JPH1038836A - Flow potential measuring device - Google Patents

Flow potential measuring device

Info

Publication number
JPH1038836A
JPH1038836A JP19723996A JP19723996A JPH1038836A JP H1038836 A JPH1038836 A JP H1038836A JP 19723996 A JP19723996 A JP 19723996A JP 19723996 A JP19723996 A JP 19723996A JP H1038836 A JPH1038836 A JP H1038836A
Authority
JP
Japan
Prior art keywords
pressure
liquid
receiving container
container
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19723996A
Other languages
Japanese (ja)
Inventor
Toshibumi Fukui
俊文 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP19723996A priority Critical patent/JPH1038836A/en
Publication of JPH1038836A publication Critical patent/JPH1038836A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a device that can measure flow potential easily with high accuracy from small diameter grain to large diameter grain with simple and compact constitution, without changing the flow of a fluid. SOLUTION: A fluid feeding container 11, a flow potential measuring cell 10 and a fluid receiving container 12 are communicated with one another under pressure-tight and airtight structure. The feeding container 11 is provided with a means for imparting constant high pressure, and the receiving container 12 is composed of a plurality of chambers 121, 122 that can be selectively partitioned in an airtight state by opening/closing mechanism 18. The volume of the receiving container 12 can be charged without changing a fluid passage by operation of the opening/closing mechanism 18.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は流動電位の測定装置
に関し、更に詳しくは、固−液界面の荷電状態を示すゼ
ータ電位を、流動電位法に基づいて求めるのに適した装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring a streaming potential, and more particularly to an apparatus suitable for obtaining a zeta potential indicating a charged state of a solid-liquid interface based on a streaming potential method.

【0002】[0002]

【従来の技術】ゼータ電位を求める方法の一つとして流
動電位法が知られている。流動電位法は、一対の電極間
に固体試料を充填し、その充填層に液を流したときに一
対の電極間に発生する電位差、すなわち流動電位を測定
することによってゼータ電位を求める方法である。
2. Description of the Related Art A streaming potential method is known as one of methods for obtaining a zeta potential. The streaming potential method is a method in which a solid sample is filled between a pair of electrodes, and a zeta potential is obtained by measuring a potential difference generated between the pair of electrodes when a liquid flows through the packed layer, that is, a streaming potential. .

【0003】この流動電位法においては、一般に、流動
電位Eとともに、充填層を流れる液の流動圧力、つまり
充填層の両端間の差圧Pを測定し、これら両測定結果か
ら、下記の(1)式で示されるヘルムホルツ−スモルコ
ウスキの式を用いてゼータ電位ζを算出する。なお、
(1)式におけるkは、液の誘電率、粘度、および導電
率によって定まる定数である。
In this streaming potential method, the flow potential of the liquid flowing through the packed bed, that is, the differential pressure P between both ends of the packed bed, is generally measured together with the streaming potential E. ) The zeta potential ζ is calculated using the Helmholtz-Smolkovski equation shown in the equation. In addition,
K in the equation (1) is a constant determined by the dielectric constant, viscosity, and conductivity of the liquid.

【0004】ζ=k・E/P ・・(1) ここで、実際の測定に際しては、流動圧力Pを変化させ
つつ、それに対応した流動電位Eを測定し、数点ないし
は十数点程度の流動圧力Pと流動電位Eの実測値の組み
合わせから、これらの関係E/Pを得て、上記の(1)
式によってゼータ電位ζを求める。
Ζ = k ・ E / P (1) Here, in the actual measurement, while changing the flow pressure P, the flow potential E corresponding to the flow pressure P is measured. From the combination of the measured values of the flowing pressure P and the flowing potential E, these relationships E / P are obtained, and
The zeta potential ζ is determined by the equation.

【0005】以上のように流動圧力Pを変化させつつ充
填層内に液を流すために、従来のこの種の測定装置にお
ける測定系においては、図3に例示するように、一対の
電極31,32間に試料の充填層33を形成し得る流動
電位測定セル30の一端側を、流動液を収容し、かつ、
気体を用いてその内部に圧力を付与し得る流動液供給容
器34に連通させる一方、セル30の他端側は大気に開
放された流動液受給容器35の内部に臨ませた構造を採
り、流動圧力Pを圧力計36により、流動電位Eを電極
31,32間に接続された電位計37によりそれぞれ計
測しつつ、容器34に付与する圧力を徐々に変化させつ
つE/Pの関係を測定するようになっている。
As described above, in order to flow the liquid into the packed bed while changing the flow pressure P, in a conventional measuring system of this type of measuring device, as shown in FIG. One end of a streaming potential measurement cell 30 capable of forming a packed layer 33 of a sample between 32 contains a flowing liquid, and
The other end of the cell 30 has a structure facing the inside of the fluid receiving container 35 opened to the atmosphere, while allowing the fluid to communicate with the fluid supplying container 34 capable of applying pressure to the inside using a gas. While the pressure P is measured by the pressure gauge 36 and the streaming potential E by the electrometer 37 connected between the electrodes 31 and 32, the relationship between E / P is measured while the pressure applied to the container 34 is gradually changed. It has become.

