JPH103900A - Secondary battery and manufacture thereof - Google Patents

Secondary battery and manufacture thereof

Info

Publication number
JPH103900A
JPH103900A JP8154325A JP15432596A JPH103900A JP H103900 A JPH103900 A JP H103900A JP 8154325 A JP8154325 A JP 8154325A JP 15432596 A JP15432596 A JP 15432596A JP H103900 A JPH103900 A JP H103900A
Authority
JP
Japan
Prior art keywords
positive electrode
lead
secondary battery
current collector
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8154325A
Other languages
Japanese (ja)
Inventor
Tsutomu Sato
努 佐藤
Katsuyuki Hata
勝幸 秦
Hiroyuki Takahashi
浩之 高橋
Masahiko Tsukiashi
雅彦 月脚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP8154325A priority Critical patent/JPH103900A/en
Publication of JPH103900A publication Critical patent/JPH103900A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the manufacture of secondary battery, which can obtain a junction part having stabilized strength and impedance, by forming the structure that a collector can be easily joined to a positive electrode lead in a wide range of condition. SOLUTION: A main body 5 of a positive electrode 2 is formed into a sheet, and a lead 4 and a collector 3 are joined to an upper edge of the positive electrode main body 5 by resistance welding. The upper edge of the positive electrode main body 5 is pressed so as to be formed at a thickness at about half of the thickness of the main body 5, and a narrow and long lead 4 is overlapped along the upper edge of the positive electrode main body 5. Furthermore, the collector 3, which is formed with a projecting part in a surface to be joined, is overlapped so that this projecting part abuts on the lead 4, and this overlapped part is pressurized, and welding current is applied to this pressurized part so as to partially melt an area of the projection, and the collector 3 is joined to the lead 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二次電池の製造方
法及び二次電池に関する。
The present invention relates to a method for manufacturing a secondary battery and a secondary battery.

【0002】[0002]

【従来の技術】近年、高性能で、高容量な電池の需要に
対応して、例えばアルカリ二次電池やリチウムイオン二
次電池などの様々な電池が開発され、実用化されてい
る。アルカリ二次電池は、リチウムイオン二次電池より
も製造コストが低く、かつ安全性が高く、更に大電流で
の放電が可能であるため、広く用いられている。
2. Description of the Related Art In recent years, various batteries such as an alkaline secondary battery and a lithium ion secondary battery have been developed and put into practical use in response to the demand for high-performance, high-capacity batteries. Alkaline secondary batteries are widely used because they are less expensive to manufacture than lithium ion secondary batteries, have higher safety, and can be discharged with a large current.

【0003】例えばニッケル水素二次電池においては、
ニッケル酸化物を含む正極と水素吸蔵合金を含む負極と
の間に合成樹脂繊維製不織布からなるセパレータを介装
して作製された電極群と、水酸化カリウム溶液などの強
アルカリ電解液とがその電池容器内に収容されている。
正極の縁部にはリードが取り付けられ、このリードに集
電体としてのタブが接合されている。
For example, in a nickel hydride secondary battery,
An electrode group produced by interposing a separator made of a synthetic resin fiber non-woven fabric between a positive electrode containing nickel oxide and a negative electrode containing a hydrogen storage alloy, and a strong alkaline electrolyte such as a potassium hydroxide solution. It is housed in a battery container.
A lead is attached to the edge of the positive electrode, and a tab as a current collector is joined to the lead.

【0004】従来の二次電池では正極集電体(タブ)は
超音波溶接法を用いて正極のリードに直接ダイレクト溶
接されている。正極リード及び集電体の接合部は電池回
路のインピーダンスに大きな影響を及ぼすので、二次電
池の品質を所定レベルに維持管理する上で重要である。
In a conventional secondary battery, a positive electrode current collector (tab) is directly welded directly to a positive electrode lead using an ultrasonic welding method. Since the junction between the positive electrode lead and the current collector has a large effect on the impedance of the battery circuit, it is important to maintain and maintain the quality of the secondary battery at a predetermined level.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
ダイレクト溶接法においては、正極リード及び集電体の
両者の材質が異なる場合や厚さが異なる場合は、良好な
接合部が得られる溶接条件や溶接範囲がかなり狭くな
り、一定品質の製品を得ることが困難となるので、不合
格品の発生率が増大する。
However, in the conventional direct welding method, when the materials of the positive electrode lead and the current collector are different from each other or when the thicknesses thereof are different, the welding conditions or the like for obtaining a good joint portion can be obtained. Since the welding range is considerably narrowed and it is difficult to obtain a product of constant quality, the incidence of rejected products increases.

【0006】また、従来のダイレクト溶接法では、繰り
返し多数のものを溶接するうちに飛び散り等によりチッ
プ形状が変化してしまい、溶接不良が生じやすくなるの
で、品質管理上の大きな問題となっている。
Further, in the conventional direct welding method, the tip shape changes due to splattering and the like while welding a large number of pieces repeatedly, and welding defects tend to occur, which is a major problem in quality control. .

