JPH104040A - Method for marking semiconductor material and product marked by the method - Google Patents

Method for marking semiconductor material and product marked by the method

Info

Publication number
JPH104040A
JPH104040A JP8155186A JP15518696A JPH104040A JP H104040 A JPH104040 A JP H104040A JP 8155186 A JP8155186 A JP 8155186A JP 15518696 A JP15518696 A JP 15518696A JP H104040 A JPH104040 A JP H104040A
Authority
JP
Japan
Prior art keywords
laser beam
semiconductor material
pattern
irradiated
pulsed laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8155186A
Other languages
Japanese (ja)
Other versions
JP3189687B2 (en
Inventor
Koji Kuwabara
皓二 桑原
Hiroharu Sasaki
弘治 佐々木
Toshimitsu Yoshikawa
利満 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15600373&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH104040(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15518696A priority Critical patent/JP3189687B2/en
Publication of JPH104040A publication Critical patent/JPH104040A/en
Application granted granted Critical
Publication of JP3189687B2 publication Critical patent/JP3189687B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54406Marks applied to semiconductor devices or parts comprising alphanumeric information
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54493Peripheral marks on wafers, e.g. orientation flats, notches, lot number

Landscapes

  • Laser Beam Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To generate fine projections excellent in visibility restraining dust from being produced by a method wherein the surface of a semiconductor material is irradiated with a pulse laser beam controlling the laser beam at least in either energy or pulse width. SOLUTION: An Nd:YAG laser pulse oscillator projects a laser beam which is nearly uniform in intensity distribution. A metal mask where a pattern to mark is formed is irradiated with a laser beam through an enlarging optical system. The transmitted laser beam is made to irradiate a work through an image forming system to mark the pattern on the work. When an Si wafer 8 as a work is irradiated with a laser beam 109, a large number of fine projections are formed on a part of the Si wafer irradiated with a laser beam. A laser beam irradiating, for instance, the fine projections 105 to 107 is turned to the irregularly reflected laser beams 110 to 113. The fine projections 105 to 107 are very densely distributed, so that a laser-irradiated part and a non- irradiated part are easily discriminated from each other by a light reflection difference.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体材料表面又は
電子部品へのパルスレーザビームによる刻印方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for marking a semiconductor material surface or an electronic component with a pulse laser beam.

【0002】[0002]

【従来の技術】レーザビームによって半導体材料表面に
文字あるいは数字を刻印する方法は公知である。公知の
方法には、半導体材料表面の刻印すべき箇所にレーザビ
ームを移動させながら照射し、照射部の半導体材料を溶
融蒸発させて、連続した凹状の痕跡を形成する方法と、
特公平1−41245号公報にみられるように、レーザビーム
の照射部に円形の凹みを形成する方法が有る。
2. Description of the Related Art A method of engraving letters or numbers on the surface of a semiconductor material by a laser beam is known. Known methods include a method of irradiating a laser beam at a position to be imprinted on the surface of the semiconductor material while moving the laser beam, and melting and evaporating the semiconductor material at the irradiated portion to form a continuous concave trace.
As disclosed in Japanese Patent Publication No. 41245/1989, there is a method of forming a circular recess in a laser beam irradiation portion.

【0003】[0003]

【発明が解決しようとする課題】半導体材料への刻印に
おいては、 1)刻印作業によって塵埃を発生しないこと、 2)視認性に優れること、特に光学系読み取り装置によ
り簡単に読み取れること、が求められる。しかしこの要
求は相反したものとなっており、双方を同時に満足させ
ることは難しい。
In the engraving of a semiconductor material, it is required that 1) no dust is generated by the engraving operation, 2) the visibility is excellent, and particularly that it can be easily read by an optical reader. . However, these requirements are conflicting and it is difficult to satisfy both at the same time.

【0004】本発明の目的は、レーザビームによって半
導体材料表面に文字,数字あるいはパターンを刻印する
作業において、塵埃の発生を抑制し、しかも視認性に優
れる刻印方法を提供することにある。
An object of the present invention is to provide an engraving method which suppresses generation of dust and is excellent in visibility in an operation of engraving characters, numerals or patterns on the surface of a semiconductor material by a laser beam.