【0006】ここで、以上のような測定系においては、
理論的にはPとEは直線関係となるにもかかわらず、P
の変化に対してEが曲線的に変化していくことがある。
そのため、測定に際しては、測定者はE/Pの関係が直
線的となるように測定中に圧力計36と電位計37の指
示値をモニタしながら、容器34に付与する圧力を調整
する必要があり、正確な測定結果をえるためには相当の
熟練を要するという問題があった。この原因は、供給容
器34に付与している圧力のモニタ値と、実際の流動圧
力Pとの間には、系中における圧力損失によってずれが
生じているためであると考えられる。
Here, in the above measuring system,
Although theoretically P and E have a linear relationship, P
May change in a curved manner with respect to the change of.
Therefore, at the time of measurement, the measurer needs to adjust the pressure applied to the container 34 while monitoring the indicated values of the pressure gauge 36 and the electrometer 37 during the measurement so that the E / P relationship becomes linear. There is a problem that considerable skill is required to obtain accurate measurement results. It is considered that the cause is that a difference occurs between the monitored value of the pressure applied to the supply container 34 and the actual flow pressure P due to the pressure loss in the system.

【0007】そこで、本発明者は、このような問題点を
解決する構造を持つ測定系を備えた流動電位測定装置に
ついて既に提案している(特開平7−325062
号)。この提案における測定系では、流動電位測定セル
と、そのセルの一端に連通してそこに供給すべき液を収
容する流動液供給容器と、セルの他端側に連通してそこ
を流れた液を収容する流動液受給容器とを、耐圧気密構
造のもとに相互に連通させるとともに、流動液供給容器
に対して大気圧よりも高い一定の圧力を付与する機構を
備えた構造を採用している。
Therefore, the present inventor has already proposed a streaming potential measuring apparatus provided with a measuring system having a structure for solving such a problem (Japanese Patent Laid-Open No. 7-325062).
issue). In the measurement system in this proposal, a streaming potential measurement cell, a fluidized liquid supply container communicating with one end of the cell and containing a liquid to be supplied thereto, and a fluid flowing therethrough communicating with the other end of the cell. And a fluid-liquid receiving container that accommodates the fluid-liquid container and a mechanism that applies a constant pressure higher than the atmospheric pressure to the fluid-liquid supply container. I have.

【0008】このような測定系によれば、流動液供給容
器に対して一定の高圧を付与すると、その供給容器内の
液は受給容器との差圧に応じた流速のもとにセル内の充
填層を介して受給容器内に流入してそこに蓄積されてい
くことになり、この受給容器内の圧力は、その内部に蓄
積されている液量に応じて上昇していく。従って、供給
容器に一定の圧力を付与し続けたとき、受給容器内の圧
力がそこに流入した液量に応じて経時的に上昇するた
め、充填層の両端間の差圧、つまり流動圧力Pは、密閉
系内に置かれた充填層を流れる液の流速の変化に応じて
受動的に変化していくことになり、従来の測定系のよう
に供給容器に付与する圧力を変化させる必要がなく、か
つ、E/Pの関係が直線関係から逸脱することなく、容
易かつ正確にE/Pの関係を測定することができる。
According to such a measuring system, when a constant high pressure is applied to the fluid supply container, the liquid in the supply container is forced into the cell at a flow rate corresponding to the pressure difference from the receiving container. It flows into the receiving container via the packed bed and accumulates therein, and the pressure in the receiving container increases according to the amount of liquid stored in the receiving container. Therefore, when a constant pressure is continuously applied to the supply container, the pressure in the receiving container increases with time according to the amount of liquid flowing into the container, so that the pressure difference between both ends of the packed bed, that is, the flow pressure P Changes passively in response to changes in the flow velocity of the liquid flowing through the packed bed placed in the closed system, and it is necessary to change the pressure applied to the supply container as in the conventional measurement system. Therefore, the E / P relationship can be easily and accurately measured without deviating from the linear relationship.

【0009】[0009]

【発明が解決しようとする課題】ところで、以上のよう
な提案に基づく測定系を持つ流動電位測定装置において
は、受給容器の容積は、流動圧力の変化速度等を決定す
る要因となる関係上、実際の測定におけるノウハウとし
て重要な要素となり、測定精度を高めるうえで試料の種
類によってその容積を変えた方がよい場合がある。すな
わち、通常、小さい粒子を試料として充填層を形成した
場合、流動抵抗が大となって液の流速が遅くなるため、
測定時間の無意味な長時間化を防ぐ目的で、受給容器を
小容積とすることが望ましく、また、大きな粒子を試料
として充填層を形成した場合には、流動抵抗が小さくな
って液の流速が速くなるため、小さい粒子と同じ体積で
は測定時間が短すぎ、E/Pのデータサンプリング数が
少なすぎて誤差が大きくなるが故に、この場合には大容
量の受給容器を用いることが望ましい。
By the way, in a streaming potential measuring apparatus having a measuring system based on the above proposal, the volume of the receiving container depends on the factor that determines the rate of change of the flowing pressure. This is an important factor as know-how in actual measurement, and it may be better to change the volume depending on the type of sample in order to improve measurement accuracy. That is, usually, when a packed bed is formed using small particles as a sample, the flow resistance becomes large and the flow velocity of the liquid becomes slow,
In order to prevent the measurement time from becoming meaninglessly long, it is desirable that the receiving container has a small volume, and when a packed bed is formed using large particles as a sample, the flow resistance becomes small and the flow velocity of the liquid decreases. Is faster, the measurement time is too short with the same volume as the small particles, and the number of E / P data samplings is too small, resulting in a large error. In this case, it is desirable to use a large-capacity receiving container.