【0007】ところで、ポリプロピレン系などの合成樹
脂繊維製不織布からなるセパレータは正極を包被するよ
うな形状にその両縁部が超音波接合されるが、その融着
部分が縮退し、セパレータが平坦な形状であるため融着
部分を起点にセパレータに引きつれが生じる。また、セ
パレータ両縁の接合部に縮みによる融着の斑が生じ、引
張り方向の強度が低下する。
[0007] By the way, the separator made of a nonwoven fabric made of a synthetic resin fiber such as a polypropylene resin is ultrasonically bonded at both edges in a shape to cover the positive electrode, but the fused portion is shrunk and the separator is flat. Due to the irregular shape, the separator is drawn from the fused portion as a starting point. In addition, spots of fusion due to shrinkage occur at the joints at both edges of the separator, and the strength in the tensile direction decreases.

【0008】本発明は上記課題を解決するためになされ
たものであり、集電体を正極リードに広い条件下で容易
に接合することができ、強度及びインピーダンスが安定
な接合部を得ることができる二次電池の製造方法及びそ
れによって製造された二次電池を提供することを目的と
する。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and it is possible to easily join a current collector to a positive electrode lead under a wide range of conditions, and to obtain a joint having stable strength and impedance. An object of the present invention is to provide a method of manufacturing a secondary battery that can be performed and a secondary battery manufactured by the method.

【0009】また、本発明は正極を包被するセパレータ
の縁部を良好に接合することができる二次電池の製造方
法及びそれによって製造された二次電池を提供すること
を目的とする。
Another object of the present invention is to provide a method of manufacturing a secondary battery capable of satisfactorily joining the edges of a separator enclosing a positive electrode, and a secondary battery manufactured by the method.

【0010】[0010]

【課題を解決するための手段】第1に、本発明に係る二
次電池の製造方法は、正極のリードに集電体を接合する
二次電池の製造方法において、正極集電体の接合される
べき面に突起を形成し、この突起が正極縁部のリードに
当接するように正極集電体をリードに重ね合わせ、この
重ね合わせ領域を加圧するとともに溶接電流を印加し
て、前記突起の領域を部分的に溶融させ、正極集電体を
リードに接合することを特徴とする。
First, a method of manufacturing a secondary battery according to the present invention is directed to a method of manufacturing a secondary battery in which a current collector is bonded to a positive electrode lead. A projection is formed on the surface to be formed, the positive electrode current collector is overlapped on the lead such that the projection comes into contact with the lead at the edge of the positive electrode, a welding current is applied while applying pressure to the overlap region, and a welding current is applied. The region is partially melted, and the positive electrode current collector is joined to the lead.

【0011】この場合に、突起は、円錐形状をなし、そ
の高さを0.5〜0.8mmとし、その径を0.6〜1.
0mmとすることが好ましい。さらに、溶接条件として、
電流値を0.5〜2kAの範囲に設定し、加圧力を0.
9〜1.2kg/cm2 の範囲に設定することが望まし
い。
In this case, the projection has a conical shape with a height of 0.5 to 0.8 mm and a diameter of 0.6 to 1.
Preferably, it is 0 mm. Furthermore, as welding conditions,
The current value is set in the range of 0.5 to 2 kA, and the pressure is set to 0.
It is desirable to set it in the range of 9 to 1.2 kg / cm 2 .

【0012】また、本発明に係る二次電池は、キャップ
を備える電池容器と、この電池容器内に電解液とともに
収納される正極及び負極と、これら正極と負極との間に
設けられ両極を分離するセパレータと、前記正極の縁部
に沿って設けられるリードと、このリードに抵抗溶接さ
れ、正極を電池容器に収納したときに前記キャップに押
し付けられる正極集電体と、を備え、前記正極集電体
は、少なくとも1つの突起を介して前記リードに接合さ
れていることを特徴とする。
Further, a secondary battery according to the present invention comprises a battery container having a cap, a positive electrode and a negative electrode housed in the battery container together with an electrolytic solution, and provided between the positive electrode and the negative electrode to separate both electrodes. A positive electrode current collector that is resistance-welded to the lead and pressed against the cap when the positive electrode is housed in a battery container. The electric body is joined to the lead via at least one protrusion.

【0013】抵抗溶接による接合部の機械的特性、とく
に引張強度は、電流値(電流密度)、加圧力、通電時間
の3つの要素に強く依存している。このことを図5及び
図6を参照しながら説明する。
[0013] The mechanical properties, particularly the tensile strength, of a joint formed by resistance welding strongly depend on three factors: current value (current density), pressing force, and energizing time. This will be described with reference to FIGS.

【0014】図5は横軸に電流値(電流密度(mA/c
2 ))をとり、縦軸にインピーダンス(Ω)をとっ
て、加圧力及び通電時間を一定にした場合におけるイン
ピーダンスの電流密度依存性につき調べた結果を定性的
に示すグラフ図である。図5から明らかなように、ある
所定の中間領域の電流密度ではインピーダンスが大きく
なるが、この中間領域を外れる低電流密度の領域及び高
電流密度の領域ではインピーダンスが小さくなる。ただ
し、低電流密度の領域で溶接したものは所定レベルの強
度をもたないことがあるので、高電流密度の領域で溶接
することが望ましい。
FIG. 5 shows the current value (current density (mA / c) on the horizontal axis.
FIG. 8 is a graph qualitatively showing a result of examining the dependence of impedance on current density when the pressure and energization time are kept constant by taking m 2 )) and taking the impedance (Ω) on the vertical axis. As is clear from FIG. 5, the impedance increases at a current density in a certain intermediate region, but decreases in a low current density region and a high current density region outside the intermediate region. However, it is desirable to weld in a region with a high current density, because a portion welded in a region with a low current density may not have a predetermined level of strength.

