JPH08197632A - Method for crosslinking resin for power cable - Google Patents

Method for crosslinking resin for power cable

Info

Publication number
JPH08197632A
JPH08197632A JP7010204A JP1020495A JPH08197632A JP H08197632 A JPH08197632 A JP H08197632A JP 7010204 A JP7010204 A JP 7010204A JP 1020495 A JP1020495 A JP 1020495A JP H08197632 A JPH08197632 A JP H08197632A
Authority
JP
Japan
Prior art keywords
resin
gas
pressure
crosslinking
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7010204A
Other languages
Japanese (ja)
Inventor
Kazuhiko Goto
和彦 後藤
Izumi Ishikawa
泉 石川
Hiroyuki Miyata
裕之 宮田
Satoshi Kaneko
智 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP7010204A priority Critical patent/JPH08197632A/en
Publication of JPH08197632A publication Critical patent/JPH08197632A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE: To extinguish a void in a resin and prevent deterioration of insulating property of the resin by a method wherein an un-crosslinked resin is molded by extrusion in a crosslinking mold, pressed by a high temperature gas and crosslinked, and cooled by a gas having a specified pressure. CONSTITUTION: In a resin crosslinking process, a contractive tube 14 is attached instead of an extrusion mold. By a crosslinking mold 15 attached around the contractive tube 14, a resin around a conductor connecting pipe 5 is crosslinked. That is, a gas is charged in between the crosslinking mold 15 and the contractive tube 14 from a gas pressing opening 16. By heating the gas by a heater 17, the contractive tube 14 is heated in a pressed state and the resin is crosslinked. At this time, an output of the heater 17 is detected by a calorimeter 18 and the operation of the heater 17 is controlled by a controller 19 based on the detected result. Thereafter, the resin is cooled by gas. The pressure of the gas is set to above a difference between a pressure at the crosslinking of the resin and a pressure at the time when the gas melts with the resin into a saturated state at a room temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電線、電力ケーブルの
端末、接続部等に用いて好適な電力ケーブル用樹脂の架
橋方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for cross-linking a resin for power cables, which is suitable for use in electric wires, terminals of power cables, connecting portions and the like.

【0002】[0002]

【従来の技術】近年、エポキシ樹脂等の合成樹脂は、ケ
ーブルの端末、接続部等の電気機器に広く使用されてい
る。例えば、ケーブルの分野に使用されている樹脂成形
品として、架橋ポリエチレン絶縁PVCシースケーブル
(CVケーブル)のモールド形接続部がある。このモー
ルド形接続部は、CVケーブルの絶縁体と、接続部の絶
縁層を強固に接着させるため、同種の材料を加熱モール
ドして融着させている。このモールド形接続部は、電気
特性、機械特性が優れ、コンパクトであるため、海底ケ
ーブルの接続部に使用され、さらに、最近、154kV
級の中間接続部に用いられている。
2. Description of the Related Art In recent years, synthetic resins such as epoxy resins have been widely used in electrical equipment such as cable terminals and connecting portions. For example, as a resin molded product used in the field of cables, there is a molded connection part of a cross-linked polyethylene insulated PVC sheath cable (CV cable). In this mold-shaped connecting portion, the same kind of material is heat-molded and fused in order to firmly adhere the insulator of the CV cable and the insulating layer of the connecting portion. This mold type connection part is used for the connection part of the submarine cable because it has excellent electrical and mechanical properties and is compact.
It is used in the intermediate connection part of the class.

