JPH06188053A - Forming method for cable connecting part - Google Patents

Forming method for cable connecting part

Info

Publication number
JPH06188053A
JPH06188053A JP4337028A JP33702892A JPH06188053A JP H06188053 A JPH06188053 A JP H06188053A JP 4337028 A JP4337028 A JP 4337028A JP 33702892 A JP33702892 A JP 33702892A JP H06188053 A JPH06188053 A JP H06188053A
Authority
JP
Japan
Prior art keywords
cable
insulator
insulating body
polyethylene
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4337028A
Other languages
Japanese (ja)
Inventor
Fumio Aida
二三夫 会田
Yoshimi Sato
好美 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP4337028A priority Critical patent/JPH06188053A/en
Publication of JPH06188053A publication Critical patent/JPH06188053A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)
  • Processing Of Terminals (AREA)
  • Cable Accessories (AREA)

Abstract

PURPOSE:To provide a forming method for a cable connecting part, obtainable an excellent electric characteristic appliable to even a super-high-voltage cable exceeding 275kV, e.g. 500kV, and moreover excellent in workability having a short working time. CONSTITUTION:A conductor 12 is connected by a compressed sleeve 13, then a heat contracted tube, composed of fluoreresin and being astride a cable insulating body 14, is mounted on the outer periphery of the conductor 12, and the surface of the cable insulating body 14 is heated from above at a temperature of e.g. 400 deg.C or more to form a polyethylene layer 15 of non-bridge-formation or a low-bridge-formation degree on the surface layer part of the cable insulating body 14. Then the heat contracted tube is removed, a split die for forming a reinforcement insulating body is coveredly engaged on a conductor connecting part with the cable insulating body 14 strided, and heat-melted super-low-density polyethylene, having e.g. a melting point of 116 deg.C and a density of 0.890, is pressed in and hardened to form a reinforcement insulating body 16 composed of non-bridged polyethylene.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ケーブル接続部の形成
方法に係り、とくに 275kVを越える超高圧架橋ポリオレ
フィン絶縁ケーブルの接続部の形成に有用なケーブル接
続部の形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of forming a cable connecting portion, and more particularly to a method of forming a cable connecting portion useful for forming a connecting portion of an ultra high voltage crosslinked polyolefin insulation cable having a voltage of more than 275 kV.

【0002】[0002]

【従来の技術】近年の電力需要の増大から、 275kVを越
える、たとえば 500kVのCVケーブル(架橋ポリエチレ
ン絶縁ケーブル)の開発が進められ、かかる超高圧ケー
ブルに適用できる電気性能に優れたケーブル接続部の要
求がある。
2. Description of the Related Art Due to the recent increase in power demand, development of CV cables (cross-linked polyethylene insulation cables) exceeding 275 kV, for example 500 kV, has been promoted, and cable connection parts with excellent electrical performance applicable to such ultra-high voltage cables have been developed. There is a request.

【0003】従来、CVケーブルの接続部を形成するに
あたっては、次のような押出しモールド法が一般に用い
られている。
Conventionally, the following extrusion molding method has been generally used to form the connecting portion of the CV cable.

【0004】すなわち、この方法は、図2に示すよう
に、接続すべきケーブル1の端部を段剥して接続した導
体接続部2の外周に補強絶縁体成形用の割り金型(図示
を省略)を被嵌し、この割り金型内へ加熱溶融された架
橋剤配合の絶縁性ポリエチレン組成物を圧入して絶縁体
モールド3を形成し、次いで、この絶縁体モールド3を
加熱架橋して紡錘状の補強絶縁体4を形成するもので、
補強絶縁体4のケーブル絶縁体5との界面密着性に優
れ、コンパクトで高い信頼性を有する接続部が得られる
という特徴を有している。
That is, according to this method, as shown in FIG. 2, a split mold (not shown) for molding a reinforcing insulator is formed on the outer periphery of the conductor connecting portion 2 which is connected by stripping off the end portion of the cable 1 to be connected. ), And the insulating polyethylene composition containing a cross-linking agent that has been heated and melted is press-fitted into the split mold to form an insulator mold 3, and then the insulator mold 3 is heat-crosslinked to form a spindle. To form a reinforced insulator 4 in the shape of
It is characterized in that the reinforcing insulator 4 has excellent interfacial adhesion with the cable insulator 5, and a compact and highly reliable connection portion can be obtained.