【0015】また、図6は横軸に加圧力(kgf/cm
2 )をとり、縦軸にインピーダンス(Ω)をとって、電
流値及び通電時間を一定にした場合におけるインピーダ
ンスの加圧力依存性につき調べた結果を定性的に示すグ
ラフ図である。図6から明らかなように、加圧力とイン
ピーダンスとはほぼ反比例の関係にあり加圧力が大きく
なればなるほどインピーダンスは小さくなる。しかし、
加圧力を過大にすると溶接チップが短期間で劣化してし
まうので、加圧力はほどほどの大きさであることが望ま
しい。
FIG. 6 shows the pressing force (kgf / cm) on the horizontal axis.
FIG. 2B is a graph qualitatively showing the result of examining the dependence of the impedance on the pressing force when the current value and the conduction time are kept constant by taking 2 ) and taking the impedance (Ω) on the vertical axis. As is clear from FIG. 6, the pressing force and the impedance are almost inversely proportional, and the higher the pressing force, the lower the impedance. But,
If the pressure is too high, the welding tip will deteriorate in a short period of time, so it is desirable that the pressure is moderate.

【0016】以上の電流密度依存性と加圧力依存性から
適正なインピーダンス及び溶接強度を得るには高電流密
度の領域で、かつ、過大でない加圧力を印加する条件で
集電体を正極リードに溶接することが好ましい。
In order to obtain proper impedance and welding strength from the above-described current density dependency and the applied pressure dependency, the current collector is connected to the positive electrode lead in a high current density region and under a condition that a non-excessive applied pressure is applied. Welding is preferred.

【0017】第2に、本発明に係る二次電池の製造方法
は、正極と負極とを分離するために正極を包被するセパ
レータを形成する二次電池の製造方法において、正極本
体に設けられたリードに集電体を抵抗溶接し、集電体の
少なくとも一部が突出するように正極本体をセパレータ
のなかに挿入し、セパレータの両縁部を加圧しながら超
音波を印加して、接合部分と非接合部分とが交互に存在
するような所定のパターンで超音波溶接することを特徴
とする。
Secondly, a method for manufacturing a secondary battery according to the present invention is a method for manufacturing a secondary battery, in which a separator enclosing the positive electrode is formed to separate the positive electrode from the negative electrode, the method being provided on the positive electrode body. The current collector is resistance welded to the lead, the positive electrode body is inserted into the separator so that at least a part of the current collector protrudes, and ultrasonic waves are applied while applying pressure to both edges of the separator to join. Ultrasonic welding is performed in a predetermined pattern in which portions and non-joined portions alternately exist.

【0018】また、本発明に係る二次電池は、電池容器
と、この電池容器内に電解液とともに収納される正極及
び負極と、これら正極と負極との間に設けられ両極を分
離するセパレータと、前記正極の縁部に沿って設けられ
るリードと、このリードに抵抗溶接された正極集電体
と、を備え、前記セパレータの両縁部は、接合部分と非
接合部分とが交互に存在する所定のパターンで超音波溶
接されていることを特徴とする。
Further, the secondary battery according to the present invention comprises a battery container, a positive electrode and a negative electrode housed in the battery container together with an electrolytic solution, and a separator provided between the positive electrode and the negative electrode to separate both electrodes. , A lead provided along the edge of the positive electrode, and a positive electrode current collector resistance-welded to the lead, and both edges of the separator are provided with a joining portion and a non-joining portion alternately. It is characterized by being ultrasonically welded in a predetermined pattern.

【0019】セパレータの融着部分に接合部分と非接合
部分とが交互に存在する所定のパターンを採用すること
により、伸びしろができ、接合部の引張り方向の強度が
向上される。
By adopting a predetermined pattern in which a joining portion and a non-joining portion are alternately present in the fused portion of the separator, the separator can be extended, and the strength of the joining portion in the tensile direction is improved.

【0020】[0020]

【発明の実施の形態】以下、添付の図面を参照しながら
本発明の好ましい実施の形態について説明する。電解液
未収容のニッケル水素二次電池としては、次に示す方法
により作製されたものを用いた。すなわち、水酸化ニッ
ケル粉末90重量部および一酸化コバルト粉末10重量
部からなる混合粉体に、水酸化ニッケル粉末に対してカ
ルボキシメチルセルロース0.3重量部、ポリテトラフ
ルオロエチレンの懸濁液(比重1.5,固形分60重量
%)を固形分換算で0.5重量部添加し、これらに蒸留
水を45重量部添加して混練することによりペーストを
調製した。
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. As a nickel-hydrogen secondary battery not containing an electrolyte, a battery manufactured by the following method was used. That is, a mixed powder consisting of 90 parts by weight of nickel hydroxide powder and 10 parts by weight of cobalt monoxide powder was mixed with 0.3 part by weight of carboxymethyl cellulose and a suspension of polytetrafluoroethylene (specific gravity: 1 0.5, 60 parts by weight of solid content), and 0.5 parts by weight of solid content were added thereto, and 45 parts by weight of distilled water was added thereto and kneaded to prepare a paste.