【0010】ここで、以上のように、測定すべき試料の
種類によって受給容器の容積が異なる装置を用いたので
は、装置としての汎用性に乏しく、また、容積の異なる
受給容器を複数個用意して、試料の種類に応じて選択的
に用いるようにしたのでは、その交換および調整をその
都度行う必要が生じ、実用的ではない。また、バルブの
切換等によって、互いに異なる容積を持つ受給容器を選
択的にセルに接続するように構成することも考えられる
が、この場合には装置が大型化して複雑な構造となるこ
とに加え、流動電位測定において最も重要な液の流れを
複雑にしてしまうことになり、その影響が現れる問題
と、各受給容器ごとに圧力計を備える必要が生じるた
め、個々の圧力計の性能を統一しなければならないとい
う問題も生じる。
[0010] Here, as described above, if an apparatus having different receiving container volumes is used depending on the type of sample to be measured, the versatility of the apparatus is poor, and a plurality of receiving containers having different volumes are prepared. If the sample is selectively used according to the type of the sample, it is necessary to exchange and adjust the sample each time, which is not practical. It is also conceivable that the receiving containers having different capacities are selectively connected to the cells by switching valves or the like. However, in this case, the apparatus becomes large and the structure becomes complicated. However, this complicates the flow of liquid, which is the most important in the measurement of streaming potential, and has the effect of the problem and the necessity of providing a pressure gauge for each receiving container. Another problem is that it must be done.

【0011】本発明はこのような実情に鑑みてなされた
もので、比較的簡単でコンパクトな構造のもとに、か
つ、液の流れを変えることなく、容易に小径の粒子から
大径の粒子まで、高い精度で流動電位を測定することの
できる装置を提供することにある。
[0011] The present invention has been made in view of such circumstances, and can easily convert small-sized particles to large-sized particles in a relatively simple and compact structure without changing the flow of liquid. Another object of the present invention is to provide a device capable of measuring a streaming potential with high accuracy.

【0012】[0012]

【課題を解決するための手段】上記の目的を達成するた
めの構成を、実施の一形態を表す図1を参照しつつ説明
すると、本発明の流動電位測定装置は、固体試料の充填
層3を挟むべく対向配置された一対の電極1,2を備え
た流動電位測定セル10と、そのセル10の一端側に連
通し、当該セル10中の充填層3に流すべき液を収容す
る流動液供給容器11と、セル10の他端側に連通し、
当該セル10中の充填層3を通過した液を収容する流動
液受給容器12を備え、充填層3に液を流したときに電
極1,2間に発生する流動電位を測定する装置におい
て、供給容器11、セル10、および受給容器12が耐
圧気密構造によって相互に連通するように構成され、か
つ、供給容器内に大気圧よりも高い圧力の気体を導入し
て充填層3の両端に液を流動させるための差圧を付与す
る圧力付与手段(図1の例において圧力源、気体通路1
4a,ガス導入バルブ14b等)を備えるとともに、受
給容器12は、複数の部屋121,122と、その各部
屋間を選択的に気密に仕切るための開閉機構(図1の例
において開閉バルブ)18を備えていることによって特
徴づけられる。
The structure for achieving the above object will be described with reference to FIG. 1 showing an embodiment. And a flowing liquid that communicates with one end of the cell 10 and contains a liquid to be flowed through the packed bed 3 in the cell 10. The supply container 11 communicates with the other end of the cell 10,
An apparatus for measuring a streaming potential generated between the electrodes 1 and 2 when a liquid flows through the packed layer 3 is provided with a fluidized liquid receiving container 12 for storing the liquid that has passed through the packed layer 3 in the cell 10. The container 11, the cell 10, and the receiving container 12 are configured to communicate with each other by a pressure-resistant airtight structure, and a gas having a pressure higher than the atmospheric pressure is introduced into the supply container so that the liquid is applied to both ends of the packed bed 3. Pressure applying means for applying a differential pressure for flowing (pressure source, gas passage 1 in the example of FIG. 1)
4a, a gas introduction valve 14b, etc.), and the receiving container 12 includes a plurality of chambers 121, 122 and an opening / closing mechanism (opening / closing valve in the example of FIG. 1) 18 for selectively and airtightly partitioning the rooms. It is characterized by having.