【0005】しかしながら、この方法では、架橋剤を使
用しているため、その分解残渣(たとえば架橋剤として
ジクミルパーオキサイド(DCP)を使用した場合に
は、アセトフェノン、クミルアルコール、水などが分解
残渣として補強絶縁体中に残留する。)が補強絶縁体中
に残留してボイドを発生させるなど、架橋ポリエチレン
が本来有する優れた電気特性を低下させるという問題が
あり、加えて、加熱架橋に長時間を要し、施工時間が長
くなるという難点がある。
However, in this method, since a cross-linking agent is used, its decomposition residue (for example, when dicumyl peroxide (DCP) is used as the cross-linking agent, acetophenone, cumyl alcohol, water, etc. are decomposed). Remains in the reinforced insulation as a residue.) Remains in the reinforced insulation to generate voids, which deteriorates the excellent electrical properties inherent to the crosslinked polyethylene. It takes time and the construction time is long.

【0006】一方、施工時間が短く作業性に優れた方法
として、予め工場で製造しておいたエポキシユニットと
ゴムモールドストレスコ―ンを用いて現場で組み立てる
方法(プレハブ方式)が知られている。しかしながら、
この方法は、作業性に優れる反面、界面の密着性がやや
不十分で、275kV を越える、たとえば 500kVのケーブル
の接続部へ適用するには電気性能上困難である。
On the other hand, as a method which requires a short construction time and is excellent in workability, there is known a method (prefabricated method) of on-site assembly using an epoxy unit and a rubber mold stress cone which are manufactured in advance in a factory. . However,
Although this method is excellent in workability, the adhesion of the interface is somewhat insufficient, and it is difficult to apply it to the connection part of a cable exceeding 275 kV, for example, 500 kV, in terms of electrical performance.

【0007】[0007]

【発明が解決しようとする課題】このように、 275kVを
越える、たとえば 500kVの超高圧CVケーブル用接続部
形成の要求があるが、従来の押出しモールド法では、架
橋剤配合の絶縁性ポリエチレン組成物を使用しているた
め、架橋剤の分解残渣によりボイドが発生するおそれが
あり、また、架橋工程を要することから、作業性に問題
がある。一方、プレハブ方式では、施工時間が短く作業
性に優れるものの、界面密着性に乏しく、いずれも 275
kVを越える超高圧ケーブルの接続部への適用は困難であ
る。
As described above, there is a demand for forming a connecting portion for an ultra-high voltage CV cable exceeding 275 kV, for example, 500 kV, but in the conventional extrusion molding method, an insulating polyethylene composition containing a crosslinking agent is used. Therefore, voids may occur due to the decomposition residue of the cross-linking agent, and since a cross-linking step is required, there is a problem in workability. On the other hand, in the prefabricated method, the construction time is short and the workability is excellent, but the interface adhesion is poor and
It is difficult to apply it to the connection of ultra-high voltage cables exceeding kV.

【0008】本発明はこのような従来の事情に対処して
なされたもので、 275kVを越える、たとえば 500kVの超
高圧ケーブルに適用可能な優れた電気特性を有し、しか
も比較的短時間に形成し得る作業性に優れたケーブル接
続部の形成方法を提供することを目的とする。
The present invention has been made in consideration of such conventional circumstances, and has excellent electric characteristics applicable to an ultra-high voltage cable exceeding 275 kV, for example, 500 kV, and is formed in a relatively short time. It is an object of the present invention to provide a method for forming a cable connection portion which has excellent workability.