【0005】[0005]

【課題を解決するための手段】本発明の刻印方法は、パ
ルスレーザビームを照射して半導体材料表面にパターン
を刻印する方法において、半導体材料表面のレーザビー
ム照射面が溶融,再結晶化する過程で当該個所に微小突
起部が発生するように、前記パルスレーザビームのエネ
ルギーとパルス幅を制御することにある。
According to the present invention, there is provided an engraving method for engraving a pattern on a semiconductor material surface by irradiating a pulsed laser beam, wherein the laser beam irradiated surface of the semiconductor material surface is melted and recrystallized. In this case, the energy and the pulse width of the pulse laser beam are controlled so that a minute projection is generated at the position.

【0006】[0006]

【発明の実施の形態】以下、本発明の一実施例を図1〜
図4により説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will now be described with reference to FIGS.
This will be described with reference to FIG.

【0007】図1において、1はパルス発振のNd:Y
AGレーザ発振器であり、ほぼ均一な強度分布を有する
レーザ光2を出射する。レーザ光2は、拡大光学系3を
経て刻印すべきパターンが形成された金属マスク4に照
射される。金属マスクの代わりに部分的に不透明部を有
するガラスマスクを用いることもできる。透過レーザ光
5は結像光学系6によりワーク7上に照射されパターン
を刻印する。図2はワーク7としてのSiウエハ8上に
形成された刻印9の様子を、図3は刻印9の拡大模式図
を、図4は図3のIV−IV断面図をそれぞれ示す。
In FIG. 1, reference numeral 1 denotes Nd: Y of pulse oscillation.
An AG laser oscillator that emits a laser beam 2 having a substantially uniform intensity distribution. The laser beam 2 is applied to a metal mask 4 on which a pattern to be imprinted is formed via an enlarging optical system 3. Instead of a metal mask, a glass mask having a partially opaque portion can be used. The transmitted laser light 5 is irradiated onto the work 7 by the imaging optical system 6 to imprint a pattern. 2 shows the state of the engraving 9 formed on the Si wafer 8 as the work 7, FIG. 3 shows an enlarged schematic view of the engraving 9, and FIG. 4 shows a sectional view taken along line IV-IV of FIG.

【0008】図3において、右半分のレーザ光照射面に
は多数の微小突起部100〜107が形成されている。
微小突起部100〜107は円形或いは帯状を呈してお
り、概略高さは1μm以下である。直径は0.5〜1.0
μm、相互間隔はおおよそ1.5〜2.5μmで、密度は
1.6〜4.5×107個/cm2のオーダである。
In FIG. 3, a large number of minute projections 100 to 107 are formed on the right half laser beam irradiation surface.
The minute projections 100 to 107 have a circular or band shape, and have an approximate height of 1 μm or less. The diameter is 0.5-1.0
μm, the spacing between them is approximately 1.5-2.5 μm, and the density is on the order of 1.6-4.5 × 10 7 / cm 2 .

【0009】微小突起部が出来る理由として、本発明者
らの実験によれば、半導体材料表面へのパルスレーザビ
ームの照射によって、当該個所は瞬時に溶融状態となる
が、レーザ照射の終了と共に、再結晶化が始まり、この
際に概略高さ1μm以下の多数の突起が形成される現象
が観測された。そして、この現象の発生にはパルスレー
ザビームの強度分布,照射エネルギー密度,パルス幅が
重要な因子であることも分かった。即ち、均一な強度分
布を有するパルスレーザビームを照射して、照射面を溶
融状態に維持する(蒸発させない)ことにより、塵埃の
発生を押さえつつ、微小な高さの多数の突起の形成が可
能であることが分かった。
As a reason for the formation of the minute projections, according to the experiments of the present inventors, the irradiation of the surface of the semiconductor material with the pulsed laser beam instantaneously causes the portion to be in a molten state. Recrystallization started, and at this time, a phenomenon in which a large number of protrusions having a height of approximately 1 μm or less were formed was observed. It was also found that the intensity distribution, irradiation energy density, and pulse width of the pulsed laser beam were important factors for the occurrence of this phenomenon. In other words, by irradiating a pulsed laser beam having a uniform intensity distribution and maintaining the irradiated surface in a molten state (not evaporating), it is possible to form a large number of projections with a minute height while suppressing generation of dust. It turned out to be.

【0010】そして、この現象を利用して半導体材料表
面に形成された文字あるいはパターンは、多数の微小な
突起による光の乱反射現象により、視認性に優れた刻印
となる。このような現象を利用したマーキング方法は従
来知られていなかった。
The character or pattern formed on the surface of the semiconductor material by using this phenomenon becomes a mark having excellent visibility due to the irregular reflection of light due to a large number of minute projections. A marking method utilizing such a phenomenon has not been conventionally known.