【0003】このモールド形接続部には、TMJ(Tapi
ng Molded Joint)と、EMJ(Extrusion Molded Join
t)とがある。TMJは、ケーブル絶縁体と同種の架橋
剤入りポリエチレンまたは照射ポリエチレンのテープを
巻いて絶縁層を形成し、加熱加圧してモールドした接続
部である。ここで、架橋剤は、ジクミルパーオキサイド
(DCP)が使用されている。また、EMJは、押出機
を用いて、金型内に同種材料を注入し絶縁層を形成し
て、加熱加圧してモールドした接続部である。これらT
MJとEMJとは、樹脂を架橋させるための加熱を、窒
素や空気等のガスの加圧状態で行う。このときに、樹脂
の外側にシリコンゴム等の収縮チューブを装着し、この
収縮チューブで樹脂が直接高温のガスに曝されるのを防
止する。
This mold type connection part has a TMJ (Tapi
ng Molded Joint) and EMJ (Extrusion Molded Join)
t) The TMJ is a connection part formed by winding a tape of polyethylene containing a crosslinking agent or irradiation polyethylene of the same type as that of the cable insulator to form an insulating layer, followed by heating and pressurizing and molding. Here, dicumyl peroxide (DCP) is used as the crosslinking agent. Further, the EMJ is a connection part formed by injecting the same material into a mold to form an insulating layer using an extruder and heating and pressurizing to mold. These T
The MJ and EMJ perform heating for crosslinking the resin in a pressurized state of gas such as nitrogen or air. At this time, a shrink tube made of silicon rubber or the like is attached to the outside of the resin to prevent the resin from being directly exposed to the hot gas.

【0004】このガスで収縮チューブを加圧する際に、
この収縮チューブをガスが透過するため、樹脂内にガス
が飽和量まで溶解する。ここで、樹脂の温度は、160
℃以上に加熱されている。その後、樹脂を冷却すると、
飽和溶解量が減少するため、樹脂中の過飽和部分のガス
がボイドを生成しようとする。ここで、冷却時間が十分
長い場合は、拡散によりガスが抜ける。
When pressurizing the shrink tube with this gas,
Since gas permeates through the shrinkable tube, the gas dissolves in the resin to a saturated amount. Here, the temperature of the resin is 160
It is heated above ℃. Then, when the resin is cooled,
The gas in the supersaturated portion of the resin tends to generate voids because the saturated dissolution amount decreases. Here, if the cooling time is sufficiently long, the gas escapes due to diffusion.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、EMJ
を組み立てる時間を短縮するため、冷却時間を短縮する
と、ガスの拡散が十分でなくなり、ガスが抜けきらず、
ボイドができやすくなる。このボイドが樹脂中に残存す
ることにより、樹脂の絶縁性能が低下するという問題が
あった。
[Problems to be Solved by the Invention] However, EMJ
If you shorten the cooling time in order to shorten the assembly time, the gas diffusion will not be sufficient and the gas will not escape,
Voids are easy to form. There is a problem in that the insulation performance of the resin deteriorates because the voids remain in the resin.

【0006】また、ボイドの内圧が周囲の剛性を越える
と、ボイドは大きくなり、また、樹脂の結晶化が始まる
温度付近で、ボイドの内圧が樹脂の降伏応力を越える
と、このボイド中のガスが拡散されず、ボイドが消滅し
なくなる。このため、樹脂の絶縁性能が低下する。
Further, when the internal pressure of the void exceeds the rigidity of the surroundings, the void becomes large, and when the internal pressure of the void exceeds the yield stress of the resin near the temperature where the crystallization of the resin begins, the gas in the void Is not diffused and voids will not disappear. Therefore, the insulation performance of the resin is reduced.

【0007】本発明は前記課題を有効に解決するもの
で、樹脂中のボイドを消滅させることにより、樹脂の絶
縁性能の低下を抑止できる電力ケーブル用樹脂の架橋方
法を提供することを目的とする。
The present invention effectively solves the above problems, and an object of the present invention is to provide a method for crosslinking a resin for a power cable, which can suppress the deterioration of the insulating performance of the resin by eliminating voids in the resin. .

【0008】[0008]

【課題を解決するための手段】本発明の電力ケーブル用
樹脂の架橋方法は、電力ケーブルの接続部に架橋金型を
配し、この架橋金型内に樹脂を充填し、これを架橋させ
る電力ケーブル用樹脂の架橋方法であって、前記架橋金
型内に未架橋状態の樹脂を押し出し成形し、この樹脂を
高温のガスで加圧して架橋させ、その後、樹脂をガスで
冷却する際に、このガスの圧力を、樹脂を架橋させると
きの圧力と、常温でガスが樹脂に飽和状態に溶解すると
きの圧力との差以上に設定し、樹脂を冷却することを解
決手段とした。
According to the method for crosslinking a resin for a power cable of the present invention, a bridge mold is arranged at a connection portion of a power cable, the resin is filled in the bridge mold, and the power for crosslinking the resin is provided. A method for cross-linking a resin for cables, in which a resin in an uncross-linked state is extruded and molded in the cross-linking mold, the resin is pressurized by hot gas to cross-link, and then, when the resin is cooled by gas, The pressure of this gas is set to be equal to or more than the difference between the pressure at which the resin is crosslinked and the pressure at which the gas is dissolved in the resin in a saturated state at room temperature, and the resin is cooled.