【0009】[0009]

【課題を解決するための手段】本発明のケーブル接続部
の形成方法は、架橋ポリオレフィン絶縁ケーブルの導体
接続部の外周にケーブル絶縁体に跨って、非架橋の、融
点が 115℃以上でかつ結晶化度の低いポリオレフィンか
らなる補強絶縁体をモールド成形することを特徴として
いる。
The method for forming a cable connecting portion of the present invention is a non-crosslinking, melting point of 115 ° C. or more and crystallized over the cable insulator on the outer periphery of the conductor connecting portion of a crosslinked polyolefin insulated cable. It is characterized in that a reinforcing insulator made of polyolefin having a low degree of conversion is molded.

【0010】本発明において、融点が 115℃以上で、か
つ結晶化度の低いポリオレフィンとしては、融点が 115
℃以上で、かつ密度が 0.930以下の直鎖状低密度ポリエ
チレン(LLDPE:直鎖状分子構造を有するエチレン
とα- オレフィンの共重合体)や、融点が 115℃以上
で、かつ密度が 0.910以下の超低密度ポリエチレン(V
LDPE)のほか、ポリオレフィン系熱可塑性エラスト
マーとして知られる三井石油化学工業社製のミラストマ
ー(商品名)などがあげられ、なかでも、融点が115℃
以上で、密度が 0.910以下のVLDPEが、ケーブル絶
縁体との界面密着性に優れた補強絶縁体が形成されるこ
とから好適に使用される。
In the present invention, a polyolefin having a melting point of 115 ° C. or higher and a low crystallinity has a melting point of 115
Linear low-density polyethylene (LLDPE: a copolymer of ethylene and α-olefin having a linear molecular structure) at a temperature of ℃ or higher and a density of 0.930 or lower, or a melting point of 115 ℃ or higher and a density of 0.910 or lower. Ultra low density polyethylene (V
In addition to LDPE), MILASTOMER (trade name) manufactured by Mitsui Petrochemical Co., Ltd., which is known as a thermoplastic polyolefin-based elastomer, can be mentioned. Among them, the melting point is 115 ° C.
As described above, VLDPE having a density of 0.910 or less is preferably used because it forms a reinforcing insulator having excellent interfacial adhesion with the cable insulator.

【0011】本発明においては、補強絶縁体のモールド
成形に先立って、ケーブル絶縁体の表面およびその近傍
に、該部の架橋ポリオレフィンの分子鎖を切断して低分
子量化、すなわち非架橋ないし低架橋度のポリオレフィ
ンとする表面処理を施しておくことが望ましい。これに
よって、補強絶縁体のケーブル絶縁体との界面の密着性
を向上させ、電気性能を高めることができる。すなわ
ち、かかる表面処理を行うことによって、熱収縮や結晶
化収縮にともなう界面での応力の集中が避けられ、界面
のボイドの発生が防止される。なお、このケーブル絶縁
体に対する表面処理の方法としては、窒素ガスのような
不活性ガス雰囲気中でのプラズマ還元処理または熱処理
を用いることができる。
In the present invention, prior to the molding of the reinforcing insulator, the molecular chain of the crosslinked polyolefin at the portion is cut on the surface of the cable insulator and in the vicinity thereof to reduce the molecular weight, that is, non-crosslinked or low crosslinked. It is desirable to carry out a surface treatment of a polyolefin. As a result, the adhesion of the interface between the reinforcing insulator and the cable insulator can be improved, and the electrical performance can be improved. That is, by performing such surface treatment, concentration of stress at the interface due to heat shrinkage or crystallization shrinkage can be avoided, and occurrence of voids at the interface can be prevented. As a surface treatment method for this cable insulator, plasma reduction treatment or heat treatment in an inert gas atmosphere such as nitrogen gas can be used.