【0021】次いで、このペーストを導電性基板として
のニッケルメッキ繊維基板内に充填した後に、更にその
両表面にペーストを塗布し、乾燥し、ローラプレスを行
って圧延することにより厚さが0.65mmのペースト
式正極を作製した。得られた正極2に正極リードタブ4
の一端を接続した。
Next, after filling the paste into a nickel-plated fiber substrate as a conductive substrate, the paste is further applied to both surfaces thereof, dried, and rolled by a roller press to obtain a thickness of 0.1 mm. A 65 mm paste-type positive electrode was produced. A positive electrode lead tab 4 is attached to the obtained positive electrode 2.
Was connected at one end.

【0022】一方、LmNi4.0 Co0.4 Mn0.3 Al
0.3 の組成からなる水素吸蔵合金粉末100重量部に対
してポリアクリル酸ナトリウム0.5重量部、カルボキ
シメチルセルロース(CMC)0.125重量部、ポリ
テトラフルオロエチレンのディスパージョン(比重1.
5,固形分60wt%)を固形分換算で2.5重量部お
よび導電材としてカーボン粉末1.0重量部を水50重
量部と共に混合することによって、ペーストを調製し
た。このペーストを導電性基板としてのパンチドメタル
に塗布、乾燥した後、加圧成型することによって厚さが
0.40mmのペースト式負極を作製した。
On the other hand, LmNi 4.0 Co 0.4 Mn 0.3 Al
0.5 part by weight of sodium polyacrylate, 0.125 part by weight of carboxymethylcellulose (CMC), and dispersion of polytetrafluoroethylene (specific gravity: 1.25 parts by weight) per 100 parts by weight of a hydrogen storage alloy powder having a composition of 0.3 .
5, a solid content of 60 wt%) was mixed with 2.5 parts by weight of solid content and 1.0 part by weight of carbon powder as a conductive material together with 50 parts by weight of water to prepare a paste. This paste was applied to a punched metal as a conductive substrate, dried, and then molded under pressure to produce a paste-type negative electrode having a thickness of 0.40 mm.

【0023】得られた正極2と負極との間に目付け量が
55g/m2 で、厚さが0.18mmのアクリル酸モノ
マーがグラフト共重合されたポリオレフィン系合成樹脂
繊維製不織布から形成されたセパレータ11を介在さ
せ、図3に示すようにこれらを渦巻状に捲回して電極群
を作製した。
A non-woven fabric made of a polyolefin-based synthetic resin fiber having a weight per unit area of 55 g / m 2 and a thickness of 0.18 mm between the obtained positive electrode 2 and negative electrode was graft-copolymerized with an acrylic acid monomer. These were spirally wound with a separator 11 interposed therebetween as shown in FIG. 3 to produce an electrode group.

【0024】上部開口部に立ち上り部を有する有底円筒
状容器(4/5Aサイズ)8内に電極群をその積層面が
容器8の深さ方向と平行になるように収納した。なお、
絶縁ガスケットと容器の上部開口部内面との密着性を高
めて気密性を向上させるために上部開口部内面にシール
剤(例えばアスファルト製)が塗布されている。
The electrode group was housed in a bottomed cylindrical container (4 / 5A size) 8 having a rising portion at the upper opening so that the lamination surface was parallel to the depth direction of the container 8. In addition,
A sealant (for example, made of asphalt) is applied to the inner surface of the upper opening in order to increase the adhesion between the insulating gasket and the inner surface of the upper opening of the container to improve airtightness.

【0025】得られた電解液未収納のニッケル水素二次
電池1をこの電池の電極群の上端と注液部材の出口部の
下端との間に0.5mmの距離をあけて注液装置に組み
込み、容器内を110Torrまで減圧し、この容器に
回転速度を1000rpmにして遠心力を加えながら容
器内に7NのKOHおよび1NのLiOHからなるアル
カリ電解液を2.5cc注入した。
The obtained nickel-hydrogen rechargeable battery 1 not containing an electrolytic solution was placed in an injection device with a distance of 0.5 mm between the upper end of the electrode group of the battery and the lower end of the outlet of the injection member. After incorporating, the pressure in the vessel was reduced to 110 Torr, and 2.5 cc of an alkaline electrolyte composed of 7N KOH and 1N LiOH was injected into the vessel while applying a centrifugal force at a rotation speed of 1000 rpm.

【0026】さらに、集電体3をキャップ9に接合し、
集電体3を折り曲げてキャップ9を容器8に被せ、両者
を接合し、これにより二次電池1を得た。次に、図1〜
図4を参照しながら正極2について更に詳しく説明す
る。
Further, the current collector 3 is joined to the cap 9,
The current collector 3 was bent, and the cap 9 was put on the container 8, and the two were joined, whereby the secondary battery 1 was obtained. Next, FIG.
The positive electrode 2 will be described in more detail with reference to FIG.

【0027】図1に示すように、正極2の本体5はシー
ト状をなし、この正極本体5の上縁部5bにリード4及
び集電体3が抵抗溶接によって接合されている。図2に
示すように、正極本体5の大部分は無地部層6でできて
いる。
As shown in FIG. 1, the main body 5 of the positive electrode 2 has a sheet shape, and the lead 4 and the current collector 3 are joined to the upper edge 5b of the positive electrode body 5 by resistance welding. As shown in FIG. 2, most of the positive electrode body 5 is made of the uncoated layer 6.