【0009】[0009]

【作用】本発明は、樹脂を高温のガスで加圧して架橋さ
せ、その後、樹脂を冷却する際に、ガスの圧力を、樹脂
を架橋させるときの圧力と、常温でガスが樹脂に飽和状
態に溶解するときの圧力との差以上に設定するので、ガ
スは樹脂に溶ける。このため、樹脂中にボイドが生成し
た場合にあっても、このボイドが樹脂中に溶け、このボ
イドは消滅する。この状態で樹脂を冷却するので、ボイ
ドのない樹脂成型品が得られる。
According to the present invention, the resin is pressurized with a high temperature gas to be crosslinked, and then, when the resin is cooled, the pressure of the gas is the pressure at which the resin is crosslinked and the gas is saturated with the resin at room temperature. Since the pressure is set to be equal to or higher than the pressure at which the gas dissolves, the gas dissolves in the resin. Therefore, even if a void is generated in the resin, the void is dissolved in the resin and the void disappears. Since the resin is cooled in this state, a void-free resin molded product can be obtained.

【0010】[0010]

【実施例】以下、本発明の電力ケーブル用樹脂の架橋方
法の一実施例について、図1ないし図4を参照しながら
説明する。この樹脂として、互いに接続される電力ケー
ブルの接続部に使用されるEMJを用いる。このEMJ
の架橋方法は、電力ケーブルの導体を接続する前処理工
程と、これら電力ケーブルの導体に樹脂を覆わせる樹脂
押出工程と、この樹脂を架橋させる樹脂架橋工程とを有
する。ここで、電力ケーブルは、導体を軸とし、内部半
導電層、ケーブル絶縁体、外部半導電層、アルミニウム
等の金属遮蔽層、シースを順に配した構造とされてい
る。
EXAMPLES An example of a method for crosslinking a resin for a power cable of the present invention will be described below with reference to FIGS. 1 to 4. As this resin, EMJ used for the connection part of the power cables connected to each other is used. This EMJ
The method of cross-linking includes a pretreatment step of connecting the conductors of the power cable, a resin extrusion step of covering the conductors of the power cable with a resin, and a resin cross-linking step of cross-linking the resin. Here, the power cable has a structure in which a conductor is an axis and an inner semiconductive layer, a cable insulator, an outer semiconductive layer, a metal shielding layer such as aluminum, and a sheath are sequentially arranged.

【0011】前処理工程は、互いに接続される電力ケー
ブルの端部から導体を突出させる鉛筆削り工程と、この
突出させた導体を接続させる導体接続工程と、この接続
された導体の周囲に内部半導電層を取り付ける内部半導
電層取付工程とを有する。この前処理工程により、導体
を接続した電力ケーブルを図2に示す。図2に示すよう
に、電力ケーブル1では、先端が削られ、ケーブル絶縁
体2、外部半導電層3、金属遮蔽層4がそれぞれ露出さ
れ、この先端部の導体が導体接続管5に覆われている。
この導体接続管5は、電力ケーブルの各導体を突き合わ
せて接続させている。
The pretreatment step is a pencil sharpening step of projecting a conductor from the end of the power cables connected to each other, a conductor connecting step of connecting the projected conductor, and an internal half around the connected conductor. An inner semiconductive layer attaching step of attaching the conductive layer. A power cable to which conductors are connected by this pretreatment step is shown in FIG. As shown in FIG. 2, in the power cable 1, the tip is shaved, the cable insulator 2, the outer semiconductive layer 3, and the metal shielding layer 4 are exposed, and the conductor at the tip is covered with the conductor connecting pipe 5. ing.
The conductor connecting pipe 5 connects the conductors of the power cable by abutting each other.