【0012】[0012]

【作用】本発明方法では、非架橋の耐熱性が良好でかつ
結晶化度の低い特定のポリオレフィンからなる補強絶縁
体をモールド成形するので、耐熱性は架橋ポリオレフィ
ンにほぼ匹敵し、電気特性は、それより向上した補強絶
縁体が形成される。すなわち、補強絶縁体には、架橋剤
の分解残渣が残存することはないので、直流耐圧特性や
インパルス耐圧特性は架橋ポリオレフィンからなるもの
に比べて優れたものとなり、また、架橋剤の分解残渣に
起因するボイドの発生も防止される。さらにケーブル絶
縁体との界面の接着強度は、架橋ポリオレフィンに比べ
てやや弱くなるものの、ポリオレフィンの結晶化度が小
さく界面に応力がかかりにくくなるため、界面が電気的
弱点となることもない。一方、作業時間は、架橋工程を
行わないため大幅に短縮される。
In the method of the present invention, since a reinforced insulator made of a specific polyolefin having good heat resistance of non-crosslinking and low crystallinity is molded, the heat resistance is almost equal to that of the crosslinked polyolefin, and the electrical characteristics are An improved reinforced insulator is formed. That is, since the decomposition residue of the cross-linking agent does not remain in the reinforcing insulator, the DC withstand voltage characteristics and the impulse withstand voltage characteristics are superior to those of the cross-linked polyolefin, and the decomposition residue of the cross-linking agent is also improved. The generation of voids due to this is also prevented. Further, although the adhesive strength at the interface with the cable insulator is slightly weaker than that of the cross-linked polyolefin, since the crystallinity of the polyolefin is small and stress is less likely to be applied to the interface, the interface does not become an electrical weak point. On the other hand, the working time is significantly shortened because the crosslinking step is not performed.

【0013】なお、特に、上記補強絶縁体のモールド成
形に先立って、ケーブル絶縁体の表面およびその近傍
に、該部の架橋ポリエオレフィンの分子鎖を切断して低
分子量化する表面処理を施すようにした場合には、補強
絶縁体のケーブル絶縁体との界面の密着性をより向上さ
せることができ、電気特性をさらに優れたものとするこ
とができる。
In particular, prior to the molding of the above-mentioned reinforcing insulator, the surface of the cable insulator and its vicinity are subjected to a surface treatment for cutting the molecular chains of the cross-linked polyolefin to reduce the molecular weight thereof. In this case, the adhesion of the interface between the reinforcing insulator and the cable insulator can be further improved, and the electrical characteristics can be further improved.

【0014】[0014]

【実施例】次に本発明の実施例を図面を用いて説明す
る。図1は、本発明の一実施例により形成される過程に
あるCVケーブル接続部の縦断面図である。図1におい
て、この実施例では、まず、CVケーブル11の端部を
段剥し、露出した導体12を常法、たとえば圧縮スリー
ブ13により接続する。ここで、必要ならば、図示は省
略したが、常法により、導体接続部上に内部半導電層を
形成する。次いで、その外周にケーブル絶縁体14に跨
って、耐熱性の良好な、たとえばフッ素樹脂からなる熱
収縮チューブ(図示を省略)を装着し、その上からケー
ブル絶縁体14の表面を、たとえば 400℃以上の温度で
加熱する。この加熱処理によってケーブル絶縁体14の
表層部分の架橋ポリエチレンの分子鎖が部分的に切断さ
れて、非架橋ないし低架橋度のポリエチレンの層15が
形成される。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a vertical cross-sectional view of a CV cable connection part in the process of being formed according to an embodiment of the present invention. In FIG. 1, in this embodiment, first, the end portion of the CV cable 11 is stripped off and the exposed conductor 12 is connected by a conventional method, for example, a compression sleeve 13. Here, if necessary, although not shown, an internal semiconductive layer is formed on the conductor connecting portion by a conventional method, although not shown. Next, a heat-shrinkable tube (not shown) having good heat resistance, for example, made of fluororesin is attached to the outer periphery of the cable insulator 14 and the surface of the cable insulator 14 is placed on the heat shrinkable tube, for example, 400 ° C. Heat at the above temperature. By this heat treatment, the molecular chains of the cross-linked polyethylene in the surface layer portion of the cable insulator 14 are partially cut to form the polyethylene layer 15 having a non-crosslinked or low crosslinked degree.