【0028】図4に示すように、上縁部5bはプレスさ
れて正極本体5の厚さの約半分の厚さになっており、こ
の上縁部5bに沿って細長のリード4が重ね合わせら
れ、さらに集電体3がリード4の適所に重ね合わせられ
ている。集電体3の重ね合せ接合面には2つの突起3b
が形成されている。突起3bは、円錐形状又は半球形状
をなしており、各高さが0.5〜0.8mmの範囲に形成
され、各径が0.6〜1.0mmの範囲に形成されてい
る。
As shown in FIG. 4, the upper edge portion 5b is pressed to have a thickness of about half the thickness of the positive electrode body 5, and the elongated leads 4 are overlapped along the upper edge portion 5b. Further, the current collector 3 is superimposed on an appropriate position of the lead 4. Two protrusions 3b are provided on the superposed joint surface of the current collector 3.
Are formed. The protrusion 3b has a conical shape or a hemispherical shape, each height is formed in a range of 0.5 to 0.8 mm, and each diameter is formed in a range of 0.6 to 1.0 mm.

【0029】これら3者を重ね合わせて抵抗溶接すると
きは、溶接条件として、電流値を0.5〜2kAの範囲
に設定し、加圧力を0.9〜1.2kg/cm2 の範囲
に設定する。
When these three members are overlapped and resistance-welded, as welding conditions, the current value is set in the range of 0.5 to 2 kA, and the pressure is set in the range of 0.9 to 1.2 kg / cm 2 . Set.

【0030】なお、集電体3は安全ヒューズの役割も持
っているので、集電体3と上縁リード4との間のインピ
ーダンスはある程度の値をもつことが望ましい。このた
め、集電体3には孔3aが開けられ、電池に異常電流が
流れたときに集電体3をメルトダウンしやすくしてい
る。
Since the current collector 3 also has a role of a safety fuse, it is desirable that the impedance between the current collector 3 and the upper edge lead 4 has a certain value. For this reason, a hole 3a is formed in the current collector 3 to facilitate melting down of the current collector 3 when an abnormal current flows in the battery.

【0031】図7は横軸に測定インピーダンス(Ω)を
とり、縦軸に超音波接合部の測定溶接強度(kgf)を
とって、本発明方法を用いた実施例の製品と従来法を用
いた比較例の製品とにつき調べた結果を比較したグラフ
図である。インピーダンスは、集電体3にテスト用リー
ド(図示せず)を接続し、このテスト用リードと上縁リ
ード4との間にテスタ端子をつないで測定したものであ
る。溶接強度は、プッシュプルゲージを用いてサンプル
を一定速度で引っ張り、その破断強度を測定したもので
ある。図中にて白四角は本発明方法を用いた実施例の結
果を示し、黒四角は従来法を用いた比較例の結果を示
す。
FIG. 7 shows the measured impedance (Ω) on the horizontal axis and the measured welding strength (kgf) on the ultrasonic joint on the vertical axis, using the product of the embodiment using the method of the present invention and the conventional method. It is the graph which compared the result of having investigated about the product of the comparative example which was. The impedance is measured by connecting a test lead (not shown) to the current collector 3 and connecting a tester terminal between the test lead and the upper edge lead 4. The welding strength was measured by pulling the sample at a constant speed using a push-pull gauge and measuring the breaking strength. In the figure, white squares show the results of the examples using the method of the present invention, and black squares show the results of the comparative examples using the conventional method.

【0032】図から明らかなように、比較例製品の測定
インピーダンスは0.3〜2.8Ωの範囲となり、測定
値のばらつきが大きいのに対して、実施例製品の測定イ
ンピーダンスは1.6〜2.8Ωの範囲となり、測定値
のばらつきが小さい。このように、実施例製品のほうが
比較例製品よりも品質的に安定していることが判明し
た。また、実施例製品の溶接強度は、2.3〜6.6k
gfの範囲の測定値が得られ、比較例製品のそれと同等
かそれを上回る結果となった。
As can be seen from the figure, the measured impedance of the product of the comparative example is in the range of 0.3 to 2.8 Ω, and the measured value of the product of the example is 1.6 to 1.6 while the dispersion of measured values is large. It is in the range of 2.8Ω, and the dispersion of the measured values is small. Thus, it was found that the product of the example was more stable in quality than the product of the comparative example. Further, the welding strength of the example product is 2.3 to 6.6 k.
Measurements in the gf range were obtained, with results equal to or greater than those of the comparative example product.

【0033】このように本発明方法により接合された正
極集電体を備える製品は、従来製品よりも優れた品質を
有することが判明した。なお、比較例のなかにはインピ
ーダンス測定値が極端に小さいものが存在するが、これ
は集電体3と上縁リード4との間に異常電流が流れたと
きに集電体3が容易にメルトダウンせず、電池の安全性
が損なわれるので好ましくない。集電体3は二次電池に
おいて安全ヒューズの役割を有しているので、集電体3
と上縁リード4との間のインピーダンスは小さければい
いというものではなく、ある程度の大きさの値をもつこ
とが望ましいからである。
Thus, it has been found that a product provided with a positive electrode current collector joined by the method of the present invention has superior quality to a conventional product. Some of the comparative examples have extremely small impedance measurement values. This is because the current collector 3 easily melts down when an abnormal current flows between the current collector 3 and the upper edge lead 4. Otherwise, the safety of the battery is impaired, which is not preferable. Since the current collector 3 has a role of a safety fuse in the secondary battery, the current collector 3
This is because the impedance between the upper edge lead 4 and the upper edge lead does not have to be small, but it is desirable that the impedance has a certain magnitude.