【0012】樹脂押出工程は、図3に示すように、前処
理工程で導体を接続した導体接続管5の周囲に、押出金
型7を取り付け、この押出金型7内に、補強絶縁体とな
る樹脂8を注入するものである。押出金型7では、この
押出金型7内に樹脂注入口9から樹脂を注入し、この樹
脂をヒータ9で加熱する。
In the resin extruding step, as shown in FIG. 3, an extruding die 7 is attached around the conductor connecting pipe 5 to which the conductor is connected in the pretreatment step, and a reinforcing insulator is provided in the extruding die 7. The resin 8 is injected. In the extrusion die 7, resin is injected into the extrusion die 7 through the resin injection port 9 and the resin is heated by the heater 9.

【0013】その後、樹脂架橋工程では、図4に示すよ
うに、押出金型10の替わりに収縮チューブ14を取り
付け、この収縮チューブ14の周囲に架橋金型15を取
り付け、この架橋金型15で、導体接続管5の周囲の樹
脂を架橋させる。架橋金型15では、この架橋金型15
と収縮チューブ14との間にガス加圧口16からガスを
充填するとともに、このガスをヒータ17で加熱するこ
とにより、収縮チューブ14を加圧状態で加熱させ、樹
脂を架橋させる。このときに、ヒータ17の出力を熱量
計18で検出し、この検出結果をヒータコントロール1
9に送信し、このヒータコントロール19は、熱量計1
8の検出結果に基づいてヒータ17の作動を制御する。
これらヒータ17とヒータコントロール19とにより、
樹脂8の架橋温度を一定時間保持する。
Thereafter, in the resin cross-linking step, as shown in FIG. 4, a shrink tube 14 is attached instead of the extrusion die 10, a cross-link die 15 is attached around the shrink tube 14, and the cross-link die 15 is used. , The resin around the conductor connecting pipe 5 is cross-linked. In the bridging die 15,
A gas is filled from the gas pressurizing port 16 between the contracting tube 14 and the contracting tube 14, and the gas is heated by the heater 17, so that the contracting tube 14 is heated in a pressurized state to crosslink the resin. At this time, the output of the heater 17 is detected by the calorimeter 18, and the detection result is detected by the heater control 1
9 to the heater control 19 for the calorimeter 1
The operation of the heater 17 is controlled based on the detection result of No. 8.
By these heater 17 and heater control 19,
The crosslinking temperature of the resin 8 is maintained for a fixed time.

【0014】すなわち、図1に示すように、数時間で樹
脂8を約300℃に昇温させ、これを約7〜8時間保持
し、その後、約100℃に急冷し、約100℃から室温
に樹脂8を除冷する。この樹脂8を急冷する場合、ヒー
タ17の作動を停止させ、樹脂8を急冷するとともに、
窒素等のガスで樹脂を加圧する。この樹脂を加圧するガ
スとしては、不活性なガスが用いられ、例えば、窒素、
空気、SF6、He、Arなどがある。このガスの圧力
は、樹脂8を架橋させるときの圧力と、常温でガスが樹
脂8に飽和状態に溶解するときの圧力との差以上に設定
して、樹脂を冷却する。
That is, as shown in FIG. 1, the temperature of the resin 8 is raised to about 300 ° C. in several hours, this is kept for about 7 to 8 hours, then rapidly cooled to about 100 ° C., and then from about 100 ° C. to room temperature. Then, the resin 8 is cooled. When the resin 8 is rapidly cooled, the operation of the heater 17 is stopped, the resin 8 is rapidly cooled, and
The resin is pressurized with a gas such as nitrogen. An inert gas is used as a gas for pressurizing the resin, for example, nitrogen,
Air, SF 6 , He, Ar, etc. are available. The pressure of this gas is set to be equal to or more than the difference between the pressure when the resin 8 is cross-linked and the pressure when the gas is dissolved in the resin 8 in a saturated state at room temperature, and the resin is cooled.