【0011】即ち、図4に示すようにワーク8上に光1
09が照射されると、左半分のレーザ光非照射部分では
そのまま反射するが、微小突起部例えば105〜107
に照射された光は、乱反射光110〜113と成る。微
小突起部105〜107は上述したように、非常に緻密
に分布しているので、レーザ光照射部分とレーザ光非照
射部分とは、光の反射の違いにより容易に識別可能とな
る。
That is, as shown in FIG.
When the laser beam 09 is irradiated, it is reflected as it is in the left half of the laser beam non-irradiated portion, but the minute projections such as 105 to 107
Are turned into diffusely reflected lights 110 to 113. As described above, the minute projections 105 to 107 are very densely distributed, so that the laser light irradiated portion and the laser light non-irradiated portion can be easily distinguished by the difference in light reflection.

【0012】この場合、パルスレーザ光の条件は照射エ
ネルギー密度=30J/cm2 ,パルス幅=0.15ms
で、Siウエハは結晶方位(100)の研磨品を使用し
た。また、照射エネルギー密度の下限値は18J/cm2
以下では表面に溶融が起こらないので、微小突起部10
0〜107は形成されない。40J/cm2 以上では表面
で部分的に蒸発が起こるため、塵埃が発生し、製造工程
上好ましく無い。例えば塵埃を除去する工程が増えて好
ましく無い。従って、照射エネルギー密度値は18J/
cm2 〜40J/cm2 の範囲であれば、乱反射光110〜
113を生じる微小突起部105〜107を有し、識別
が出来ると共に、塵埃が発生しない。
In this case, the conditions of the pulse laser beam are irradiation energy density = 30 J / cm 2 and pulse width = 0.15 ms.
Then, a polished product having a crystal orientation (100) was used for the Si wafer. The lower limit of the irradiation energy density is 18 J / cm 2
In the following, since no melting occurs on the surface,
0 to 107 are not formed. If it is more than 40 J / cm 2 , dust is generated due to partial evaporation on the surface, which is not preferable in the manufacturing process. For example, the number of steps for removing dust increases, which is not preferable. Therefore, the irradiation energy density value is 18 J /
cm 2 to 40 J / cm 2 , diffused light 110 to
It has minute projections 105 to 107 that generate 113, and can be identified, and no dust is generated.

【0013】一方、パルス幅の上限と下限とは照射エネ
ルギー密度と密接に関係しており、18〜40J/cm2
の範囲では、パルス幅は0.05〜0.40でmsの範囲で
微小突起部100〜104が形成される。即ち、パルス
幅は0.05ms より短い場合には刻印された文文,数字
等の線幅が細くなり、識別しにくくなる。また0.40msよ
り長くなると、刻印された文字,数字等の線幅が太くな
り、例えば2本の平行線を刻印する時に、平行線同志が
あたかも同じ線のように見える所謂分解能が低下し、識
別しにくくなる。従って、パルス幅は0.05〜0.40
msの範囲であれば、識別が容易となる。
On the other hand, the upper limit and the lower limit of the pulse width are closely related to the irradiation energy density, and are 18 to 40 J / cm 2.
In the range, the pulse width is 0.05 to 0.40, and the minute projections 100 to 104 are formed in the range of ms. That is, when the pulse width is shorter than 0.05 ms, the line width of the engraved text, numeral, and the like becomes thin, making it difficult to identify. If the length is longer than 0.40 ms, the line width of the engraved letters and numbers becomes thicker. For example, when engraving two parallel lines, the so-called resolution of the parallel lines appears as if they are the same line, and the resolution decreases. It becomes difficult to do. Therefore, the pulse width is 0.05 to 0.40
In the range of ms, identification becomes easy.

【0014】すなわち、Siウエハ,部品等に刻印する
場合は、照射エネルギー密度値を18J/cm2 〜40J
/cm2 の範囲内の値と、パルス幅を0.05〜0.40ms
の範囲内の値とを選択して、パルスレーザ光を照射すれ
ば、塵埃が発生しない状態で、尚且つ識別が容易な刻印
を得ることが出来る。
That is, when engraving on a Si wafer, a part or the like, the irradiation energy density value is set to 18 J / cm 2 to 40 J.
/ Cm 2 and pulse width 0.05 to 0.40 ms
When a pulse laser beam is irradiated by selecting a value within the range, it is possible to obtain an engraved mark in which dust is not generated and which can be easily identified.