【0034】次に、図8〜図10を参照しながら正極2
を包み込むセパレータ11の溶接組立てについて説明す
る。図8及び図9に示すように、正極2を袋状にしたセ
パレータ11のなかに挿入する。このとき、集電体3は
セパレータ11の外側にはみ出ている。
Next, with reference to FIGS.
The welding assembly of the separator 11 enclosing the above will be described. As shown in FIGS. 8 and 9, the positive electrode 2 is inserted into a bag-shaped separator 11. At this time, the current collector 3 protrudes outside the separator 11.

【0035】図10に示すように、超音波溶接機の支持
台21上にセパレータ11が載置され、これに上方のア
ンビル22が向き合っている。セパレータ11内にはタ
ブ3を突接させた正極2が挿入されている。支持台21
には超音波発生器(図示せず)が内蔵され、これに通電
すると所定周波数の超音波が支持台21上のセパレータ
11に印加されるようになっている。
As shown in FIG. 10, the separator 11 is placed on the support 21 of the ultrasonic welding machine, and the upper anvil 22 faces this. The positive electrode 2 with the tab 3 projecting from the separator 11 is inserted into the separator 11. Support base 21
Has a built-in ultrasonic generator (not shown). When electricity is supplied to the ultrasonic generator, ultrasonic waves of a predetermined frequency are applied to the separator 11 on the support 21.

【0036】アンビル22は図示しない昇降機構及び加
圧機構によって支持されている。アンビル22の1対の
先端部には所定の凹凸パターンが形成されている。アン
ビル22を下降させ、セパレータ11の左右両縁部をア
ンビル22で加圧しながら超音波を印加すると、セパレ
ータ11の左右両縁部は接合される。
The anvil 22 is supported by a lifting mechanism and a pressing mechanism (not shown). A predetermined concavo-convex pattern is formed on a pair of tips of the anvil 22. When the ultrasonic wave is applied while lowering the anvil 22 and pressing the left and right edges of the separator 11 with the anvil 22, the left and right edges of the separator 11 are joined.

【0037】なお、本実施例では上下2枚のセパレータ
11を重ね合わせ接合しているが、1枚のセパレータ1
1を折り返したものの左右両縁部を接合するようにして
もよい。また、セパレータ11の左右両縁部の他に底縁
部をも接合するようにしてもよい。
In this embodiment, the upper and lower two separators 11 are overlapped and joined, but one separator 1
Alternatively, the left and right edges may be joined together after folding back 1. Further, in addition to the left and right edges of the separator 11, a bottom edge may be joined.

【0038】図11〜図13を参照しながら正極を包被
するセパレータの種々の接合パターンについて説明す
る。図11に示すように、セパレータ11aの左右両縁
部が幅1〜2mmの範囲で超音波溶接されている。この超
音波溶接された領域は、全面が接合されているのではな
く、部分的に接合されたものである。この実施形態のパ
ターン接合部12aではクロスパターンを採用してい
る。
Various joining patterns of the separator enclosing the positive electrode will be described with reference to FIGS. As shown in FIG. 11, both left and right edges of the separator 11a are ultrasonically welded in a range of 1 to 2 mm in width. This ultrasonically welded area is not entirely joined but is partially joined. The pattern joining portion 12a of this embodiment adopts a cross pattern.

【0039】図12に示す他のパターン接合部12bの
ように斜線パターンを採用してもよいし、さらに図13
に示すパターン接合部12cのようにエンボスパターン
を採用してもよい。
A diagonal pattern may be employed as in another pattern joint 12b shown in FIG.
An embossed pattern may be adopted as in a pattern joint 12c shown in FIG.

【0040】上記実施例では角型二次電池の場合につい
て説明したが、本発明はこれのみに限られることなく丸
型や箱型などの他のタイプの二次電池にも用いることが
できる。
In the above embodiment, the case of a square secondary battery has been described. However, the present invention is not limited to this, and can be applied to other types of secondary batteries such as a round type and a box type.

【0041】[0041]

【発明の効果】本発明によれば、集電体を正極リードに
広い条件下で容易に接合することができ、強度及びイン
ピーダンスが安定な接合部を得ることができる二次電池
の製造方法及び二次電池を提供することができる。
According to the present invention, there is provided a method of manufacturing a secondary battery, wherein a current collector can be easily bonded to a positive electrode lead under a wide range of conditions, and a bonded portion having stable strength and impedance can be obtained. A secondary battery can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係る二次電池の製造方法で
つくられる巻回前の正極集電体を示す正面図。
FIG. 1 is a front view showing a pre-wound positive electrode current collector made by a method for manufacturing a secondary battery according to an embodiment of the present invention.

【図2】巻回前の正極集電体を示す平面図。FIG. 2 is a plan view showing a positive electrode current collector before winding.

【図3】電池容器内部の電極を示す分解断面図。FIG. 3 is an exploded cross-sectional view showing an electrode inside a battery container.

【図4】溶接前の集電体、リード、活物質層を示す図。FIG. 4 is a diagram showing a current collector, a lead, and an active material layer before welding.

【図5】加圧力及び通電時間を一定にした場合の溶接電
流値とインピーダンスとの関係を示すグラフ図。
FIG. 5 is a graph showing the relationship between the welding current value and the impedance when the pressing force and the conduction time are constant.