【0015】このような電力ケーブル用樹脂の架橋方法
によれば、樹脂8を高温のガスで加圧して架橋させ、そ
の後、樹脂8をガスで冷却する際に、このガスの圧力
を、樹脂8を架橋させるときの圧力と、常温でガスが樹
脂に飽和状態に溶解するときの圧力との差以上に設定
し、樹脂を冷却するので、このガスの圧力により、ガス
は樹脂に溶け込む。このため、樹脂8中にボイドが生成
した場合にあっても、このボイドが樹脂8中に溶け、こ
のボイドは消滅する。この状態で樹脂8を冷却するの
で、ボイドのない樹脂8を成形することができ、絶縁性
能の高い樹脂8を成形することができる。また、ガスが
樹脂に溶け込むため、樹脂を急冷することができ、樹脂
の架橋時間を短縮することができ、樹脂の成形作業性を
向上させることができる。
According to such a method for crosslinking the resin for electric power cables, the resin 8 is pressurized with a high-temperature gas to be crosslinked, and then, when the resin 8 is cooled by the gas, the pressure of this gas is adjusted to the resin 8 Since the resin is cooled by setting the difference between the pressure at which the resin is cross-linked and the pressure at which the gas dissolves in the resin in a saturated state at room temperature to cool the resin, the gas melts into the resin by the pressure of this gas. Therefore, even if a void is generated in the resin 8, the void is dissolved in the resin 8 and the void disappears. Since the resin 8 is cooled in this state, the resin 8 without voids can be molded and the resin 8 having high insulation performance can be molded. Further, since the gas dissolves in the resin, the resin can be rapidly cooled, the crosslinking time of the resin can be shortened, and the molding workability of the resin can be improved.

【0016】[0016]

【発明の効果】以上説明したように、本発明の電力ケー
ブル用樹脂の架橋方法によれば、電力ケーブルの接続部
に架橋金型を配し、この架橋金型内に樹脂を充填し、こ
れを架橋させる電力ケーブル用樹脂の架橋方法であっ
て、前記架橋金型内に未架橋状態の樹脂を押し出し成形
し、この樹脂を高温のガスで加圧して架橋させ、その
後、樹脂をガスで冷却する際に、このガスの圧力を、樹
脂を架橋させるときの圧力と、常温でガスが樹脂に飽和
状態に溶解するときの圧力との差以上に設定し、樹脂を
冷却するので、ガスは樹脂に溶ける。このため、樹脂中
にボイドが生成した場合にあっても、このボイドが樹脂
中に溶け、このボイドは消滅する。この状態で樹脂を冷
却するので、ボイドのない樹脂を成形することができ、
絶縁性能の高い樹脂を成形することができる。また、ガ
スを樹脂に飽和状態に溶解させる状態で樹脂を冷却する
ので、樹脂を短時間で冷却する場合にあっても、ボイド
の発生を防止することができる。このため、架橋後の樹
脂の冷却時間を短縮することができるという効果を奏す
ることができる。
As described above, according to the method for cross-linking a resin for a power cable of the present invention, a cross-linking mold is arranged at the connecting portion of the power cable, and the cross-linking mold is filled with the resin. A method for cross-linking a resin for a power cable for cross-linking, wherein an uncross-linked resin is extruded and molded in the cross-linking mold, the resin is pressurized with a high-temperature gas to cross-link, and then the resin is cooled with a gas. In this case, the pressure of this gas is set to be equal to or more than the difference between the pressure at which the resin is cross-linked and the pressure at which the gas dissolves in the resin in a saturated state at room temperature, and the resin is cooled. Melts in. Therefore, even if a void is generated in the resin, the void is dissolved in the resin and the void disappears. Since the resin is cooled in this state, it is possible to mold a resin without voids,
A resin with high insulation performance can be molded. Further, since the resin is cooled in a state in which the gas is dissolved in the resin in a saturated state, it is possible to prevent the generation of voids even when the resin is cooled in a short time. Therefore, it is possible to reduce the cooling time of the resin after crosslinking.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の電力ケーブル用樹脂の架橋方法を示
すグラフである。
FIG. 1 is a graph showing a method for crosslinking a resin for a power cable of the present invention.

【図2】 本発明の前処理工程を示す構成図である。FIG. 2 is a configuration diagram showing a pretreatment process of the present invention.

【図3】 本発明の樹脂押出工程を示す構成図である。FIG. 3 is a configuration diagram showing a resin extrusion process of the present invention.

