AREA)
  • Cable Accessories (AREA)
  • Resistance Heating (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the occurrence of voids by improving the mechanical strength at a boundary. SOLUTION: The inside diameter of a reinforced insulating block 1 is made smaller than the outside diameter of a power cable connecting section 2, and at the same time, the molded block 1 is crosslinked. After crosslinking, the by-product generated by the crosslinking reaction is removed by volatilization by keeping the block 1 in a state, where the block 1 is heated to a temperature lower than the melting point. Then the block 1 is expanded, so that the inside diameter of the block 1 can become larger than the outside diameter of the connecting section 2 by heating the block to a temperature higher than the melting point, and the internal surface of the expanded block 1 is impregnated with a crosslinking agent after the block 1 has been cooled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、電力ケーブル接
続部用補強絶縁体ブロックの製造方法及びこのブロック
を用いた電力ケーブル接続部の構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a reinforcing insulator block for a power cable connection portion and a structure of a power cable connection portion using the block.

【0002】[0002]

【従来の技術】電力ケーブルの接続においては、いくつ
かの方法が提案されている。例えば、補強絶縁体とし
て、予めテープ状に成形された架橋剤入り樹脂をペンシ
リングされたケーブル導体同士の接続個所に巻き付け、
架橋金型により全体を覆いモールド架橋する方法、すな
わちテープモールドジョイント(TMJ)と呼ばれる方
法がある。このTMJ法では、施工現場でテープを巻く
ため、補強絶縁体内に異物を取り込む危険性が高く、信
頼性に劣るものであった。別の方法としては、より信頼
性の高い接続部を得るため、275KV級CVケーブル
の接続部としては、架橋剤入りポリエチレン樹脂を予め
ケーブル接続部にセットした金型内に押出機により押出
し注入した後、モールド架橋する方法、すなわち押出し
モールドジョイント(EMJ)と呼ばれる方法がある。
この方法は性能的には優れるが、施工現場に押出し機を
持ち込む必要があり、広いスペースを必要とし、また樹
脂の押出し工程、押出し後の補正成形等が必要となり、
施工時間が長いという欠点があった。そこで、信頼性も
高く、施工時間も短くてすむ方法としてブロックモール
ドジョイント(BMJ)と呼ばれる方法が開発された。
BMJ法とは、工場などで予め成形された補強絶縁体ブ
ロックを補強絶縁体として用い、このブロックで接続部
を被着し、モールド架橋するものである。この方法に関
する従来例としては、特開昭62−31315号公報に
記載のものが知られている。これは、接続すべきケーブ
ル導体同士を電気的に接続した後に、この接続部に補強
絶縁体ブロックを被着し、このブロックを加熱して溶融
軟化及び加硫・架橋し、かつ外側から加圧し間隙を押し
潰して絶縁層を形成するものである。加圧して間隙を押
し潰すということは、ブロックの内径はケーブル接続部
の外径よりも大きく成形されているものである。
2. Description of the Related Art Several methods have been proposed for connecting power cables. For example, as a reinforcing insulator, a resin containing a cross-linking agent molded in a tape shape in advance is wound around a connection point between the pencilled cable conductors,
There is a method of covering the whole with a cross-linking mold and cross-linking the mold, that is, a method called a tape mold joint (TMJ). In the TMJ method, since the tape is wound at the construction site, there is a high risk of foreign matter being taken into the reinforcing insulator, and the reliability is poor. As another method, in order to obtain a more reliable connection part, as a connection part of a 275 KV class CV cable, a polyethylene resin containing a cross-linking agent was extruded and injected into a mold previously set in the cable connection part by an extruder. Thereafter, there is a method of performing mold crosslinking, that is, a method called an extrusion mold joint (EMJ).
Although this method is excellent in performance, it is necessary to bring an extruder to the construction site, requires a large space, and also requires a resin extrusion process, correction molding after extrusion, etc.,
There was a disadvantage that the construction time was long. Accordingly, a method called block mold joint (BMJ) has been developed as a method that requires high reliability and requires a short construction time.
In the BMJ method, a reinforcing insulator block formed in advance at a factory or the like is used as a reinforcing insulator, and a connection portion is attached to the block and the mold is crosslinked. As a conventional example of this method, a method described in Japanese Patent Application Laid-Open No. 62-31315 is known. This means that after electrically connecting the cable conductors to be connected, a reinforcing insulator block is applied to this connection, and this block is heated to melt soften and vulcanize / crosslink, and pressurized from the outside. The gap is crushed to form an insulating layer. Pressing and crushing the gap means that the inner diameter of the block is formed larger than the outer diameter of the cable connection.