【図6】電流値及び通電時間を一定にした場合の加圧力
とインピーダンスとの関係を示すグラフ図。
FIG. 6 is a graph showing a relationship between a pressing force and an impedance when a current value and a conduction time are constant.

【図7】本発明の効果を示すグラフ図。FIG. 7 is a graph showing the effect of the present invention.

【図8】正極及びセパレータを正面から見て示す図。FIG. 8 is a diagram showing a positive electrode and a separator as viewed from the front.

【図9】正極及びセパレータを側方から見て示す図。FIG. 9 is a diagram showing a positive electrode and a separator viewed from the side.

【図10】超音波溶接機にセットされた正極及びセパレ
ータを示す図。
FIG. 10 is a diagram showing a positive electrode and a separator set in the ultrasonic welding machine.

【図11】セパレータに包被された正極を示す図。FIG. 11 is a diagram showing a positive electrode covered by a separator.

【図12】セパレータに包被された正極を示す図。FIG. 12 is a diagram showing a positive electrode covered by a separator.

【図13】セパレータに包被された正極を示す図であ
る。
FIG. 13 is a diagram showing a positive electrode covered by a separator.

【符号の説明】[Explanation of symbols]

2…正極、3…集電体(タブ)、3a…孔、3b…突
起、4…上縁リード、 5…活物質層、 6…無地部
層、11,11a〜11c…セパレータ、12a〜12
c…パターン接合部、21…超音波発生器、 22…ア
ンビル。
2 ... Positive electrode, 3 ... Current collector (tab), 3a ... Hole, 3b ... Protrusion, 4 ... Upper edge lead, 5 ... Active material layer, 6 ... Uncoated layer, 11, 11a-11c ... Separator, 12a-12
c: pattern joint, 21: ultrasonic generator, 22: anvil.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 月脚 雅彦 東京都品川区南品川3丁目4番10号 東芝 電池株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masahiko Lunar Legs 3-4-10 Minamishinagawa, Shinagawa-ku, Tokyo Toshiba Battery Corporation

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】正極のリードに集電体を接合する二次電池
の製造方法において、 正極集電体の接合されるべき面に突起を形成し、 この突起が正極縁部のリードに当接するように正極集電
体をリードに重ね合わせ、 この重ね合わせ領域を加圧するとともに溶接電流を印加
して、前記突起の領域を部分的に溶融させ、正極集電体
をリードに接合することを特徴とする二次電池の製造方
法。
1. A method of manufacturing a secondary battery in which a current collector is joined to a lead of a positive electrode, wherein a projection is formed on a surface of the positive electrode current collector to be joined, and the projection abuts on a lead at an edge of the positive electrode. As described above, the positive electrode current collector is superimposed on the lead, and a welding current is applied while applying pressure to the superposed area to partially melt the area of the protrusion and join the positive electrode current collector to the lead. Manufacturing method for a secondary battery.
【請求項2】前記突起は円錐形状をなし、その高さを
0.5〜0.8mmとし、その径を0.6〜1.0mmとす
ることを特徴とする請求項1記載の二次電池の製造方
法。
2. The secondary according to claim 1, wherein the projection has a conical shape, a height of 0.5 to 0.8 mm, and a diameter of 0.6 to 1.0 mm. Battery manufacturing method.
【請求項3】溶接条件として、電流値を0.5〜2kA
の範囲に設定し、加圧力を0.9〜1.2kg/cm2
の範囲に設定することを特徴とする請求項1記載の二次
電池の製造方法。
3. The welding conditions include a current value of 0.5 to 2 kA.
In the range of 0.9 to 1.2 kg / cm 2
The method for manufacturing a secondary battery according to claim 1, wherein the secondary battery is set in a range of:
【請求項4】正極と負極とを分離するために正極を包被
するセパレータを形成する二次電池の製造方法におい
て、 正極本体に設けられたリードに集電体を抵抗溶接し、 集電体の少なくとも一部が突出するように正極本体をセ
パレータのなかに挿入し、 セパレータの両縁部を加圧しながら超音波を印加して、
接合部分と非接合部分とが交互に存在するような所定の
パターンで超音波溶接することを特徴とする二次電池の
製造方法。
4. A method for manufacturing a secondary battery, comprising forming a separator enclosing a positive electrode in order to separate a positive electrode and a negative electrode, wherein the current collector is resistance-welded to a lead provided on the positive electrode body. Insert the positive electrode body into the separator so that at least a part of it projects, apply ultrasonic waves while applying pressure to both edges of the separator,
A method for manufacturing a secondary battery, comprising: performing ultrasonic welding in a predetermined pattern such that a joined portion and a non-joined portion alternately exist.
【請求項5】キャップを備える電池容器と、 この電池容器内に電解液とともに収納される正極及び負
極と、 これら正極と負極との間に設けられ両極を分離するセパ
レータと、 前記正極の縁部に沿って設けられるリードと、 このリードに抵抗溶接され、正極を電池容器に収納した
ときに前記キャップに押し付けられる正極集電体と、を
備え、 前記正極集電体は、少なくとも1つの突起を介して前記
リードに接合されていることを特徴とする二次電池。
5. A battery container having a cap, a positive electrode and a negative electrode housed in the battery container together with an electrolytic solution, a separator provided between the positive electrode and the negative electrode to separate both electrodes, and an edge of the positive electrode And a positive electrode current collector that is resistance welded to the lead and pressed against the cap when the positive electrode is housed in a battery container, wherein the positive electrode current collector has at least one protrusion. A secondary battery, wherein the secondary battery is joined to the lead via a wire.
【請求項6】電池容器と、 この電池容器内に電解液とともに収納される正極及び負
極と、 これら正極と負極との間に設けられ両極を分離するセパ
レータと、 前記正極の縁部に沿って設けられるリードと、 このリードに抵抗溶接された正極集電体と、を備え、 前記セパレータの両縁部は、接合部分と非接合部分とが
交互に存在する所定のパターンで超音波溶接されている
ことを特徴とする二次電池。
6. A battery container, a positive electrode and a negative electrode accommodated in the battery container together with an electrolytic solution, a separator provided between the positive electrode and the negative electrode to separate the two electrodes, and along an edge of the positive electrode. A lead provided, and a positive electrode current collector resistance-welded to the lead, wherein both edges of the separator are ultrasonically welded in a predetermined pattern in which joined portions and non-joined portions alternately exist. A secondary battery.
JP8154325A 1996-06-14 1996-06-14 Secondary battery and manufacture thereof Pending JPH103900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8154325A JPH103900A (en) 1996-06-14 1996-06-14 Secondary battery and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8154325A JPH103900A (en) 1996-06-14 1996-06-14 Secondary battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH103900A true JPH103900A (en) 1998-01-06