【0013】以上の本発明の構成において、開閉機構1
8の操作によって、実質的に受給容器12の容積を変更
することが可能となる。すなわち、開閉機構18を閉じ
た状態では受給容器12の容積は部屋121の容積と等
しくなり、開閉機構18を開いた状態では、受給容器1
2の容積は部屋121と122の各容積の合計の容積と
なる。そして、このように開閉機構18の操作によって
受給容器12の容積を変更しても、セル10を通過した
液は必ずセル10に最も近い部屋121に流入するか
ら、試料に応じて受給容器12の容積を変更しても液の
流路は基本的に変化せず、流動電位の測定結果に影響が
及ぶことがない。また、同じ理由により、受給容器12
内の圧力を測定するための圧力計は、セル10に最も近
い部屋121に1個だけ装着すれば足りる。
In the above configuration of the present invention, the opening / closing mechanism 1
By the operation 8, it is possible to substantially change the volume of the receiving container 12. That is, when the opening / closing mechanism 18 is closed, the volume of the receiving container 12 is equal to the volume of the room 121, and when the opening / closing mechanism 18 is opened, the receiving container 1 is closed.
The volume of 2 is the sum of the volumes of the rooms 121 and 122. Even if the volume of the receiving container 12 is changed by operating the opening / closing mechanism 18 in this way, since the liquid that has passed through the cell 10 always flows into the room 121 closest to the cell 10, the liquid in the receiving container 12 is changed according to the sample. Even if the volume is changed, the flow path of the liquid does not basically change, and the measurement result of the streaming potential is not affected. Also, for the same reason, the receiving container 12
It is sufficient to mount only one pressure gauge for measuring the internal pressure in the room 121 closest to the cell 10.

【0014】また、供給容器11、セル10および受給
容器12を耐圧気密構造によって相互に連通させている
から、前記した提案と同様に、圧力付与手段で供給容器
11に対して一定の圧力を付与することで、流動圧力P
が受給容器12の容量に応じた速度で受動的に変化する
ことになり、常に正確に流動圧力と流動電位との関係E
/Pを測定することができる。
Since the supply container 11, the cell 10, and the receiving container 12 are connected to each other by a pressure-resistant airtight structure, a constant pressure is applied to the supply container 11 by the pressure applying means as in the above-mentioned proposal. The flow pressure P
Changes passively at a speed corresponding to the capacity of the receiving container 12, and the relationship E between the flowing pressure and the flowing potential is always accurately determined.
/ P can be measured.

【0015】[0015]

【発明の実施の形態】図1は本発明の実施の形態の構成
図である。全体として略管状で、その内部に一対の電極
1,2が対向配置された流動電位測定セル10は、その
一端側が流動液供給容器11に液供給管11aを介して
連通しており、また、他端側は液受給管12aを介して
流動液受給容器12に連通している。ゼータ電位を測定
すべき固体試料は、セル10内の電極1と2の間に充填
され、そこに充填層3が形成される。
FIG. 1 is a block diagram of an embodiment of the present invention. The streaming potential measurement cell 10 which is substantially tubular as a whole and in which a pair of electrodes 1 and 2 are arranged to face each other has one end communicating with a fluid supply container 11 via a liquid supply pipe 11a. The other end communicates with the fluid receiving container 12 via the liquid receiving pipe 12a. The solid sample whose zeta potential is to be measured is filled between the electrodes 1 and 2 in the cell 10, and the filling layer 3 is formed there.

【0016】各電極1,2には電位計13が接続されて
おり、この電位計13によって、充填層3を液が流れる
ことによって電極1,2間に生じる電位差、つまり流動
電位Eが測定される。
An electrometer 13 is connected to each of the electrodes 1 and 2, and the electrometer 13 measures a potential difference between the electrodes 1 and 2 due to the flow of the liquid in the packed bed 3, that is, a streaming potential E. You.

【0017】流動液供給容器11は耐圧気密構造の容器
によって構成されており、その内部にはセル10中に流
すべき液が収容されている。また、この供給容器11に
は、圧力源(図示せず)からの気体(例えばN2 )を導
入するための気体通路14aが接続されており、これら
によって液を流動させるための圧力を付与する機構を構
成している。また、この供給容器11には、その内部の
圧力を測定するための圧力計15aと、液の温度を測定
するための温度計16が設けられている。
The fluid liquid supply container 11 is constituted by a container having a pressure-resistant and airtight structure, and contains therein a liquid to be flowed into the cell 10. Further, a gas passage 14a for introducing a gas (for example, N 2 ) from a pressure source (not shown) is connected to the supply container 11, and a pressure for flowing the liquid is applied by these. Make up the mechanism. Further, the supply container 11 is provided with a pressure gauge 15a for measuring the internal pressure and a thermometer 16 for measuring the temperature of the liquid.

【0018】気体通路14aには、同通路14aを開閉
して圧力源からの気体を供給容器11内に導入/停止す
るためのガス導入バルブ14bが設けられているともと
に、供給容器11内の圧力を大気圧にするための大気開
放バルブ14cを備えた分岐路14dが設けられてい
る。従って、大気開放バルブ14cを閉じ、ガス導入バ
ルブ14bを開くことによって、供給容器11内に圧力
源からの大気圧よりも高い気体を導入することができ、
また、逆にガス導入バルブ14bを閉じて大気開放バル
ブ14cを開くことによって、供給容器11内の圧力を
大気圧と等しくすることができるようになっている。
The gas passage 14a is provided with a gas introduction valve 14b for opening and closing the passage 14a to introduce / stop gas from a pressure source into the supply container 11. There is provided a branch path 14d provided with an atmosphere release valve 14c for bringing the pressure to atmospheric pressure. Therefore, by closing the atmosphere opening valve 14c and opening the gas introduction valve 14b, a gas higher than the atmospheric pressure from the pressure source can be introduced into the supply container 11,
Conversely, by closing the gas introduction valve 14b and opening the atmosphere release valve 14c, the pressure in the supply container 11 can be made equal to the atmospheric pressure.