【0015】また、レーザ発振器からの出射レーザビー
ムの強度分布はマスク4面上で±5%程度の均一性が要
求されるので、従来より半導体材料表面への刻印に使用
されているシングルモード、或いは低次モードで発振す
るレーザ発振器は使用できず、発振器としては均一強度
分布を実現しやすいスラブレーザが適している。
Further, since the intensity distribution of the laser beam emitted from the laser oscillator is required to have a uniformity of about ± 5% on the surface of the mask 4, a single mode, which has been conventionally used for marking on the surface of a semiconductor material, is used. Alternatively, a laser oscillator that oscillates in a low-order mode cannot be used, and a slab laser that easily realizes a uniform intensity distribution is suitable as the oscillator.

【0016】図5〜図9は本発明の他の実施例を示すも
ので、直線偏光発振のNd:YAGレーザ発振器11か
らのレーザ光12が液晶マスク13に照射される。パタ
ーン情報を含むレーザ光15はビームスプリッタ14に
より分離された後、結像レンズ6によりワーク7上に照
射されパターンが刻印される。液晶マスク13にはパタ
ーン情報が、制御装置16から液晶マスクコントローラ
17を経て送られる。不用光18は吸収板19で吸収さ
れる。
FIGS. 5 to 9 show another embodiment of the present invention. A liquid crystal mask 13 is irradiated with a laser beam 12 from a linearly polarized Nd: YAG laser oscillator 11. After the laser beam 15 including the pattern information is separated by the beam splitter 14, the laser beam 15 is irradiated onto the work 7 by the imaging lens 6, and the pattern is engraved. The pattern information is sent to the liquid crystal mask 13 from the control device 16 via the liquid crystal mask controller 17. The unnecessary light 18 is absorbed by the absorbing plate 19.

【0017】図6は液晶マスク13上に表示されたパタ
ーンの部分拡大図で、二次元コード20が表示されてい
る。二次元コード20、例えばベリコード,データコー
ド等は、セル21と呼ばれる正四角形パターンの集合体
で構成される。従って、正四角の画素の集合体で刻印用
パターンを表示する液晶マスク13は二次元コード用の
パターン発生用のマスクとして最適である。
FIG. 6 is a partially enlarged view of the pattern displayed on the liquid crystal mask 13 and the two-dimensional code 20 is displayed. The two-dimensional code 20, for example, a vericode, a data code, etc., is composed of a collection of regular square patterns called cells 21. Therefore, the liquid crystal mask 13 that displays a pattern for engraving with a set of square pixels is optimal as a mask for generating a pattern for a two-dimensional code.

【0018】ところで、TN(ねじれネマティク)型液
晶マスクの表示モードには、図7,図8に示す2通りの
表示モードを有する。いずれの文字の「T」を表示して
いる。液晶マスク50は四角形の画素51の集合体で構
成されているが、図7のノーマリークローズドモードと
呼ばれる表示モードでは、パターンを表示する画素52
(斜線を施した)に電圧を印加される。しかし、画素間
のギャップ部53には電圧が印加できないので、図示し
ていないワーク上に刻印されるパターンは不連続な四角
形の集合体となる。
The display mode of the TN (twisted nematic) liquid crystal mask has two display modes as shown in FIGS. "T" of any character is displayed. The liquid crystal mask 50 is composed of an aggregate of square pixels 51. In a display mode called a normally closed mode shown in FIG.
(Shaded) voltage is applied. However, since a voltage cannot be applied to the gap portion 53 between the pixels, the pattern imprinted on the work (not shown) is a discontinuous collection of squares.