【0015】このようにしてケーブル絶縁体14の表層
部分に非架橋ないし低架橋度のポリエチレンの層15を
形成した後、装着しておいた熱収縮チューブを除き、さ
らに表面をアルコールなどで洗浄して、導体接続部上に
ケーブル絶縁体14に跨って、補強絶縁体成形用の紡錘
状のキャビティを有する割り金型(図示を省略)を被嵌
する。次いで、この金型内に、加熱溶融した架橋剤未配
合の融点が 115℃以上でかつ結晶化度の低いポリエチレ
ン組成物、たとえば融点 116℃、密度 0.890の超低密度
ポリエチレンを圧入し、金型内に十分に充填されたとこ
ろで、圧入を中止して冷却を開始する。温度が下がるに
つれ、金型内組成物は徐々に硬化していき、ケーブル絶
縁体14に良好に密着した電気特性の良好な非架橋ポリ
エチレンからなる補強絶縁体16が形成される。この
後、金型を開放し、仕上げ加工により外形を整え、必要
ならば、さらにその外周に外部半導電層などを設けて本
発明のケーブル接続部を完成させる。
After the non-crosslinked or low crosslinked polyethylene layer 15 is formed on the surface layer portion of the cable insulator 14 in this manner, the heat-shrinkable tube that has been attached is removed, and the surface is washed with alcohol or the like. Then, a split mold (not shown) having a spindle-shaped cavity for forming a reinforcing insulator is fitted over the conductor connecting portion across the cable insulator 14. Then, a polyethylene composition having a melting point of 115 ° C. or higher and a low crystallinity, for example, an ultra-low density polyethylene having a melting point of 116 ° C. and a density of 0.890, which has been melted by heating and is not melted, is press-fit into the mold, When the inside is sufficiently filled, press-fitting is stopped and cooling is started. As the temperature decreases, the in-mold composition gradually hardens to form the reinforcing insulator 16 made of non-crosslinked polyethylene having good electrical characteristics and being in close contact with the cable insulator 14. After that, the mold is opened, the outer shape is adjusted by finishing, and if necessary, an outer semiconductive layer or the like is further provided on the outer periphery thereof to complete the cable connecting portion of the present invention.

【0016】このような方法においては、架橋工程が含
まれないので、短時間に施工することができる。しか
も、形成される補強絶縁体16は、耐熱性が良好で、か
つ、架橋剤の分解残渣が含まれないため直流耐圧特性や
インパルス耐圧特性に優れている。さらに、架橋剤の分
解残渣に起因するボイド発生のおそれもなく、ケーブル
絶縁体との密着性も良好である。したがって、 275kVを
越える、たとえば 500kVの超高圧架橋ポリオレフィン絶
縁ケーブルの接続部の形成にも十分適用でき、電気特
性、作業性に優れたケーブル接続部の形成方法とし非常
に有用である。
Since such a method does not include a crosslinking step, it can be applied in a short time. Moreover, the reinforced insulator 16 formed has good heat resistance, and since it does not contain decomposition residues of the crosslinking agent, it has excellent DC withstand voltage characteristics and impulse withstand voltage characteristics. Further, there is no fear of generation of voids due to the decomposition residue of the cross-linking agent, and the adhesion with the cable insulator is good. Therefore, it can be sufficiently applied to the formation of a connection portion of an ultrahigh-voltage cross-linked polyolefin insulation cable having a voltage of more than 275 kV, for example, 500 kV, and is very useful as a method for forming a cable connection portion having excellent electrical characteristics and workability.