【0019】流動液受給容器12は、この例において、
前記した液受給管12aを介して流動電位測定セル10
と気密に連通する第1の部屋121と、その部屋121
に対して連絡管12bを介して気密に連通する第2の部
屋122によって構成されており、連絡管12bには、
これらの第1と第2の部屋121と122の間を気密に
仕切り得る開閉バルブ18が配設されている。この第1
および第2の部屋121および122は、いずれも耐圧
気密構造の容器によって構成されている。
The fluid receiving container 12 is, in this example,
The streaming potential measuring cell 10 is connected through the liquid receiving pipe 12a.
A first room 121 in airtight communication with the
And a second room 122 that is air-tightly connected to the communication pipe 12b through the communication pipe 12b.
An opening / closing valve 18 capable of airtightly separating the first and second chambers 121 and 122 is provided. This first
Each of the second chambers 121 and 122 is constituted by a container having a pressure-resistant and airtight structure.

【0020】そして、第1の部屋121には、圧力計1
5bと、内部に溜まった液を排出するための液排出バル
ブ17aが配設されており、第2の部屋122には、そ
の内部の圧力を大気圧にするための大気開放バルブ17
bが設けられている。ここで、第1の部屋121に設け
られた圧力計15bの出力は、開閉バルブ18を閉じて
いる状態では同部屋121内の圧力を、開閉バルブ18
が開いている状態では第1および第2の部屋121およ
び122全体としての圧力を表すことになる。
The first room 121 has a pressure gauge 1
5b, and a liquid discharge valve 17a for discharging the liquid accumulated in the inside. The second chamber 122 has an atmosphere release valve 17 for reducing the internal pressure to atmospheric pressure.
b is provided. Here, the output of the pressure gauge 15b provided in the first room 121 indicates the pressure in the room 121 when the open / close valve 18 is closed and the output of the open / close valve 18
In the state where is open, it represents the pressure of the first and second chambers 121 and 122 as a whole.

【0021】前記した電位計13および各圧力計15
a,15bの出力は、それぞれA−D変換器21によっ
てデジタル化された後、コンピュータ22に刻々とサン
プリングされる。
The above-mentioned electrometer 13 and each pressure gauge 15
The outputs of a and 15b are digitized by the A / D converter 21 and then sampled by the computer 22 every moment.

【0022】次に、以上の実施の形態の作用を、使用方
法とともに述べる。測定に際しては、流動液受給容器1
2の開閉バルブ18および大気開放バルブ17bを一旦
開き、第1および第2の部屋121および122の内の
気圧を大気圧とする。
Next, the operation of the above embodiment will be described together with the method of use. At the time of measurement, the fluid receiving container 1
The second open / close valve 18 and the atmosphere release valve 17b are once opened, and the air pressure in the first and second chambers 121 and 122 is set to the atmospheric pressure.

【0023】次に、流動液受給容器12の容積を選択す
る。すなわち、粒径の小さい粒子等の、充填層3を形成
した状態においてその流動抵抗が大きくなるような試料
の測定にあっては、開閉バルブ18を閉じた状態で使用
され、この場合、流動液受給容器12の容積は実質的に
第1の部屋121の容積となる。また、粒径の大きな粒
子等の、充填層3を形成した状態においてその流動抵抗
が小さくなるような試料の測定にあっては、開閉バルブ
18を開いた状態で使用され、この場合には、流動液受
給容器12の容積は第1と第2の部屋121と122の
容積の合計の容積となる。なお、開閉バルブ18を開い
た状態で使用する場合には、実際の測定に際して大気開
放バルブ17bは閉じられる。
Next, the volume of the fluid receiving container 12 is selected. In other words, when measuring a sample such as particles having a small particle diameter, the flow resistance of which increases when the packed layer 3 is formed, the on-off valve 18 is used in a closed state. The volume of the receiving container 12 is substantially the volume of the first room 121. In the measurement of a sample such as a particle having a large particle diameter, the flow resistance of which is reduced when the packed layer 3 is formed, the sample is used with the open / close valve 18 opened. The volume of the fluid receiving container 12 is the sum of the volumes of the first and second chambers 121 and 122. When the device is used with the opening / closing valve 18 opened, the atmosphere opening valve 17b is closed at the time of actual measurement.