【0003】従来のBMJ法では、接続ケーブルの挿入
のし易さやケーブルの寸法誤差等を考慮して補強絶縁体
ブロックの内径はケーブル接続部の外径に対して大きく
成形し、架橋モールド工程で加圧・加熱し溶融させ径差
によって生ずる隙間を閉じている。従って、適切な加圧
・加熱方法をとらなければ、場合によっては隙間が完全
に閉じず、所々に空隙を生じ、絶縁機能を低下させるお
それがあった。また、架橋モールド工程の化学反応によ
って生じた副生成物が絶縁性能を低下させるおそれもあ
った。
In the conventional BMJ method, the inner diameter of the reinforcing insulator block is formed larger than the outer diameter of the cable connection portion in consideration of the ease of insertion of the connection cable, the dimensional error of the cable, and the like. The gap created by the pressure difference, heating and melting is closed. Therefore, unless an appropriate pressurizing / heating method is adopted, the gap may not be completely closed in some cases, and a gap may be formed in some places, which may lower the insulating function. In addition, there is a possibility that a by-product generated by a chemical reaction in the cross-linking mold step may deteriorate insulation performance.

【0004】そこで、接続部とブロックとの間に空隙を
生じることなく、架橋による副生成物が接続部にブロッ
クを被着する際には発生せず、絶縁性能に優れた電力ケ
ーブル接続部の絶縁体形成方法を提供することを目的と
して、本出願人は、先に特願平6−336276号にお
いて「電力ケーブル接続部の絶縁体形成方法」を提案し
た。
Therefore, there is no gap between the connection portion and the block, no by-products due to cross-linking are generated when the block is attached to the connection portion, and a power cable connection portion having excellent insulation performance is obtained. For the purpose of providing an insulator forming method, the present applicant has previously proposed "a method of forming an insulator at a power cable connection portion" in Japanese Patent Application No. 6-336276.

【0005】[0005]

【発明が解決しようとする課題】特願平6−33627
6号では、補強絶縁体ならびにケーブル絶縁体中に架橋
剤が存在しないため、モールド工程後、界面を通じての
融着は生じるものの、補強絶縁体とケーブル絶縁体分子
鎖間では架橋点が形成されないため、融点以上の温度に
おいて、界面の機械的強度がバルクの架橋ポリエチレン
と比較して低下することが考えられる。また、架橋剤に
DCPを用いた場合、架橋反応によって生じる副生成物
質のうち、クミルアルコールは架橋時の熱によってさら
に水を生じることが知られている。水は低密度ポリエチ
レン中で、その濃度が250ppm を越えると、凝集によ
ってボイドを多数形成することがわかっており、このボ
イドは大きく成長すると時として、絶縁特性に有害とな
ることがある。水の生成は架橋時の熱履歴によって生成
量が変わり、また実使用時に高温下におかれると、残留
しているクミルアルコールの反応によって生成され、ボ
イドの原因となることがある。
[Problems to be Solved by the Invention] Japanese Patent Application No. Hei 6-33627
In No. 6, since no cross-linking agent is present in the reinforcing insulator and the cable insulator, fusion occurs through the interface after the molding step, but no cross-linking point is formed between the reinforcing insulator and the molecular chain of the cable insulator. At a temperature equal to or higher than the melting point, the mechanical strength of the interface may decrease compared to bulk crosslinked polyethylene. In addition, when DCP is used as a cross-linking agent, it is known that, among the by-products generated by the cross-linking reaction, cumyl alcohol further generates water due to heat at the time of cross-linking. It has been found that water in low density polyethylene, when its concentration exceeds 250 ppm, forms a large number of voids due to agglomeration, and the voids, when grown large, can sometimes be detrimental to the insulating properties. The amount of water generated varies depending on the heat history at the time of cross-linking, and when exposed to high temperatures during actual use, it is generated by the reaction of residual cumyl alcohol, which may cause voids.

【0006】そこで、この発明は、電力ケーブル接続部
と補強絶縁体ブロックとの界面の機械的強度を向上さ
せ、ボイドの発生をなくすことのできる電力ケーブル接
続部用補強絶縁体ブロックの製造方法を提供するととも
に、このブロックを用いた電力ケーブル接続部の構造を
提供することを目的とする。
Therefore, the present invention provides a method of manufacturing a reinforcing insulator block for a power cable connecting portion which can improve the mechanical strength of the interface between the power cable connecting portion and the reinforcing insulator block and eliminate the occurrence of voids. It is an object of the present invention to provide a structure of a power cable connecting portion using the block.

【0007】[0007]