【0017】ちなみに、上記方法を 6.6kVCVケーブル
(導体断面積 250mm2 )の接続部に適用して形成した補
強絶縁体の特性を表1に示す。また、表1には、ケーブ
ル絶縁体の表面処理を行わなかった以外は上記と同様に
して形成した例、表面処理方法として、熱処理に代えて
窒素ガス雰囲気中でのプラズマ還元処理を用いた以外は
上記と同様にして形成した例を併せ示した(以上、実施
例1〜6)。さらには比較のために、融点が 110℃、密
度が 0.922の汎用ポリエチレンを用いた例(比較例
1)、同汎用ポリエチレンに架橋剤としてDCPを 2%
添加したものを用いて従来の押出しモールド法により形
成した例も併せ示した(比較例2)。
By the way, Table 1 shows the characteristics of the reinforced insulator formed by applying the above method to the connection portion of the 6.6 kV CV cable (conductor cross-sectional area 250 mm 2 ). In addition, in Table 1, examples formed in the same manner as above except that the surface treatment of the cable insulator was not performed, except that plasma reduction treatment in a nitrogen gas atmosphere was used instead of heat treatment as the surface treatment method. Shows examples formed in the same manner as above (above, Examples 1 to 6). Furthermore, for comparison, an example using general-purpose polyethylene having a melting point of 110 ° C. and a density of 0.922 (Comparative Example 1), 2% of DCP as a cross-linking agent was added to the general-purpose polyethylene.
An example is also shown in which the added material is used to form a film by a conventional extrusion molding method (Comparative Example 2).

【0018】[0018]

【表1】 上記実施例は、補強絶縁体のモールド成形方法として押
出しモールド法を用いた例であるが、本発明はこのよう
な実施例に限定されるものではなく、いわゆるテープ巻
きモールド法、すなわち、架橋剤未配合の融点が 115℃
以上でかつ結晶化度の低いポリオレフィンからなるテー
プを巻回し、この巻回層上に適宜押さえテープを巻いて
加圧しながら加熱し、巻回層間を一体に融着させる方法
を用いるようにしてもよい。
[Table 1] The above examples are examples in which the extrusion molding method is used as the method for molding the reinforced insulator, but the present invention is not limited to such examples, the so-called tape winding molding method, that is, a crosslinking agent. Unblended melting point is 115 ° C
A method of winding a tape made of polyolefin having a low crystallinity as described above, winding a pressing tape on the winding layer and heating while applying pressure, and fusing the winding layers together may be used. Good.

【0019】[0019]

【発明の効果】以上の実施例からも説明したように、本
発明方法によれば、耐熱性に優れ、しかも架橋剤の影響
がなく、ケーブル絶縁体との密着性も良好な電気特性に
著しく優れた補強絶縁体を短時間に形成することができ
る。したがって、従来法に比べ、小型で信頼性の高いケ
ーブル接続部を短い作業時間で製造することが可能にな
り、 275kVを越える、たとえば 500kVの超高圧架橋ポリ
オレフィン絶縁ケーブルの接続部の形成にも有用であ
る。
As described in the above examples, according to the method of the present invention, the heat resistance is excellent, the influence of the cross-linking agent is not exerted, and the adhesion with the cable insulator is excellent and the electrical characteristics are remarkably high. An excellent reinforcing insulator can be formed in a short time. Therefore, compared to the conventional method, it is possible to manufacture a small and reliable cable connection in a short working time, and it is also useful for forming a connection of an ultra-high voltage cross-linked polyolefin insulation cable exceeding 275 kV, for example, 500 kV. Is.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例により形成される過程にある
CVケーブル接続部の縦断面図。
FIG. 1 is a vertical cross-sectional view of a CV cable connection part in the process of being formed according to an embodiment of the present invention.

【図2】従来の押出しモールド法により形成される過程
にあるCVケーブル接続部を示す縦断面図。
FIG. 2 is a vertical cross-sectional view showing a CV cable connecting portion in the process of being formed by a conventional extrusion molding method.

【符号の説明】[Explanation of symbols]

11………CVケーブル 12………導体 13………圧縮スリーブ 14………ケーブル絶縁体 15………非架橋ないし低架橋度のポリエチレンの層 16………非架橋ポリエチレンからなる補強絶縁体 11 ... CV cable 12 ... conductor 13 ... compression sleeve 14 ... cable insulator 15 ... non-crosslinked or low crosslinked polyethylene layer 16 ... non-crosslinked reinforced insulation made of polyethylene