【0019】一方、図8のノーマリーオープンモードと
呼ばれる表示モードでは、背景部に相当する個所の画素
54(斜線を施した)に電圧が印加される。即ち、この
表示モードには電圧を印加しない画素55でパターン表
示をするので、各画素間のギャツプ53部分もパターン
の一部を構成すことになる。従って、ワーク(図示せ
ず)上に刻印されるパターンは、連続した四角形の集合
体となり、セル間のつながり状態が重要視される二次元
コードの刻印に適している。厳密には刻印パターンに関
係ない格子状のパターンがワーク上に刻印されることに
なるが、この部分のワーク上の線幅は5〜10μm程度
と狭いことに加え、ワーク内部への拡散熱によりレーザ
照射部分の温度上昇が抑制されるので、ワーク上には痕
跡は生じない。
On the other hand, in a display mode called a normally open mode in FIG. 8, a voltage is applied to the pixels 54 (hatched) corresponding to the background portion. That is, in this display mode, a pattern is displayed by the pixels 55 to which no voltage is applied, so that the gap 53 between the pixels also constitutes a part of the pattern. Therefore, a pattern imprinted on a work (not shown) is a continuous square aggregate, and is suitable for imprinting a two-dimensional code in which a connection state between cells is regarded as important. Strictly speaking, a grid-like pattern irrelevant to the engraving pattern will be imprinted on the work. However, the line width on the work in this part is as narrow as about 5 to 10 μm, and due to heat diffused into the work. Since a rise in the temperature of the laser irradiation part is suppressed, no trace is formed on the work.

【0020】図9には、図5の構成によりワーク7上に
刻印された二次元コード20の模式図を示したが、液晶
マスク13には図6のパターンを表示している。本発明
ではワーク7はSiウエハであり、パルスレーザ光の条
件は照射エネルギー密度=30J/cm2,パルス幅=0.
15msを採用した。そして、表示モードとして上述のノ
ーマリーオープンモードを採用することにより、隣接す
るセル22,23,24は境界を作ることなく表面に形
成された多数の微小突起部(図示せず)により、二次元コ
ード20を表現している。
FIG. 9 is a schematic view of the two-dimensional code 20 engraved on the work 7 by the configuration of FIG. 5, and the pattern of FIG. 6 is displayed on the liquid crystal mask 13. In the present invention, the work 7 is a Si wafer, and the conditions of the pulse laser beam are irradiation energy density = 30 J / cm 2 and pulse width = 0.
15 ms was adopted. By employing the above-described normally open mode as the display mode, the adjacent cells 22, 23, and 24 are two-dimensionally formed by a large number of minute projections (not shown) formed on the surface without forming a boundary. The code 20 is represented.

【0021】図10は刻印された二次元コードの読み取
り方法を示すもので、読み取り装置25からの参照光2
6はワーク7上に照射され、反射光27と微小突起部2
8からの乱反射光29の内、主として前者が読み取り装
置25内の二次元CCDセンサ(図示せず)に取り込ま
れて、パターンの読み取りが行われる。
FIG. 10 shows a method for reading the imprinted two-dimensional code.
6 irradiates the workpiece 7 with the reflected light 27 and the minute projection 2.
Of the irregularly reflected light 29 from 8, the former is mainly taken into a two-dimensional CCD sensor (not shown) in the reading device 25, and the pattern is read.

【0022】図11には参考までに、従来のレーザマー
カによる二次元コードを刻印例を示したが、ワーク7上
では1個のセルに対して、円形の凹み1個を対応させる
ことになる。そのため、単独で存在するセル24Aと複
数のセルの集合体24Bを区別するため読み取み装置に
はパターン処理機能を付加する必要があり、コストアッ
プの要因となる。また、円形の凹み部からの反射光は本
発明のように乱反射光にならないので光の分離に工夫を
要する。本発明では、各セルは正方形で構成され、刻印
部からの反射光は乱反射となるため簡単な読み取り装置
での読み取りが可能となる。
FIG. 11 shows an example of imprinting a two-dimensional code using a conventional laser marker for reference, but one circular recess is made to correspond to one cell on the work 7. For this reason, it is necessary to add a pattern processing function to the reading device in order to distinguish the cell 24A that exists alone and the aggregate 24B of a plurality of cells, which causes an increase in cost. In addition, light reflected from the circular concave portion does not become irregularly reflected light as in the present invention, so that it is necessary to devise light separation. In the present invention, each cell is formed in a square shape, and the light reflected from the engraved portion is irregularly reflected, so that it can be read by a simple reading device.

【0023】ところで、刻印された二次元コードの読み
取り装置25での読み取り率を高めるには、 1)刻印された各セルの大きさがそろっていること、 2)隣接するセル間には空間を作らないこと、 3)二次元CCDセンサに取り込まれる反射光27と乱
反射光29の比が大きいこと、等が重要である。
By the way, in order to improve the reading rate of the imprinted two-dimensional code by the reading device 25, 1) the size of each imprinted cell must be uniform, and 2) the space between adjacent cells must be increased. It is important not to make it, and 3) that the ratio of the reflected light 27 and the irregularly reflected light 29 taken into the two-dimensional CCD sensor is large.