【課題を解決するための手段】上述の目的を達成するた
め、この発明に係る製造方法は、補強絶縁体ブロックの
内径を電力ケーブル接続部の外径よりも小さく成形する
とともに、このブロックを架橋剤入り樹脂で成形し、成
形された補強絶縁体ブロックを架橋し、架橋後に補強絶
縁体ブロックを融点以下で加熱・保管して架橋反応によ
り生じた副生成物を揮散、除去し、次いで補強絶縁体ブ
ロックを融点以上で加熱してこのブロックの内径を電力
ケーブル接続部の外径よりも大きくなるように拡径し、
拡径した状態の補強絶縁体ブロックを冷却させた後にこ
のブロック内径に架橋剤を含浸させたものであり、ま
た、補強絶縁体ブロックの内径を電力ケーブル接続部の
外径よりも小さく成形するとともに、このブロックを架
橋剤を含まない樹脂で成形し、成形された補強絶縁体ブ
ロックに架橋剤を含浸させて架橋し、架橋後に補強絶縁
体ブロックを融点以下で加熱・保管して架橋反応により
生じた副生成物を揮散、除去し、次いで補強絶縁体ブロ
ックを融点以上で加熱してこのブロックの内径を電力ケ
ーブル接続部の外径よりも大きくなるように拡径し、拡
径した状態の補強絶縁体ブロックを冷却させた後にこの
ブロック内径に架橋剤を含浸させたものである。さら
に、この発明に係る構造は、このような補強絶縁体ブロ
ックを電力ケーブル接続部に被着し、被着したブロック
を加熱して架橋するとともに、さらに加熱・加圧してブ
ロックと電力ケーブル接続部とを融着して成るものであ
る。
In order to achieve the above-mentioned object, according to the manufacturing method of the present invention, an inner diameter of a reinforcing insulator block is formed smaller than an outer diameter of a power cable connection portion, and this block is bridged. Molded with resin, cross-links the formed reinforcing insulator block, after cross-linking, heats and stores the reinforcing insulator block at the melting point or below to volatilize and remove by-products generated by the cross-linking reaction, Heating the body block above the melting point, expanding the inner diameter of this block to be larger than the outer diameter of the power cable connection,
After cooling the expanded reinforcing insulator block, the inner diameter of the block is impregnated with a crosslinking agent, and the inner diameter of the reinforcing insulator block is formed smaller than the outer diameter of the power cable connection portion. This block is molded with a resin that does not contain a crosslinking agent, and the molded reinforcing insulator block is impregnated with a crosslinking agent to be crosslinked, and after crosslinking, the reinforcing insulator block is heated and stored at a melting point or lower to be generated by a crosslinking reaction. The by-products are volatilized and removed, and then the reinforcing insulator block is heated above its melting point to expand the inner diameter of this block to be larger than the outer diameter of the power cable connection. After cooling the insulator block, the inside diameter of the block is impregnated with a crosslinking agent. Further, the structure according to the present invention is such that the reinforcing insulator block is attached to the power cable connection portion, and the applied block is heated and cross-linked, and further heated and pressurized, and the block is connected to the power cable connection portion. Are fused.

【0008】[0008]

【発明の実施の形態】以下に、この発明の実施例を説明
すると、図1に示す補強絶縁体ブロック1は、その成形
時に内径は電力ケーブル接続部2の外径よりも小さく成
形し、かつ架橋剤入り樹脂で成形したものである。この
ように成形された補強絶縁体ブロック1を架橋し、架橋
後の補強絶縁体ブロック1を融点以下で加熱処理して保
管し、架橋による副生成物を揮散、除去する。図1の補
強絶縁体ブロック1は、副生成物が除去され内径が電力
ケーブル接続部2の外径よりも小さく形成された電力ケ
ーブル接続部2に被着される前の状態を示すものであ
る。架橋反応により生じた副生成物を除去し、その内径
が電力ケーブル接続部2の外径よりも小さく形成された
図1に示す補強絶縁体ブロック1は、その後、融点以上
の温度で加熱し、適当な装置や治具を用いて内径を電力
ケーブル接続部2の外径よりも大きくなるように拡径す
る。内径が拡径した状態の補強絶縁体ブロック1を冷却
させた後にこのブロック1の内径表面近傍に架橋剤を含
浸させる。含浸時の架橋剤濃度は、補強絶縁体あるいは
ケーブル絶縁体に必要なゲル分率を得るのに必要かつ十
分な量であって、最低限必要な架橋度を得るために要す
る量あればよいが、その2倍程度添加させることが、一
層望ましい。なお、架橋剤の含浸工程は、補強絶縁体の
拡径工程前において行なってもよい。このように拡径後
冷却し、架橋剤が含浸された補強絶縁体ブロック1は図
2に示す状態になる。この状態において電力ケーブルを
挿入して両ケーブルの導体部分を接続する。補強絶縁体
ブロック1の内径は拡径されているので、電力ケーブル
の挿入はスムースに行われる。図2に示す状態で補強絶
縁体ブロック1を融点以上の温度で加熱・加圧する。こ
の補強絶縁体ブロック1の加熱温度が融点を越えると、
補強絶縁体ブロック1の内径は元々電力ケーブル接続部
2の外径よりも小さく成形されているので、収縮し、補
強絶縁体ブロック1と電力ケーブル接続部2との隙間は
容易に閉じる。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below. The reinforcing insulator block 1 shown in FIG. 1 has an inner diameter smaller than the outer diameter of the power cable connecting portion 2 at the time of molding. It is molded with a resin containing a crosslinking agent. The thus formed reinforcing insulator block 1 is cross-linked, and the cross-linked reinforcing insulator block 1 is subjected to a heat treatment at a melting point or lower and stored, and the by-products due to the cross-linking are volatilized and removed. The reinforcing insulator block 1 in FIG. 1 shows a state before being attached to the power cable connection portion 2 in which by-products are removed and the inner diameter is smaller than the outer diameter of the power cable connection portion 2. . The reinforcing insulator block 1 shown in FIG. 1 in which by-products generated by the cross-linking reaction are removed and the inner diameter of which is smaller than the outer diameter of the power cable connection portion 2 is heated at a temperature equal to or higher than the melting point, The inner diameter is increased using an appropriate device or jig so that the inner diameter is larger than the outer diameter of the power cable connection portion 2. After cooling the reinforcing insulator block 1 having an increased inner diameter, a cross-linking agent is impregnated near the inner surface of the block 1. The concentration of the cross-linking agent at the time of impregnation may be an amount necessary and sufficient to obtain a gel fraction required for a reinforcing insulator or a cable insulator, and may be an amount necessary to obtain a minimum required degree of cross-linking. , It is more desirable to add about twice as much. The step of impregnating the crosslinking agent may be performed before the step of expanding the diameter of the reinforcing insulator. In this way, the diameter is increased and then cooled, and the reinforcing insulator block 1 impregnated with the crosslinking agent is in the state shown in FIG. In this state, the power cable is inserted and the conductors of both cables are connected. Since the inner diameter of the reinforcing insulator block 1 is increased, the insertion of the power cable is performed smoothly. In the state shown in FIG. 2, the reinforcing insulator block 1 is heated and pressed at a temperature equal to or higher than the melting point. When the heating temperature of the reinforcing insulator block 1 exceeds the melting point,
Since the inner diameter of the reinforcing insulator block 1 is originally formed smaller than the outer diameter of the power cable connecting portion 2, it contracts and the gap between the reinforcing insulator block 1 and the power cable connecting portion 2 is easily closed.