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 架橋ポリオレフィン絶縁ケーブルの導体
接続部の外周にケーブル絶縁体に跨って、非架橋の、融
点が 115℃以上でかつ結晶化度の低いポリオレフィンか
らなる補強絶縁体をモールド成形することを特徴とする
ケーブル接続部の形成方法。
1. A non-crosslinked, reinforced insulator made of polyolefin having a melting point of 115 ° C. or higher and a low degree of crystallinity is formed on the outer periphery of a conductor connecting portion of a crosslinked polyolefin insulated cable across the cable insulator. A method for forming a cable connecting portion, characterized by:
【請求項2】 補強絶縁体のモールド成形に先立って、
ケーブル絶縁体の表面およびその近傍に、該部の架橋ポ
リオレフィンの分子鎖を切断して低分子量化する表面処
理を施すことを特徴とする請求項1記載のケーブル接続
部の形成方法。
2. Prior to molding of the reinforced insulator,
2. The method for forming a cable connecting part according to claim 1, wherein the surface of the cable insulator and its vicinity are subjected to a surface treatment for cutting the molecular chains of the cross-linked polyolefin of the part to reduce the molecular weight.
【請求項3】 表面処理は、不活性ガス雰囲気中でのプ
ラズマ還元処理または熱処理であることを特徴とする請
求項2記載のケーブル接続部の形成方法。
3. The method for forming a cable connecting portion according to claim 2, wherein the surface treatment is plasma reduction treatment or heat treatment in an inert gas atmosphere.
JP4337028A 1992-12-17 1992-12-17 Forming method for cable connecting part Withdrawn JPH06188053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4337028A JPH06188053A (en) 1992-12-17 1992-12-17 Forming method for cable connecting part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4337028A JPH06188053A (en) 1992-12-17 1992-12-17 Forming method for cable connecting part

Publications (1)

Publication Number Publication Date
JPH06188053A true JPH06188053A (en) 1994-07-08

Family

ID=18304780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4337028A Withdrawn JPH06188053A (en) 1992-12-17 1992-12-17 Forming method for cable connecting part

Country Status (1)

Country Link
JP (1) JPH06188053A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108233282A (en) * 2018-01-17 2018-06-29 长园电力技术有限公司 A kind of power cable scene welded-connecting type belting type straight coupling technique

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108233282A (en) * 2018-01-17 2018-06-29 长园电力技术有限公司 A kind of power cable scene welded-connecting type belting type straight coupling technique

Similar Documents

Publication Publication Date Title
JP6737886B2 (en) Flexible vulcanization joint between two power cables and manufacturing process of the joint
US7208682B2 (en) Electrical cable with foamed semiconductive insulation shield
JPH06188053A (en) Forming method for cable connecting part
JPH09252523A (en) Joint of crosslinked polyethylene insulated power cable, and connection method
JP2000228813A (en) Connecting method for power cable
JP3014522B2 (en) Insulation block for power cable connection and connection method using it
AU2002346702B2 (en) Electrical cable with foamed semiconductive insulation shield
CN110999004B (en) Power cable, method for manufacturing same, and connection structure for power cable
JPH07114962A (en) Method for forming cable junction part
JP3441214B2 (en) Method for forming extrusion-molded connection part of crosslinked polyolefin insulated cable
JPH11205991A (en) Power cable connection part
JPH02309580A (en) Formation method of mould connection for bridging polyolefine insulating cable
JP2000059976A (en) Crosslinked polyethylene insulator type connective portion of power cables
JP2999670B2 (en) Mold joint method for cross-linked polyethylene cable
JPH0522822A (en) Manufacture of cylindrical insulating block for connecting power cable
JPH05328581A (en) Cable connection end
JPH02237418A (en) Mold joint technique of cable
JPH09298819A (en) Insulator forming method for insulated wire connection
JP2840837B2 (en) Cable mold joint method
JPH08197632A (en) Method for crosslinking resin for power cable
JPH0297210A (en) Formation of joint of cross-linked polyolefin insulation cable
JP2000350325A (en) Connection of electric cable
JPH1042421A (en) Manufacture of reinforced insulator block for power cable connecting section and structure of power cable connecting section using the block
JPH0378987A (en) Manufacture of edge cut junction of cable
JPH10149723A (en) Power cable and connecting structure thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000307