【0024】これに対し、液晶マスクの採用で1),
2)が、上述した照射パルスレーザビームのエネルギー
とパルス幅の制御で、1),3)の条件がそれぞれ満た
され、刻印パターンの正確な読み取りが実現できる。
On the other hand, 1),
2) The above-described control of the energy and pulse width of the irradiation pulse laser beam satisfies the conditions 1) and 3), thereby realizing accurate reading of the engraved pattern.

【0025】図12は本発明を半導体生産ラインに適用
した場合の一例を示すもので、ワーク30は、先ず本発
明の刻印装置31により管理番号(英数字あるいは二次
元コードで表示)が刻印され、移動装置により製造工程
32,33,34へ送られる。各工程の間には必要に応
じて読み取り装置25が配置され、その情報が製造ライ
ン制御用コンピュータ35に送られる。また、必要なら
ば、工程間に刻印装置31を配置して、前工程での情報
をワーク30に刻印することもできる。
FIG. 12 shows an example in which the present invention is applied to a semiconductor production line. A work 30 is first engraved with a management number (indicated by alphanumeric characters or a two-dimensional code) by an engraving device 31 of the present invention. Are sent to the manufacturing process 32, 33, 34 by the moving device. A reading device 25 is provided between each step as necessary, and the information is sent to the production line control computer 35. If necessary, an engraving device 31 can be arranged between the processes to imprint the information in the previous process on the work 30.

【0026】以上の説明では半導体材料としてSi単結
晶の場合を述べたが、Si単結晶面上に酸化膜あるい
は、窒化膜が形成されている半導体ウエハや、半導体チ
ップ,樹脂モールド型部品などの電子部品にも本発明の
刻印方法を適用することができる。
In the above description, the case where the semiconductor material is a Si single crystal has been described. However, a semiconductor wafer having a silicon single crystal surface on which an oxide film or a nitride film is formed, a semiconductor chip, a resin mold type part, or the like. The marking method of the present invention can be applied to electronic components.

【0027】[0027]

【発明の効果】本発明では、パルスレーザビームの照射
によって半導体材料の表面に形成される、概略高さ1μ
m以下の多数の微小突起部を刻印に使用したので、刻印
時に塵埃を発生することなく、鮮明な刻印が実現でき
る。また微小突起部では乱反射光を生じて、識別が出来
るので、パターン読み取り装置を使用した場合に、高い
読み取り率を実現できる。
According to the present invention, an approximately 1 .mu.m height formed on the surface of a semiconductor material by irradiation with a pulsed laser beam.
Since a large number of microprojections less than m are used for engraving, clear engraving can be realized without generating dust at the time of engraving. In addition, since irregular reflection light is generated at the minute projections and identification can be performed, a high reading rate can be realized when a pattern reading device is used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例として示した液晶式レーザマー
カの概略説明図。
FIG. 1 is a schematic explanatory view of a liquid crystal laser marker shown as an embodiment of the present invention.

【図2】図1の装置で加工した半導体基板の表面図。FIG. 2 is a front view of a semiconductor substrate processed by the apparatus of FIG. 1;

【図3】図2の刻印の部分拡大表面図。FIG. 3 is a partially enlarged surface view of the stamp of FIG. 2;

【図4】図3のIV−IV線断面図。FIG. 4 is a sectional view taken along line IV-IV of FIG. 3;

【図5】本発明の他の実施例として示した液晶式レーザ
マーカの概略説明図。
FIG. 5 is a schematic explanatory view of a liquid crystal laser marker shown as another embodiment of the present invention.

【図6】図5の液晶マスクに表示されたパターンの部分
拡大図。
6 is a partially enlarged view of a pattern displayed on the liquid crystal mask of FIG.

【図7】図6のワーク上に刻印されたパターンの部分拡
大図。
FIG. 7 is a partially enlarged view of a pattern imprinted on the work in FIG. 6;

【図8】図6のワーク上に刻印されたパターンの部分拡
大図。
FIG. 8 is a partially enlarged view of a pattern imprinted on the work of FIG. 6;

【図9】図6のワーク上に刻印されたパターンの部分拡
大図。
FIG. 9 is a partially enlarged view of a pattern imprinted on the work in FIG. 6;

【図10】刻印されたパターンの読み取り装置の説明
図。
FIG. 10 is an explanatory diagram of a device for reading an engraved pattern.