【0009】図2に示すように電力ケーブルを挿入し接
続した後に補強絶縁体ブロック1を加熱、加圧し、閉じ
た界面を融着させると同時に、架橋反応が進行し、補強
絶縁体とケーブル絶縁体の分子鎖間で架橋による網目鎖
構造が成長し、バルクの架橋ポリエチレン相当の機械的
強度が得られる。この時、補強絶縁体ブロック1は、あ
らかじめ架橋による副生成物を揮散、除去してあるの
で、加熱によって生じた副生成物は容易に補強絶縁体内
を拡散し、補強絶縁体外へ揮散する。副生成物として
は、水分および水分発生の原因となるクミルアルコール
の濃度を管理することが望ましい。架橋後に存在してい
る水分が250ppm を下回ることが望ましい。これによ
ってミクロボイドの発生を防止することが可能となる。
As shown in FIG. 2, after the power cable is inserted and connected, the reinforcing insulator block 1 is heated and pressurized to fuse the closed interface, and at the same time, the crosslinking reaction proceeds, and the reinforcing insulator and the cable are insulated. A crosslinked network structure grows between the molecular chains of the body by crosslinking, and the mechanical strength equivalent to bulk crosslinked polyethylene is obtained. At this time, since the by-products due to the crosslinking are volatilized and removed in advance in the reinforcing insulator block 1, the by-products generated by the heating easily diffuse in the reinforcing insulator and volatilize out of the reinforcing insulator. As a by-product, it is desirable to control the concentration of water and cumyl alcohol which causes the generation of water. Desirably, the water present after crosslinking is below 250 ppm. This makes it possible to prevent the generation of microvoids.

【0010】図3は電力ケーブル10の一例を示し、導
体11を絶縁層12で被覆したものであり、接続すべき
電力ケーブル10の端部同士をペンシリングし、導体1
1同士を接続具13を用いて接続できるようにしてあ
る。この図3に示すような電力ケーブル10を補強絶縁
体ブロック1の両端から挿入して導体11同士を接続す
る。電力ケーブル接続部2の構成は図3に示す一例の他
に、種々の接続手段がある。
FIG. 3 shows an example of a power cable 10 in which a conductor 11 is covered with an insulating layer 12, and the ends of the power cable 10 to be connected are pencil-bonded to each other.
1 can be connected to each other by using a connector 13. A power cable 10 as shown in FIG. 3 is inserted from both ends of the reinforcing insulator block 1 to connect the conductors 11 to each other. The configuration of the power cable connection unit 2 includes various connection means other than the example shown in FIG.

【0011】実施例1 架橋剤(DCP)入り樹脂を用いて、ケーブル接続部外
径に対し、5%小さい内径の補強絶縁体ブロックを成形
した。次いで、同ブロックを架橋後、融点以下で保管
し、架橋反応によって生じた副生成物を揮散、除去し
た。続いて、同ブロックを融点+10℃まで加熱し、ケ
ーブル接続部外径に対し5%内径を拡径し、その形状を
保持したまま、冷却した。補強絶縁体ブロックの内径に
液化した架橋剤(DCP)を含浸し、表面から5mmの厚
さでの架橋剤濃度をケーブル絶縁体に配合された架橋剤
濃度と等しい補強絶縁体ブロック1を製造した。このよ
うに成形したブロックを補強絶縁体として、BMJを組
んだ。
Example 1 Using a resin containing a cross-linking agent (DCP), a reinforcing insulator block having an inner diameter smaller by 5% than the outer diameter of a cable connecting portion was formed. Next, after the same block was crosslinked, it was stored at a temperature lower than the melting point, and by-products generated by the crosslinking reaction were volatilized and removed. Subsequently, the block was heated to a melting point of + 10 ° C., the inner diameter was increased by 5% with respect to the outer diameter of the cable connection portion, and the block was cooled while maintaining its shape. A liquefied cross-linking agent (DCP) was impregnated into the inner diameter of the reinforcing insulator block, and a reinforcing insulator block 1 having a cross-linking agent concentration at a thickness of 5 mm from the surface equal to the cross-linking agent concentration blended in the cable insulator was manufactured. . A BMJ was assembled using the block thus formed as a reinforcing insulator.