【0024】さて、以上のような流動液受給容器12の
容積の選択を行った後、実際の測定に際しては、流動液
供給容器11内に所要量の流動液を収容するとともに、
流動液受給容器12の液排出バルブ17aを閉じた状態
で、流動液供給容器11の大気開放バルブ14cを閉
じ、ガス導入バルブ14bを開くことにより、供給容器
11の内部に大気圧より高い一定の圧力PP を付与す
る。この状態では、供給容器11、流動電位測定セル1
0、および受給容器12が相互に気密状態で連通し、か
つ、セル10の両端に差圧Pが生じた状態となり、供給
容器11内の液はセル10に向けて流動し、電極1,2
間に挟まれた試料の充填層3内を通過して受給容器12
の第1の部屋121へと流れ込む。この液の流動により
充填層3に発生する流動電位Eは電極1,2を介して電
位計13で測定され、そのデジタル変換データがコンピ
ュータ22に取り込まれていく。
After the selection of the volume of the fluid receiving container 12 as described above, the actual amount of the fluid is stored in the fluid supplying container 11 in the actual measurement.
With the liquid discharge valve 17a of the fluid supply container 12 closed, the air release valve 14c of the fluid supply container 11 is closed and the gas introduction valve 14b is opened, so that a constant pressure higher than the atmospheric pressure is maintained inside the supply container 11. applying a pressure P P. In this state, the supply container 11, the streaming potential measurement cell 1
0, and the receiving container 12 communicate with each other in an airtight state, and a state where a differential pressure P is generated at both ends of the cell 10, the liquid in the supply container 11 flows toward the cell 10, and the electrodes 1, 2
After passing through the packed layer 3 of the sample sandwiched between the
Flows into the first room 121. The flowing potential E generated in the packed bed 3 by the flow of the liquid is measured by the electrometer 13 via the electrodes 1 and 2, and the digital conversion data is taken into the computer 22.

【0025】同時に、このような液の流動により、受給
容器12内の液量は液の流速に応じた速度で増加してい
くことになる。この受給容器12内の圧力PC は、同容
器12内の液量の増加分だけ上昇していく。従って、供
給容器11内の圧力PP を一定に保っていても、セル1
0の両端における差圧P(=PP −PC )は、充填層3
中を流れる液の流速の変化に応じて受動的に変化し、刻
々の差圧Pと流動電位Eとの間にずれを生じることがな
い。供給容器11内の圧力PP と受給容器12内の圧力
C は、刻々とコンピュータ22に取り込まれ、従って
コンピュータ22には、相互にずれのない流動圧力Pと
流動電位Eの刻々のデータがサンプリングされ、正確な
E/Pのデータが蓄えられていくことになる。コンピュ
ータ22に、前記(1)式に示したゼータ電位ζの算出
式を書き込んでおけば、測定の終了後に直ちにゼータ電
位ζを算出して表示器等に表示することが可能となる。
At the same time, due to such flow of the liquid, the amount of liquid in the receiving container 12 increases at a speed corresponding to the flow velocity of the liquid. The pressure P C in the receiving container 12 increases by the amount of the liquid in the container 12. Therefore, even if the pressure P P in the supply container 11 is kept constant, the cell 1
The differential pressure P (= P P -P C ) at the two ends of the
It changes passively in accordance with the change in the flow velocity of the liquid flowing therethrough, and there is no deviation between the instantaneous differential pressure P and the streaming potential E. The pressure P P in the supply container 11 and the pressure P C in the receiving container 12 are taken into the computer 22 every moment, so that the computer 22 stores the instantaneous data of the flow pressure P and the flow potential E, which are not shifted from each other. Sampled and accurate E / P data is stored. If the equation for calculating the zeta potential に shown in the above equation (1) is written in the computer 22, the zeta potential ζ can be calculated immediately after the measurement is completed, and displayed on a display or the like.

【0026】以上の測定動作において、測定開始前にお
ける開閉バルブ18の操作による受給容器12の容積の
選択は、以下にような作用をもたらす。いま、説明の簡
素化のために、第1の部屋121と第2の部屋122の
容積をそれぞれV0 とし、受給容器12内の圧力PC
大気圧P0 の2倍の圧力2P0となったときに測定を終
了するように設定したとき、開閉バルブ18を閉じて小
容量を選択した場合には、測定終了時点で受給容器12
内に収容される液量は、図2(A)に示すようにV0
2となり、開閉バルブ18を開いて大容量を選択した場
合には、同時点において受給容器12に収容される液量
は、同図(B)に示すようにV0 となる。従って、同じ
試料を測定するに当たり、PC が同じ圧力に到達した時
点で測定を終了するときでも、小容量と大容量の選択時
では、充填層3を流れる液量に2倍の差を付けることが
できる。このことは、測定開始〜終了までの平均流速が
各容積選択時において互いに同等とした場合、測定時間
で2倍の差が付くことを意味する。
In the above measuring operation, the selection of the volume of the receiving container 12 by operating the opening / closing valve 18 before the start of the measurement has the following effects. Now, for the sake of simplicity, the volumes of the first chamber 121 and the second chamber 122 are each assumed to be V 0, and the pressure P C in the receiving container 12 is set to a pressure 2P 0 twice the atmospheric pressure P 0. When the setting is made to end the measurement when the measurement is completed, when the open / close valve 18 is closed and the small capacity is selected, the receiving container 12 is closed at the end of the measurement
The amount of liquid contained in the chamber is V 0 / V as shown in FIG.
When the opening / closing valve 18 is opened and a large capacity is selected, the amount of liquid stored in the receiving container 12 at the same time becomes V 0 as shown in FIG. Therefore, when measuring the same sample, even when the P C finishes measurement when it reaches the same pressure, the time of the selection of small capacity and a large capacity, to differentiate twice the amount of fluid flowing through a packed bed 3 be able to. This means that when the average flow rates from the start to the end of the measurement are equal to each other when each volume is selected, there is a double difference in the measurement time.