【図4】 本発明の樹脂架橋工程を示す構成図である。FIG. 4 is a configuration diagram showing a resin crosslinking step of the present invention.

【符号の説明】[Explanation of symbols]

1…電力ケーブル、8…樹脂、15…架橋金型 1 ... Power cable, 8 ... Resin, 15 ... Cross-linking mold

───────────────────────────────────────────────────── フロントページの続き (72)発明者 金子 智 東京都江東区木場1丁目5番1号 株式会 社フジクラ内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Satoshi Kaneko 1-5-1 Kiba, Koto-ku, Tokyo Inside Fujikura Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電力ケーブルの接続部に架橋金型を配
し、この架橋金型内に樹脂を充填し、これを架橋させる
電力ケーブル用樹脂の架橋方法であって、前記架橋金型
内に未架橋状態の樹脂を押し出し成形し、この樹脂を高
温のガスで加圧して架橋させ、その後、樹脂をガスで冷
却する際に、このガスの圧力を、樹脂を架橋させるとき
の圧力と、常温でガスが樹脂に飽和状態に溶解するとき
の圧力との差以上に設定し、樹脂を冷却することを特徴
とする電力ケーブル用樹脂の架橋方法。
1. A method for cross-linking a resin for a power cable, wherein a cross-linking mold is arranged at a connection portion of a power cable, the cross-linking mold is filled with a resin, and the cross-linking is performed. An uncrosslinked resin is extruded and molded, and this resin is pressurized with a high-temperature gas to crosslink it. Then, when the resin is cooled with a gas, the pressure of this gas is the pressure at which the resin is crosslinked and the room temperature. In the method for crosslinking a resin for a power cable, the resin is cooled by setting the pressure to be equal to or higher than the pressure at which the gas is dissolved in the resin in a saturated state.
JP7010204A 1995-01-25 1995-01-25 Method for crosslinking resin for power cable Pending JPH08197632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7010204A JPH08197632A (en) 1995-01-25 1995-01-25 Method for crosslinking resin for power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7010204A JPH08197632A (en) 1995-01-25 1995-01-25 Method for crosslinking resin for power cable

Publications (1)

Publication Number Publication Date
JPH08197632A true JPH08197632A (en) 1996-08-06

Family

ID=11743750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7010204A Pending JPH08197632A (en) 1995-01-25 1995-01-25 Method for crosslinking resin for power cable

Country Status (1)

Country Link
JP (1) JPH08197632A (en)

Similar Documents

Publication Publication Date Title
US3705257A (en) Electric cable and method of making
JPH08197632A (en) Method for crosslinking resin for power cable
JP3014522B2 (en) Insulation block for power cable connection and connection method using it
JP3171657B2 (en) Cable connection end
JP2000228813A (en) Connecting method for power cable
JPH0646845B2 (en) Method for forming insulator of power cable connection
JP3139719B2 (en) Connection method of cross-linked polyethylene insulated power cable
JP3014502B2 (en) Insulation block for power cable connection and connection method using it
JP3012514B2 (en) CV cable insulation connection method
JP2548554B2 (en) Method for forming connection part of power cable
JPH06188053A (en) Forming method for cable connecting part
JPS58192424A (en) Plastic insulated cable connector
JPS5859025A (en) Manufacture of joined section of cable insulated with crosslinked polyethylene
JPS59198817A (en) Crosslinked rubber and plastic insulated cable connector
JP3059537B2 (en) Method of bridging mold insulator at cable connection
JPH0919022A (en) Connection of crosslinked-polyethylene power cable
JPS5832214Y2 (en) Connection part of cross-linked polyethylene insulated cable
JPS6337947B2 (en)
JPH0142586B2 (en)
JPH07236216A (en) Mold joint for crosslinked polyethylene cable with sheath separation and jointing method
JP2000059976A (en) Crosslinked polyethylene insulator type connective portion of power cables
JPH08182169A (en) Method for forming insulator of power cable connecting section
JPS59148509A (en) Method of forming molded stress cone
JPH06335133A (en) Connection of cv cable
JPS5858812A (en) Method of forming plastic insulated power cable connector