【0012】実施例2 実施例1における拡径されたブロック内径へ含浸させる
架橋剤濃度を2倍とした。
Example 2 The concentration of the crosslinking agent for impregnating the inner diameter of the expanded block in Example 1 was doubled.

【0013】実施例3 架橋剤(DCP)入り樹脂を用いて、ケーブル接続部外
径に対し、5%小さい内径の補強絶縁体ブロックを成形
した。同ブロックを架橋後、融点以下で加熱保管し、架
橋反応によって生じた副生成物を揮散、除去した。次い
で補強絶縁体ブロックの内径に液化した架橋剤(DC
P)を含浸し、表面から5mmの厚さでの架橋剤濃度をケ
ーブル絶縁体に配合された架橋剤濃度と等しいものとし
た補強絶縁体ブロック1を製造した。続いて、同ブロッ
クを融点+5℃まで加熱し、ケーブル接続部外径に対し
5%内径を拡径し、その形状を保持したまま、冷却し
た。このように成形したブロックを補強絶縁体として、
BMJを組んだ。
Example 3 Using a resin containing a cross-linking agent (DCP), a reinforcing insulator block having an inner diameter smaller by 5% than the outer diameter of a cable connecting portion was formed. After crosslinking the block, the block was heated and stored at a temperature lower than the melting point, and by-products generated by the crosslinking reaction were volatilized and removed. Next, a liquefied crosslinking agent (DC) is applied to the inner diameter of the reinforcing insulator block.
P) was impregnated to produce a reinforcing insulator block 1 having a cross-linking agent concentration at a thickness of 5 mm from the surface equal to the cross-linking agent concentration incorporated in the cable insulator. Subsequently, the block was heated to a melting point of + 5 ° C., the inner diameter was increased by 5% with respect to the outer diameter of the cable connection portion, and the block was cooled while maintaining its shape. The block formed in this way is used as a reinforcing insulator.
I assembled BMJ.

【0014】実施例4 実施例3における拡径されたブロック内径へ含浸させる
架橋剤濃度を2倍とした。
Example 4 The concentration of the cross-linking agent for impregnating the inner diameter of the expanded block in Example 3 was doubled.

【0015】実施例5 架橋剤未添加の樹脂を用いて、ケーブル接続部外径に対
し、5%小さい内径の補強絶縁体ブロックを成形した。
補強絶縁体ブロックに架橋剤(DCP)を含浸後、同ブ
ロックを架橋、融点以下で加熱保管し、架橋反応によっ
て生じた副生成物を揮散、除去した。続いて、同ブロッ
クを融点+10℃まで加熱し、ケーブル接続部外径に対
し5%内径を拡径し、その形状を保持したまま、冷却し
た。補強絶縁体ブロックの内径に液化した架橋剤(DC
P)を含浸し、表面から5mmの厚さでの架橋濃度をケー
ブル絶縁体に配合された架橋剤濃度と等しいものとした
補強絶縁体ブロック1を製造した。このように成形した
ブロックを補強絶縁体として、BMJを組んだ。
Example 5 A reinforcing insulator block having an inner diameter smaller by 5% than the outer diameter of a cable connecting portion was formed by using a resin containing no crosslinking agent.
After the reinforcing insulator block was impregnated with a cross-linking agent (DCP), the block was cross-linked, and heated and stored at a melting point or lower, and by-products generated by the cross-linking reaction were volatilized and removed. Subsequently, the block was heated to a melting point of + 10 ° C., the inner diameter was increased by 5% with respect to the outer diameter of the cable connection portion, and the block was cooled while maintaining its shape. Liquefied cross-linking agent (DC
P) was impregnated, and a reinforcing insulator block 1 was manufactured in which the cross-linking concentration at a thickness of 5 mm from the surface was equal to the cross-linking agent concentration incorporated in the cable insulator. A BMJ was assembled using the block thus formed as a reinforcing insulator.

【0016】実施例6 実施例5における拡径されたブロック内径へ含浸させる
架橋剤濃度を2倍とした。
Example 6 The concentration of the cross-linking agent for impregnating the inner diameter of the expanded block in Example 5 was doubled.