【図11】従来のワーク上に刻印されたパターンの部分
拡大図。
FIG. 11 is a partially enlarged view of a pattern imprinted on a conventional work.

【図12】本発明を半導体製造工程に適用した刻印装置
の配置工程を示す概略説明図である。
FIG. 12 is a schematic explanatory view showing a process of arranging a marking device in which the present invention is applied to a semiconductor manufacturing process.

【符号の説明】[Explanation of symbols]

1…Nd:YAGレーザ発振器、4…金属マスク、8…
Siウエハ、9…刻印、10…液晶マスク、20…二次
元コード、28…乱反射光、100〜107…微小突起
部。
1 ... Nd: YAG laser oscillator, 4 ... metal mask, 8 ...
Si wafer, 9: stamp, 10: liquid crystal mask, 20: two-dimensional code, 28: diffusely reflected light, 100 to 107: minute projection.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】パルスレーザビームを照射して半導体材料
表面にパターンを刻印する方法において、パルスレーザ
ビームを照射した半導体材料表面が溶融,再結晶化する
過程で当該個所に微小突起部が発生するように、前記パ
ルスレーザビームのエネルギーとパルス幅との少なくと
も1つを制御することを特徴とする半導体材料表面への
刻印方法。
In a method of imprinting a pattern on a surface of a semiconductor material by irradiating a pulsed laser beam, a microprojection is generated at a location where the surface of the semiconductor material irradiated with the pulsed laser beam is melted and recrystallized. A method of marking on the surface of a semiconductor material, wherein at least one of the energy and the pulse width of the pulsed laser beam is controlled.
【請求項2】パルスレーザビームを照射して半導体材料
表面にパターンを刻印する方法において、パルスレーザ
ビームを照射した半導体材料表面が溶融,再結晶化する
過程で当該個所に微小突起部が発生するように、パルス
レーザビームのパルス幅を0.05ms〜0.40msに選定
したことを特徴とする半導体材料表面への刻印方法。
2. A method for imprinting a pattern on a surface of a semiconductor material by irradiating a pulsed laser beam, wherein minute projections are generated at the location in the process of melting and recrystallizing the surface of the semiconductor material irradiated with the pulsed laser beam. As described above, a method for imprinting on the surface of a semiconductor material, wherein the pulse width of the pulse laser beam is selected to be 0.05 ms to 0.40 ms.
【請求項3】パルスレーザビームを照射して半導体材料
表面にパターンを刻印する方法において、パルスレーザ
ビームを照射した半導体材料表面が溶融,再結晶化する
過程で当該個所に微小突起部が発生するように、半導体
材料表面のパルスレーザビームのエネルギー密度を18
J/cm2 〜40J/cm2 に選定したことを特徴とする半
導体材料表面への刻印方法。
3. A method for imprinting a pattern on a surface of a semiconductor material by irradiating a pulsed laser beam, wherein a minute projection is generated at a relevant point in the process of melting and recrystallizing the surface of the semiconductor material irradiated with the pulsed laser beam. Thus, the energy density of the pulsed laser beam on the surface of the semiconductor material is set to 18
Marking method of the semiconductor material surface, characterized in that it has selected in J / cm 2 ~40J / cm 2 .
【請求項4】上記パルスレーザビームのエネルギー密度
を18J/cm2 〜40J/cm2 にすると共に、パルス幅
を0.05ms〜0.40msに選定することを特徴とする請
求項1記載の半導体材料表面への刻印方法。
4. while the energy density of the pulsed laser beam to 18J / cm 2 ~40J / cm 2 , a semiconductor according to claim 1, wherein the selecting the pulse width 0.05ms~0.40ms How to imprint on the material surface.
【請求項5】パルスレーザビームを半導体材料,電子部
品等の物品表面に照射し、該パルスレーザビーム照射面
を溶融,再結晶化する過程で当該個所に形成された微小
突起部よりなる刻印を、表面に有することを特徴とする
物品。
5. A process for irradiating an article surface such as a semiconductor material or an electronic component with a pulsed laser beam and melting or recrystallizing the surface irradiated with the pulsed laser beam to form a mark formed of a minute projection formed at the corresponding location. An article characterized by having on the surface.
【請求項6】刻印すべきパターンが二次元コードを含
み、該パターンを発生する手段が液晶マスクであること
を特徴とする請求項1,2,3,4項のいずれか1項記
載の物品への刻印方法。
6. The article according to claim 1, wherein the pattern to be imprinted includes a two-dimensional code, and the means for generating the pattern is a liquid crystal mask. How to engrave on.
【請求項7】半導体材料,電子部品等の物品に刻印すべ
きパターンが二次元コードを含み、該パターンを発生す
る手段が液晶マスクであることを特徴とする請求項5項
記載の物品。
7. The article according to claim 5, wherein a pattern to be imprinted on an article such as a semiconductor material or an electronic component includes a two-dimensional code, and the means for generating the pattern is a liquid crystal mask.
JP15518696A 1996-06-17 1996-06-17 Method of engraving semiconductor material surface and article engraved by the method Expired - Fee Related JP3189687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15518696A JP3189687B2 (en) 1996-06-17 1996-06-17 Method of engraving semiconductor material surface and article engraved by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15518696A JP3189687B2 (en) 1996-06-17 1996-06-17 Method of engraving semiconductor material surface and article engraved by the method