【0027】従って、大径の試料等、充填層3の流動抵
抗が比較的小さく、流速が比較的速い場合には、受給容
器12の容積を大容積とすることによって、必要とされ
る点数のE/Pデータをサンプリングすることが可能と
なる。また、小径の粒子等、充填層3の流動抵抗が比較
的大きく、流速が比較的遅い場合には、受給容器12の
容積を小容積とすることによって、不必要に測定時間が
長くなることを防止することができる。
Therefore, when the flow resistance of the packed bed 3 is relatively small and the flow velocity is relatively high, such as a large-diameter sample, the volume of the receiving container 12 is increased to increase the required score. E / P data can be sampled. In addition, when the flow resistance of the packed bed 3 is relatively large and the flow velocity is relatively slow, such as small-diameter particles, the volume of the receiving container 12 may be made small so that the measurement time may be unnecessarily long. Can be prevented.

【0028】ここで、以上の実施の形態において特に注
目すべき点は、受給容器12の容積を小容積/大容積の
いずれに選択しても、セル10を通過した液は必ず第1
の部屋121内に流入し、容積選択に起因する液の流路
の変更がない点であり、これにより、いずれの容積を選
択しても流動電位Eの測定結果に影響が及ぶことがな
い。また、受給容器12の容積の選択状況に係わらず、
その容器内の圧力PC は第1の部屋121に設けられた
1つの圧力計15bによって測定することができるとい
う利点もある。
Here, it should be noted that the liquid passing through the cell 10 must be the first liquid regardless of whether the volume of the receiving container 12 is small or large.
No change in the flow path of the liquid resulting from the selection of the volume due to the flow into the room 121, whereby the measurement result of the streaming potential E is not affected regardless of which volume is selected. Also, regardless of the selection of the volume of the receiving container 12,
The pressure P C of the vessel there is an advantage that can be measured by a single pressure gauge 15b provided in the first chamber 121.

【0029】なお、以上の実施の形態では、受給容器1
2を2つの部屋121,122によって構成したが、本
発明はこれに限定されることなく、3つ以上の任意の部
屋によって受給容器12を構成して、その各部屋間のそ
れぞれに開閉バルブ18を設けてもよい。
In the above embodiment, the receiving container 1
2 is constituted by the two chambers 121 and 122, but the present invention is not limited to this, and the receiving container 12 is constituted by three or more arbitrary rooms, and the open / close valve 18 is provided between the respective rooms. May be provided.

【0030】[0030]

【発明の効果】以上のように、本発明によれば、流動液
供給容器、流動電位測定セル、および流動液受給容器
を、耐圧気密構造によって相互に連通させるとともに、
流動液受給容器については複数の部屋とその各部屋間の
間を気密に仕切り得る開閉機構を設けた構成としている
ので、その開閉機構を操作するだけで受給容器の容積を
容易に変更することができ、液の流路を変更することな
く、従って流動電位の測定結果に影響を及ぼすことな
く、容易に試料の種類に応じたより適切な受給容器容積
のもとに測定を行うことが可能となり、正確で汎用性に
富んだ流動電位測定装置が得られる。また、受給容器の
容積の選択状況に係わらず、1個の圧力計によってその
容器内の圧力を測定することができるため、圧力計が変
わることによる影響もない。
As described above, according to the present invention, the fluid supply container, the fluid potential measurement cell, and the fluid supply container are connected to each other by a pressure-resistant airtight structure.
The fluid-liquid receiving container has a configuration in which an opening / closing mechanism capable of airtightly partitioning between a plurality of rooms and the respective rooms is provided, so that the volume of the receiving container can be easily changed only by operating the opening / closing mechanism. It is possible to easily perform measurement under a more appropriate receiving container volume according to the type of sample without changing the flow path of the liquid, and thus without affecting the measurement result of the streaming potential, An accurate and versatile streaming potential measuring device can be obtained. Further, irrespective of the selection of the volume of the receiving container, the pressure in the container can be measured by one pressure gauge, so that there is no influence of changing the pressure gauge.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の構成図FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】その開閉バルブ18の操作による受給容器12
の容積選択の作用説明図
FIG. 2 shows the receiving container 12 operated by the opening / closing valve 18.
Of operation of volume selection

【図3】従来の流動電位測定装置における測定系の説明
FIG. 3 is an explanatory diagram of a measuring system in a conventional streaming potential measuring device.

【符号の説明】[Explanation of symbols]

1,2 電極 3 充填層 10 流動電位測定セル 11 流動液供給容器 12 流動液受給容器 12b 連絡管 121 第1の部屋 122 第2の部屋 13 電位計 14a 気体通路 14b ガス導入バルブ 14c 17b 大気開放バルブ 15a,15b 圧力計 18 開閉バルブ 1, 2 electrode 3 packed bed 10 flowing potential measurement cell 11 flowing liquid supply container 12 flowing liquid receiving container 12b communication tube 121 first room 122 second room 13 electrometer 14a gas passage 14b gas introduction valve 14c 17b air release valve 15a, 15b Pressure gauge 18 Open / close valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 固体試料の充填層を挟むべく対向配置さ
れた一対の電極を備えた流動電位測定セルと、そのセル
の一端側に連通し、当該セル中の充填層に流すべき液を
収容する流動液供給容器と、上記セルの他端側に連通
し、当該セル中の充填層を通過した液を収容する流動液
受給容器を備え、上記充填層に液を流したときに上記一
対の電極間に発生する流動電位を測定する装置におい
て、上記供給容器、セル、および受給容器が耐圧気密構
造によって相互に連通するように構成され、かつ、上記
供給容器内に大気圧よりも高い圧力の気体を導入して上
記充填層の両端に液を流動させるための差圧を付与する
圧力付与手段を備えるとともに、上記受給容器は、複数
の部屋と、その各部屋間を選択的に気密に仕切るための
開閉機構を備えていることを特徴とする流動電位測定装
置。
1. A streaming potential measurement cell having a pair of electrodes opposed to each other so as to sandwich a packed layer of a solid sample, and communicates with one end of the cell to contain a liquid to flow through the packed layer in the cell. A fluid supply container, which communicates with the other end of the cell, and a fluid receiving container for containing the liquid that has passed through the packed bed in the cell. In the device for measuring the streaming potential generated between the electrodes, the supply container, the cell, and the receiving container are configured to communicate with each other by a pressure-resistant airtight structure, and a pressure higher than the atmospheric pressure in the supply container. In addition to providing pressure applying means for introducing a gas and applying a pressure difference for flowing the liquid to both ends of the packed bed, the receiving container selectively partitions a plurality of rooms and each of the rooms into a gas-tight state. The opening and closing mechanism for And a streaming potential measuring device.
JP19723996A 1996-07-26 1996-07-26 Flow potential measuring device Pending JPH1038836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19723996A JPH1038836A (en) 1996-07-26 1996-07-26 Flow potential measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19723996A JPH1038836A (en) 1996-07-26 1996-07-26 Flow potential measuring device

Publications (1)

Publication Number Publication Date
JPH1038836A true JPH1038836A (en) 1998-02-13

Family

ID=16371171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19723996A Pending JPH1038836A (en) 1996-07-26 1996-07-26 Flow potential measuring device

Country Status (1)

Country Link
JP (1) JPH1038836A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6463790B1 (en) 2000-05-24 2002-10-15 Korea Institute Of Science And Technology Membrane filtration method and apparatus for simultaneously and continuously monitoring time-based membrane fouling
WO2003005012A1 (en) * 2001-07-06 2003-01-16 Metso Field Systems Oy Method for measuring of flow potential of a water solution and an apparatus for applying of method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6463790B1 (en) 2000-05-24 2002-10-15 Korea Institute Of Science And Technology Membrane filtration method and apparatus for simultaneously and continuously monitoring time-based membrane fouling
WO2003005012A1 (en) * 2001-07-06 2003-01-16 Metso Field Systems Oy Method for measuring of flow potential of a water solution and an apparatus for applying of method

Similar Documents

Publication Publication Date Title
Durrill et al. Diffusion and solution of gases in thermally softened or molten polymers: Part I. Development of technique and determination of data
US4404843A (en) Cryogenic storage tank leak detection system
CA1279498C (en) System for measuring the pore volume and permeability of very tight core plugs and method therefor
US11874199B2 (en) Device and process for determining the size of a leak hole in a sample
CN108827821A (en) A kind of fast analyser and method for density of hydrogen in nuclear power plant containment shell
US3885414A (en) Package for calibration fluids and process
US4934178A (en) Method and apparatus for determining the density of a gas
JPH1038836A (en) Flow potential measuring device
US3696659A (en) Instrument pressure calibration method and apparatus
US6845651B2 (en) Quick BET method and apparatus for determining surface area and pore distribution of a sample
JPH06235680A (en) Method and equipment for testing check valve
US7082826B2 (en) Gas flow meter and method for measuring gas flow rate
US3431772A (en) Method and apparatus for determining the permeability of a material
JP6161640B2 (en) Apparatus and method for measuring a sorption process by calorimetry
JP3211530B2 (en) Streaming potential measurement device
JPH10332621A (en) Evaluation method for zeta potential and measuring apparatus for zeta potential
JP3533815B2 (en) Method and apparatus for measuring zeta potential
JPH1038835A (en) Method and device for zeta potential measurement
JP3374522B2 (en) Streaming potential measurement device
JPS6219971Y2 (en)
SU870950A2 (en) Pneumatic metering device for corrosive media
JP2003149111A (en) Hydrogen storage amount measuring method and device
CN214894673U (en) Transformer oil gas content testing device for measuring density by U-shaped oscillating tube
US1911853A (en) Apparatus for measuring gases
US3387635A (en) Fluid metering and dispensing apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040428

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20050111

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050524