【0017】実施例7 架橋剤未添加の樹脂を用いて、ケーブル接続部外径に対
し、5%小さい内径の補強絶縁体ブロックを成形した。
補強絶縁体ブロックに架橋剤(DCP)を含浸後、同ブ
ロックを架橋、融点以下で加熱保管し、架橋反応によっ
て生じた副生成物を揮散、除去した。次いで補強絶縁体
ブロックの内径に液化した架橋剤(DCP)を含浸し、
表面から5mmの厚さでの架橋剤濃度をケーブル絶縁体に
配合された架橋剤濃度と等しいものとした補強絶縁体ブ
ロック1を製造した。続いて、同ブロックを融点+5℃
まで加熱し、ケーブル接続部外径に対し5%内径を拡径
し、その形状を保持したまま、冷却した。このように成
形したブロックを補強絶縁体として、BMJを組んだ。
EXAMPLE 7 A reinforcing insulator block having an inner diameter smaller by 5% than the outer diameter of a cable connecting portion was formed by using a resin without a crosslinking agent.
After the reinforcing insulator block was impregnated with a cross-linking agent (DCP), the block was cross-linked, and heated and stored at a melting point or lower, and by-products generated by the cross-linking reaction were volatilized and removed. Next, the inside diameter of the reinforcing insulator block is impregnated with a liquefied crosslinking agent (DCP),
A reinforcing insulator block 1 was manufactured in which the cross-linking agent concentration at a thickness of 5 mm from the surface was equal to the cross-linking agent concentration incorporated in the cable insulator. Subsequently, the same block is melted at + 5 ° C
The inner diameter was increased by 5% with respect to the outer diameter of the cable connection part, and cooled while maintaining its shape. A BMJ was assembled using the block thus formed as a reinforcing insulator.

【0018】実施例8 実施例7における拡径されたブロック内径へ含浸させる
架橋剤濃度を2倍とした。
Example 8 The concentration of the cross-linking agent for impregnating the inner diameter of the expanded block in Example 7 was doubled.

【0019】なお、上述した実施例全ては、ブロック架
橋後の水分が200ppm 以下となる条件で製造した。
All the above-mentioned examples were manufactured under the condition that the water content after block crosslinking was 200 ppm or less.

【0020】比較例1 ケーブル接続部外径に対し、5%小さい内径の補強絶縁
体のブロックを成形し、同ブロックを架橋後、融点以下
で加熱保管し、架橋反応によって生じた副生成物を揮
散、除去した。続いて、同ブロックを融点+10℃まで
加熱し、ケーブル外径に対し5%内径を拡径し、その形
状を保持したまま、冷却した。このように成形したブロ
ックを補強絶縁体として、BMJを組んだ。
COMPARATIVE EXAMPLE 1 A block of a reinforcing insulator having an inner diameter 5% smaller than the outer diameter of a cable connecting portion was formed, and after the block was crosslinked, it was heated and stored at a temperature lower than the melting point, and a by-product produced by the crosslinking reaction was removed. Volatilized and removed. Subsequently, the block was heated to the melting point + 10 ° C., the inner diameter was increased by 5% with respect to the outer diameter of the cable, and the block was cooled while maintaining its shape. A BMJ was assembled using the block thus formed as a reinforcing insulator.

【0021】比較例2 ケーブル接続部外径に対し、5%大きい内径の架橋剤入
り樹脂を用いて補強絶縁体ブロックを成形した。このよ
うに成形したブロックを補強絶縁体として、BMJを組
んだ。
Comparative Example 2 A reinforcing insulator block was formed using a resin containing a crosslinking agent having an inner diameter 5% larger than the outer diameter of the cable connection portion. A BMJ was assembled using the block thus formed as a reinforcing insulator.

【0022】比較例3 架橋剤(DCP)入り樹脂を用いて、ケーブル接続部外
径に対し、5%小さい内径の補強絶縁体ブロックを成形
した。同ブロックを架橋後、融点以下で保管し、架橋反
応によって生じた副生成物を揮散、除去した。続いて、
同ブロックを融点+10℃まで加熱し、ケーブル外径に
対し5%内径を拡径し、その形状を保持したまま、冷却
した。補強絶縁体ブロックの内径に液化した架橋剤(D
CP)を含浸し、表面から5mmの厚さでの架橋剤濃度を
ケーブル絶縁体に配合された架橋剤濃度と等しいものと
した補強絶縁体ブロックを製造した。このように成形し
たブロックを補強絶縁体として、BMJを組んだ。
Comparative Example 3 Using a resin containing a cross-linking agent (DCP), a reinforcing insulator block having an inner diameter smaller by 5% than the outer diameter of the cable connecting portion was formed. After the cross-linking, the block was stored at a temperature lower than the melting point, and by-products generated by the cross-linking reaction were volatilized and removed. continue,
The block was heated to a melting point of + 10 ° C., the inner diameter was increased by 5% with respect to the outer diameter of the cable, and the block was cooled while maintaining its shape. The liquefied crosslinking agent (D
CP) to produce a reinforced insulator block having a crosslinker concentration at a thickness of 5 mm from the surface equal to the crosslinker concentration incorporated in the cable insulation. A BMJ was assembled using the block thus formed as a reinforcing insulator.

【0023】比較例4 比較例3における拡径されたブロック内径へ含浸させる
架橋剤濃度を2倍とした。
Comparative Example 4 The concentration of the cross-linking agent for impregnating the inner diameter of the expanded block in Comparative Example 3 was doubled.

【0024】比較例3,4では、ブロック架橋後の水分
と残存するクミルアルコールから発生し得る水分との総
和がおおよそ300ppm となる条件で製造した。
In Comparative Examples 3 and 4, the production was performed under the condition that the sum of the water after the block crosslinking and the water generated from the remaining cumyl alcohol was about 300 ppm.

【0025】上記実施例1〜8および比較例1〜4例の
補強ブロックについて、BMJの施工後における常温
(25℃)および120℃における補強絶縁体ブロック
/ケーブル絶縁体界面の機械的強度(引き剥がし試験)
を実施した。また、モールド後の水分および、クミルア
ルコール濃度を測定し、クミルアルコールから発生し得
る水分量と前述水分量の総和を比較した。その結果は、
次の表1に示す通りであった。
With respect to the reinforcing blocks of Examples 1 to 8 and Comparative Examples 1 to 4, the mechanical strength (pulling) of the reinforcing insulator block / cable insulator interface at room temperature (25 ° C.) and 120 ° C. after the BMJ was applied. Peeling test)
Was carried out. Further, the moisture and the concentration of cumyl alcohol after the mold were measured, and the amount of moisture that could be generated from cumyl alcohol was compared with the sum of the above-mentioned amounts of moisture. The result is
The results are shown in Table 1 below.

【0026】[0026]

【表1】 [Table 1]

【0027】強度は比較例2の試験温度における強度を
1として比較した相対値で表している。水分は比較例1
の水分量を1として比較した相対値で表している。比較
例2が最も発生し得る水分量が多いが、250ppm 以下
の値であった。また、比較例1が1.00で水分量が最
も低いが、100ppm 以下の値が得られていた。
The strength is expressed as a relative value when the strength at the test temperature of Comparative Example 2 is set to 1. Water content is Comparative Example 1
Are expressed as relative values when the water content is set to 1. Comparative Example 2 had the largest amount of water that could be generated, but had a value of 250 ppm or less. In Comparative Example 1, the water content was the lowest at 1.00, but a value of 100 ppm or less was obtained.

【0028】[0028]

【発明の効果】上述したような、補強絶縁体ブロックを
用いることにより、融点近傍および融点以上の温度にお
ける補強絶縁体ブロック/ケーブル絶縁体界面の機械的
強度が大幅に向上することによって、融点以上の温度下
での接続部の機械的強度を高めることが可能となった。
また、あらかじめブロック製造時に架橋後の副生成物を
適当な濃度以下に管理することによって、発生する水分
量を減少させて、モールド条件によらず、ボイドの生成
を抑えることが可能となった。
As described above, by using the above-mentioned reinforcing insulator block, the mechanical strength at the interface between the reinforcing insulator block and the cable insulator at a temperature near the melting point and at a temperature higher than the melting point is greatly improved. It has become possible to increase the mechanical strength of the connection portion under the above temperature.
In addition, by controlling the by-products after crosslinking at an appropriate concentration or less during block production in advance, the amount of generated water can be reduced, and the generation of voids can be suppressed regardless of molding conditions.

【図面の簡単な説明】[Brief description of the drawings]

【図1】最初に成形された状態の補強絶縁体ブロックの
断面図。
FIG. 1 is a cross-sectional view of a reinforcing insulator block in a first molded state.

【図2】電力ケーブルが挿入される寸前における補強絶
縁体ブロックの断面図。
FIG. 2 is a cross-sectional view of a reinforcing insulator block just before a power cable is inserted.

【図3】図2の状態における補強絶縁体ブロックに挿入
される電力ケーブルを示す断面図。
FIG. 3 is a sectional view showing a power cable inserted into a reinforcing insulator block in the state of FIG. 2;

【符号の説明】[Explanation of symbols]

1 補強絶縁体ブロック 2 電力ケーブル接続部 1 Reinforced insulator block 2 Power cable connection

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 補強絶縁体ブロックの内径を電力ケーブ
ル接続部の外径よりも小さく成形するとともに、このブ
ロックを架橋剤入り樹脂で成形し、 成形された補強絶縁体ブロックを架橋し、 架橋後に補強絶縁体ブロックを融点以下で加熱・保管し
て架橋反応により生じた副生成物を揮散、除去し、 次いで補強絶縁体ブロックを融点以上で加熱してこのブ
ロックの内径を電力ケーブル接続部の外径よりも大きく
なるように拡径し、 拡径した状態の補強絶縁体ブロックを冷却させた後にこ
のブロック内径に架橋剤を含浸させたことを特徴とする
電力ケーブル接続部用補強絶縁体ブロックの製造方法。
1. An inner diameter of a reinforced insulator block is formed smaller than an outer diameter of a power cable connection portion, and the block is formed of a resin containing a crosslinking agent, and the formed reinforced insulator block is crosslinked. The reinforcing insulator block is heated and stored at a temperature lower than the melting point to volatilize and remove by-products generated by the crosslinking reaction. Then, the reinforcing insulator block is heated at a temperature equal to or higher than the melting point so that the inner diameter of the block is outside the power cable connection portion. The reinforcing insulator block for a power cable connection part, characterized in that the diameter of the reinforcing insulator block is increased to be larger than the diameter, and after cooling the expanded reinforcing insulator block, the inner diameter of the block is impregnated with a crosslinking agent. Production method.
【請求項2】 補強絶縁体ブロックの内径を電力ケーブ
ル接続部の外径よりも小さく成形するとともに、このブ
ロックを架橋剤を含まない樹脂で成形し、 成形された補強絶縁体ブロックに架橋剤を含浸させて架
橋し、 架橋後に補強絶縁体ブロックを融点以下で加熱・保管し
て架橋反応により生じた副生成物を揮散、除去し、 次いで補強絶縁体ブロックを融点以上で加熱してこのブ
ロックの内径を電力ケーブル接続部の外径よりも大きく
なるように拡径し、 拡径した状態の補強絶縁体ブロックを冷却させた後にこ
のブロック内径に架橋剤を含浸させたことを特徴とする
電力ケーブル接続部用補強絶縁体ブロックの製造方法。
2. The reinforcing insulator block has an inner diameter smaller than an outer diameter of a power cable connecting portion, and the block is formed of a resin containing no cross-linking agent, and a cross-linking agent is applied to the formed reinforcing insulator block. After the crosslinking, the reinforcing insulator block is heated and stored at a temperature lower than the melting point to volatilize and remove by-products generated by the cross-linking reaction. A power cable characterized in that the inner diameter is enlarged so as to be larger than the outer diameter of the power cable connection portion, and the expanded diameter of the reinforcing insulator block is cooled and then the block inner diameter is impregnated with a crosslinking agent. A method for manufacturing a reinforcing insulator block for a connection portion.
【請求項3】 請求項1又は2に記載の方法により製造
された補強絶縁体ブロックを電力ケーブル接続部に被着
し、被着したブロックを加熱して架橋するとともに、さ
らに加熱・加圧してブロックと電力ケーブル接続部とを
融着して成る電力ケーブル接続部の構造。
3. A reinforcing insulator block manufactured by the method according to claim 1 or 2 is attached to a power cable connection portion, and the applied block is heated and cross-linked, and further heated and pressed. The structure of the power cable connection part formed by fusing the block and the power cable connection part.
JP8207889A 1996-07-18 1996-07-18 Manufacture of reinforced insulator block for power cable connecting section and structure of power cable connecting section using the block Pending JPH1042421A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP8207889A JPH1042421A (en) 1996-07-18 1996-07-18 Manufacture of reinforced insulator block for power cable connecting section and structure of power cable connecting section using the block
MYUI9703261 MY135015A (en) 1996-07-18 1997-07-18 Electric soldering iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8207889A JPH1042421A (en) 1996-07-18 1996-07-18 Manufacture of reinforced insulator block for power cable connecting section and structure of power cable connecting section using the block

Publications (1)

Publication Number Publication Date
JPH1042421A true JPH1042421A (en) 1998-02-13

Family

ID=16547252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8207889A Pending JPH1042421A (en) 1996-07-18 1996-07-18 Manufacture of reinforced insulator block for power cable connecting section and structure of power cable connecting section using the block

Country Status (2)

Country Link
JP (1) JPH1042421A (en)
MY (1) MY135015A (en)

Also Published As

Publication number Publication date
MY135015A (en) 2008-01-31

Similar Documents

Publication Publication Date Title
US7208682B2 (en) Electrical cable with foamed semiconductive insulation shield
JPH1042421A (en) Manufacture of reinforced insulator block for power cable connecting section and structure of power cable connecting section using the block
JPH099447A (en) Connection method of crosslinked polyethylane insulation power cable and connecting metallic mold device
EP1570495B1 (en) Electrical cable with foamed semiconductive insulation shield
JP3469759B2 (en) Method of cross-linking reinforcing insulation layer at mold connection of cross-linked polyethylene cable
JP3014522B2 (en) Insulation block for power cable connection and connection method using it
JP2000228813A (en) Connecting method for power cable
JPH08182169A (en) Method for forming insulator of power cable connecting section
JP2598850B2 (en) Method of manufacturing power cable connection
JPH02142312A (en) Formation of insulator at joint of power cable
JP2999670B2 (en) Mold joint method for cross-linked polyethylene cable
JP2000152453A (en) Power cable end processing method
JPH1032911A (en) Method for insulating reinforcement insulator for block mold joint and method for connecting power cable
JPS62196005A (en) Joint of cross-linked polyethylene insulated cable
JPH06188053A (en) Forming method for cable connecting part
JP3012514B2 (en) CV cable insulation connection method
JPH099446A (en) Connection method of rubber/plastic power cable
JPH09298819A (en) Insulator forming method for insulated wire connection
JPH11341642A (en) Tape winding staright cable joint
JPS59171483A (en) Method of heating polyolefin insulated cable at time of producing connector
JPH07236216A (en) Mold joint for crosslinked polyethylene cable with sheath separation and jointing method
JPH09284943A (en) Method for extrusion mold joint of bridgeable polyethylene cable
JPH0568075B2 (en)
JPH099448A (en) Connection method of rubber plastic power cable
JPS60128815A (en) Method of producing molding type connection unit for power cable