Family

ID=15581682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8154325A Pending JPH103900A (en) 1996-06-14 1996-06-14 Secondary battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH103900A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001236947A (en) * 2000-02-23 2001-08-31 Sony Corp Electrode, battery, and their manufacturing method
JP2002367579A (en) * 2001-06-07 2002-12-20 Sony Corp Battery device and electronic device having battery device
JP2006049275A (en) * 2004-07-30 2006-02-16 Samsung Sdi Co Ltd Lithium ion secondary battery
JP2009032640A (en) * 2007-06-27 2009-02-12 Sanyo Electric Co Ltd Sealed battery and its manufacturing method
JP2010034067A (en) * 2009-09-25 2010-02-12 Hitachi Cable Ltd Wiring material for battery pack
JP2010177088A (en) * 2009-01-30 2010-08-12 Sanyo Electric Co Ltd Polymer battery
CN102104134A (en) * 2011-01-28 2011-06-22 福建南平南孚电池有限公司 Pole lug of lithium battery and negative pole structure with same as well as lithium battery
US9601781B2 (en) 2012-07-30 2017-03-21 Toyota Jidosha Kabushiki Kaisha Secondary battery and method for manufacturing secondary battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001236947A (en) * 2000-02-23 2001-08-31 Sony Corp Electrode, battery, and their manufacturing method
JP2002367579A (en) * 2001-06-07 2002-12-20 Sony Corp Battery device and electronic device having battery device
JP2006049275A (en) * 2004-07-30 2006-02-16 Samsung Sdi Co Ltd Lithium ion secondary battery
US7855014B2 (en) 2004-07-30 2010-12-21 Samsung Sdi Co., Ltd. Secondary battery
JP2009032640A (en) * 2007-06-27 2009-02-12 Sanyo Electric Co Ltd Sealed battery and its manufacturing method
JP2010177088A (en) * 2009-01-30 2010-08-12 Sanyo Electric Co Ltd Polymer battery
JP2010034067A (en) * 2009-09-25 2010-02-12 Hitachi Cable Ltd Wiring material for battery pack
CN102104134A (en) * 2011-01-28 2011-06-22 福建南平南孚电池有限公司 Pole lug of lithium battery and negative pole structure with same as well as lithium battery
US9601781B2 (en) 2012-07-30 2017-03-21 Toyota Jidosha Kabushiki Kaisha Secondary battery and method for manufacturing secondary battery

Similar Documents

Publication Publication Date Title
US4332867A (en) Battery coil construction
JP3066338B2 (en) Battery
WO2007091717A1 (en) Method for manufacturing battery, battery manufactured by that method, and method for inspecting battery
JP2003272597A (en) Sealed battery
JP2003217562A (en) Coin cell battery
JP2001052756A (en) Nonaqueous electrolyte secondary battery and its manufacture
JPH103900A (en) Secondary battery and manufacture thereof
JP4284719B2 (en) Battery with spiral electrode and method for manufacturing the same
US8557410B2 (en) Secondary battery with a spirally-rolled electrode group
JP4691919B2 (en) Welding method for metal parts
JP3754220B2 (en) Cylindrical secondary battery
JPH09171809A (en) Laser sealed battery
JP5157049B2 (en) Sealed battery, method for manufacturing the same, assembled battery including a plurality of sealed batteries, and method for manufacturing the same
JP7691274B2 (en) Battery and battery manufacturing method
JP4766832B2 (en) Current collector with terminal, electrochemical element using the same
WO2022196358A1 (en) Terminal-equipped button cell
JP2000260419A (en) Manufacture of battery
JP3906001B2 (en) Alkaline storage battery and method of manufacturing the same
US20020112330A1 (en) Manufacturing method of capacitor
JP2004055371A (en) Cylindrical battery and battery connection structure using it
JPH11162447A (en) Cylindrical battery with spiral electrode body and its manufacture
JPH11329397A (en) Flat thin battery
JPH11307078A (en) Battery
JPH1140147A (en) Electrode group for alkaline secondary battery and manufacture thereof
JP2526211Y2 (en) Prismatic battery