Publications (2)

Publication Number Publication Date
JPH104040A true JPH104040A (en) 1998-01-06
JP3189687B2 JP3189687B2 (en) 2001-07-16

Family

ID=15600373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15518696A Expired - Fee Related JP3189687B2 (en) 1996-06-17 1996-06-17 Method of engraving semiconductor material surface and article engraved by the method

Country Status (1)

Country Link
JP (1) JP3189687B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6774340B1 (en) 1998-11-25 2004-08-10 Komatsu Limited Shape of microdot mark formed by laser beam and microdot marking method
JP2007049206A (en) * 2006-11-17 2007-02-22 Komatsu Ltd Semiconductor substrate with microscopic dot mark
DE19956107B4 (en) * 1998-11-25 2008-01-24 Komatsu Ltd. Shape of a micromarking made by a laser beam and method of micromarking
DE10025835B4 (en) * 1999-11-22 2008-07-31 Komatsu Ltd. Microdot marking method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6774340B1 (en) 1998-11-25 2004-08-10 Komatsu Limited Shape of microdot mark formed by laser beam and microdot marking method
DE19956107B4 (en) * 1998-11-25 2008-01-24 Komatsu Ltd. Shape of a micromarking made by a laser beam and method of micromarking
DE10025835B4 (en) * 1999-11-22 2008-07-31 Komatsu Ltd. Microdot marking method
JP2007049206A (en) * 2006-11-17 2007-02-22 Komatsu Ltd Semiconductor substrate with microscopic dot mark

Also Published As

Publication number Publication date
JP3189687B2 (en) 2001-07-16

Similar Documents

Publication Publication Date Title
US4190759A (en) Processing of photomask
JP3874528B2 (en) Laser marking method for semiconductor wafer
JP2004200221A (en) Laser marking method and device thereof
JP2881418B1 (en) Silicon substrate with identification data and method of manufacturing the same
JP3189687B2 (en) Method of engraving semiconductor material surface and article engraved by the method
JPH0471792A (en) Marking method
JP2001199747A (en) Method for marking glass substrate having color filter and apparatus therefor
JP2002178173A (en) Laser marking method and device for the same
JPH04110944A (en) Marking method for transparent material
JP2000042763A (en) Dot mark shape by laser beam, its marking device and method
JP2004074210A (en) Laser marking device and laser marking method
JP3522670B2 (en) Laser marking method
JP2002273585A (en) Beam machining method, device therefor and manufacturing method of touch panel substrate
JPH10211593A (en) Marking method for object to be worked
JPS60174671A (en) Laser printer
US20030038121A1 (en) Laser system and method for marking gemstones
JP2002273582A (en) Method for manufacturing beam machining device and touch panel substrate
JP2003019576A (en) Laser marking device and method
JPS5923512A (en) Laser marking method for semiconductor wafer
JP2000021696A (en) Laser marker and marking method
JP2719272B2 (en) Method and apparatus for cutting printed wiring board pattern using laser
JPH05291104A (en) Aligner
JPH02187288A (en) Laser beam marking system
JP2003053559A (en) Method for forming film pattern
JP2795941B2 (en) Mask and method for marking glass using mask

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees