JPH10332621A - Evaluation method for zeta potential and measuring apparatus for zeta potential - Google Patents

Evaluation method for zeta potential and measuring apparatus for zeta potential

Info

Publication number
JPH10332621A
JPH10332621A JP14381897A JP14381897A JPH10332621A JP H10332621 A JPH10332621 A JP H10332621A JP 14381897 A JP14381897 A JP 14381897A JP 14381897 A JP14381897 A JP 14381897A JP H10332621 A JPH10332621 A JP H10332621A
Authority
JP
Japan
Prior art keywords
potential
zeta potential
pressure
liquid
zeta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14381897A
Other languages
Japanese (ja)
Inventor
Toshibumi Fukui
俊文 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP14381897A priority Critical patent/JPH10332621A/en
Publication of JPH10332621A publication Critical patent/JPH10332621A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an evaluation method in which a dynamic electricity phenomenon can be evaluated in a many-sided manner by a method wherein a zeta potential is computed on the basis of data obtained by measuring the dynamic electricity phenomenon of a solid- liquid interface a plurality of numbers of times and the zeta potential is captured as a distribution amount which expresses its electric charge state so as to be processed on the basis of a statistical technique. SOLUTION: A solid sample whose zeta potential is to be measured is filled between an electrode 1 and an electrode 2 inside a cell 10, and a filled layer 3 is formed. A liquid which is made to flow into the cell 10 is housed in a fluid-liquid supply container 11, and the pressure at the inside of the supply container 11 is made higher than atmospheric pressure while valves 17a, 17b at a fluid-liquid receiver container 12 and values 14a, 14c at the supply container 11 are opened and closed. In this state, the liquid inside the supply container 11 flows to the cell 10, and a fluid potential E which is generated in the filled layer 3 is measured by an electrometer 13. The output of the electrometer 13 and outputs of pressure gages 15a, 15b are input to a computer 22 via respective A/D converters 21. Then, a zeta potential ζis found by ζ=k.E/P [where (k) represents a constant] on the basis of a fluid pressure P which is found from the pressure difference between the pressure gages 15a, 15b and on the basis of the fluid potential E. By a computing operation based on a statistical technique, the mode value, the mean value, the standard deviation and the like of distribution amounts are found.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固−液界面の荷電
状態をゼータ電位を用いて評価する方法と、その方法に
準じた評価結果を出力することのできるゼータ電位測定
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating the charge state of a solid-liquid interface by using a zeta potential, and a zeta potential measuring device capable of outputting an evaluation result according to the method.

【0002】[0002]

【従来の技術】固−液界面の荷電状態を表すゼータ電位
は、従来、一測定につき一意の値として求められてい
る。ゼータ電位を測定する方法には、流動電位法や電気
泳動法等が一般的であるが、そのいずれの方法に基づく
市販の測定装置においても、一つの試料に関して、界面
動電現象を測定して得られる一つもしくは複数個のデー
タから、一意の値である一つのゼータ電位を求めてい
る。
2. Description of the Related Art Conventionally, a zeta potential representing a charge state at a solid-liquid interface has been conventionally obtained as a unique value per measurement. As a method for measuring the zeta potential, a streaming potential method, an electrophoresis method, or the like is generally used, but a commercially available measuring device based on any of these methods can measure an electrokinetic phenomenon with respect to one sample. One zeta potential, which is a unique value, is obtained from one or a plurality of obtained data.

【0003】ここで、従来の装置において、一つの試料
について界面動電現象の複数のデータを測定するのは、
平均化により測定の精度を高めることを目的とするもの
であり、測定結果としては一意の値としてのゼータ電位
を求めている。また、一部の従来装置においては、解析
途中で得られるパラメータを分布量として表示している
ものもあるが、これは解析理論あるいは手法上やむを得
ず得られるもので、その分布量の表示は物理的にさした
る意味を持つものではない。
Here, in the conventional apparatus, a plurality of data of the electrokinetic phenomenon are measured for one sample.
The purpose is to improve the accuracy of the measurement by averaging, and the zeta potential as a unique value is obtained as the measurement result. Also, in some conventional devices, parameters obtained during the analysis are displayed as distribution amounts, but this is unavoidably obtained from analysis theory or method, and the display of the distribution amounts is physically It doesn't mean much.

【0004】[0004]

【発明が解決しようとする課題】ところで、ゼータ電位
測定には、吸着層という半固定化されたものを対称と
していること、どの測定原理を用いても動的特性を捕
らえて解析していること、系の状態に左右されやすい
吸着現象を扱っていること、等から、大なり小なりばら
つきが生じることは避けられない。このため、ゼータ電
位を一意の値として求めた場合、値に差があることが有
意なものであるかどうか判断に迷うことになる。また、
対象となるものの状態や性質をゼータ電位の値一つだけ
で代表させ得ない場合もある。例えば、界面の荷電状態
と密接に関係する事象において、現象としては有意な差
があるのに、ゼータ電位の値としては有意と思われる差
がない場合がそうである。
By the way, in the measurement of the zeta potential, the semi-fixed adsorbent layer must be symmetrical, and dynamic characteristics must be captured and analyzed using any measurement principle. In addition, the fact that it deals with the adsorption phenomenon that is easily affected by the state of the system, it is inevitable that the dispersion will be larger or smaller. For this reason, when the zeta potential is obtained as a unique value, it is difficult to determine whether a difference between the values is significant. Also,
In some cases, the state or property of an object cannot be represented by only one zeta potential value. For example, in an event that is closely related to the charge state of the interface, there is a significant difference as a phenomenon but no significant difference in the value of zeta potential.

【0005】本発明はこのような実情に鑑みてなされた
もので、ゼータ電位を用いてこれまでにない新しい評価
基準を得ることができ、固−液界面における動電現象を
より多面的に評価することのできる方法と、その方法に
準じた評価結果を出力することのできるゼータ電位測定
装置の提供を目的としている。
The present invention has been made in view of such circumstances, and a new evaluation criterion can be obtained by using the zeta potential, and the electrokinetic phenomenon at the solid-liquid interface can be more multifacetedly evaluated. It is an object of the present invention to provide a method capable of performing the method and a zeta potential measuring device capable of outputting an evaluation result according to the method.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
め、本発明のゼータ電位評価方法は、固−液界面の動電
現象を、複数回にわたって互いに独立的に測定し、その
各回の測定データから個々にゼータ電位を算出し、その
算出した複数のゼータ電位を当該固−液界面の荷電状態
を表す分布量として捉え、統計的手法に基づく処理を施
してその分布量を一つまたは複数の所要の表現形式で表
すことによって特徴づけられる。
In order to achieve the above object, a method for evaluating zeta potential according to the present invention measures electrokinetic phenomena at a solid-liquid interface a plurality of times independently of each other, and measures each time. The zeta potentials are individually calculated from the data, and the calculated plurality of zeta potentials are regarded as a distribution amount representing the charge state of the solid-liquid interface, and the distribution amount is subjected to a processing based on a statistical method to determine one or more distribution amounts. In the required expression form.

【0007】また、本発明のゼータ電位測定装置は、固
−液界面の動電現象を測定する界面動電現象測定手段
と、その測定手段により複数回にわたって互いに独立的
に測定された界面動電現象測定データを記憶する記憶手
段と、その記憶された各回の測定データから個々にゼー
タ電位を算出し、その複数のゼータ電位算出結果を分布
量として所定の統計的演算を施したうえで出力する演算
手段を備えていることによって特徴づけられる。
Further, the zeta potential measuring apparatus of the present invention comprises an electrokinetic phenomenon measuring means for measuring an electrokinetic phenomenon at a solid-liquid interface, and an electrokinetic phenomenon which is independently measured a plurality of times by the measuring means. Storage means for storing the phenomenon measurement data, zeta potentials are individually calculated from the stored measurement data, and the plurality of zeta potential calculation results are subjected to predetermined statistical calculations as distribution amounts and output It is characterized by having arithmetic means.

【0008】本発明は、ゼータ電位を一意の値として捉
えず、分布量として捉えて、その分布量を統計的手法に
より適宜の表現形式に変換することにより、ゼータ電位
を用いた固−液界面での荷電状態の評価を、従来の一意
の値としてのゼータ電位による評価に比して、より子細
に行うことを可能とするものである。
According to the present invention, the solid-liquid interface using the zeta potential is obtained by not grasping the zeta potential as a unique value but as a distribution amount and converting the distribution amount into an appropriate expression form by a statistical method. This makes it possible to perform the evaluation of the state of charge in more detail than in the conventional evaluation based on the zeta potential as a unique value.

【0009】以下に、本発明の原理を、その背景ととも
に述べる。ゼータ電位の測定法として流動電位法を例に
とる。流動電位法は、固定された固体の周りの液体を流
動させたときに発生する流動電位Eと、液体の流動圧力
Pとの比(E/P)より、ゼータ電位を求める方法であ
る。専門書によれば、この流動電位法は、複数に設定さ
れた流動圧力Pを用いて液体を流動させ、それぞれの流
動圧力Pのときに発生する流動電位Eを測定して図1に
例示するような(P−E)のプロットを行い、そのプロ
ットから一本の近似直線を求めて(E/P)値を決定
し、その値に別途決定される係数を乗じることによりゼ
ータ電位を一意に決定する方法である規定されている。
Hereinafter, the principle of the present invention will be described with its background. The streaming potential method is taken as an example of the method for measuring the zeta potential. The streaming potential method is a method of obtaining a zeta potential from a ratio (E / P) of a streaming potential E generated when a liquid around a fixed solid flows and a flowing pressure P of the liquid. According to the technical book, in the streaming potential method, a liquid is caused to flow using a plurality of flowing pressures P, and a streaming potential E generated at each of the flowing pressures P is measured. The plot of (PE) is performed, an approximate straight line is obtained from the plot, the (E / P) value is determined, and the value is multiplied by a coefficient that is determined separately to uniquely determine the zeta potential. The way to decide is prescribed.

【0010】以上のように流動電位法で一意にゼータ電
位を求めた場合、(P−E)プロットの各プロット点が
図1のように真に直線的に位置している場合は、ばらつ
きが少なく再現性の良い結果が得られるが、図2のよう
にプロット点が直線的な位置からずれている場合は、ば
らつきが大きく再現性のあまり良くない結果が得られ
る。例えば、図2においてある一点のデータを誤差が大
きいとして無視すると、全く違った(E/P)値が得ら
れることもある。
As described above, when the zeta potential is uniquely obtained by the streaming potential method, if each plot point of the (PE) plot is truly linear as shown in FIG. Although less reproducible results are obtained, if the plot points deviate from the linear positions as shown in FIG. 2, the results are large and the reproducibility is not very good. For example, if one point of data in FIG. 2 is ignored because the error is large, a completely different (E / P) value may be obtained.

【0011】これまでは、(P−E)プロットのプロッ
ト点が直線からずれる原因は、実験誤差(測定誤差)に
よるものとして処されてきた。このような測定誤差の問
題を払拭する方法として、本発明者は、流動圧力Pを受
動的に変化させながら流動電位Eを連続的に測定するこ
とで、液の流路中に存在する流動抵抗に起因する圧力損
失分に相当する流動圧力検出遅れをなくし、各流動電位
Eが得られたときの流動圧力Pを正確に測定することの
できる装置を既に提案し(特開平7−325062
号)、実用化している。この装置を用いて流動電位E−
流動圧力Pを測定した場合、上記の測定誤差は解消され
ていると見ていいのであるが、サンプルによって(P−
E)プロットが図3のように直線に得られる場合と、図
4のように曲線で得られる場合がある。また、同一サン
プルであっても液体の種類が違うと直線であったり曲線
であったりすることもある。これらは、条件が同じであ
れば再現性が得られており、この現象はサンプルの状態
に依存する、換言すれば固−液界面での吸着状態に依存
すると判断される。
Until now, the cause of the deviation of the plot point of the (PE) plot from the straight line has been treated as an experimental error (measurement error). As a method of eliminating such a measurement error problem, the inventor of the present invention continuously measures the flowing potential E while passively changing the flowing pressure P, thereby obtaining the flow resistance existing in the liquid flow path. Has already been proposed that eliminates the delay in detecting the flow pressure corresponding to the pressure loss caused by the above, and can accurately measure the flow pressure P when the respective flow potentials E are obtained (Japanese Patent Laid-Open No. 7-325062).
No.) has been put to practical use. The streaming potential E-
When the flow pressure P is measured, it can be seen that the above measurement error has been eliminated.
E) There are cases where the plot is obtained as a straight line as shown in FIG. 3 and cases where the plot is obtained as a curve as shown in FIG. Further, even for the same sample, if the type of liquid is different, it may be a straight line or a curved line. In these cases, reproducibility is obtained if the conditions are the same, and it is determined that this phenomenon depends on the state of the sample, in other words, on the state of adsorption at the solid-liquid interface.

【0012】ゼータ電位は、固−液界面で二相間に相対
運動が起こった場合に生じる滑り面での電気ポテンシャ
ルであると定義される。滑り面の位置は一意ではなく固
−液界面に存在する吸着層によって異なり、これを拡張
すれば、同一相対運動であっても吸着層の状態によって
滑り面の位置が移動することになる。すなわち、安定し
た(あるいは強いと表現すべきか)吸着層の場合、滑り
面の位置は流動圧力の変化に影響されず一定であり、発
生する流動電位と流動圧力の比は一定であるが、不安定
な(あるいは弱い)吸着層の場合は、流動圧力の変化に
影響されて滑り面の位置が変わり、流動電位と流動圧力
の比が変化することが考えられる。こう考えれば、条件
によって(P−E)プロットが直線で得られる場合と曲
線で得られる場合とがあるという現象は、吸着層の安定
性に起因する現象であると解釈でき、実験に基づく事実
を強く肯定することができる。ここで、以上のような
(P−E)プロットにおける各測定点は、それぞれ独立
に得られる値であって、単一データの変形により得られ
るものではないので、有意な値である。
[0012] Zeta potential is defined as the electrical potential on the sliding surface that occurs when relative motion occurs between the two phases at the solid-liquid interface. The position of the sliding surface is not unique but depends on the adsorbing layer existing at the solid-liquid interface. If this is extended, the position of the sliding surface moves depending on the state of the adsorbing layer even with the same relative movement. That is, in the case of a stable (or should be described as strong) adsorption layer, the position of the sliding surface is constant without being affected by the change in the flow pressure, and the ratio of the generated flow potential to the flow pressure is constant, In the case of a stable (or weak) adsorption layer, it is considered that the position of the sliding surface changes due to the change in the flow pressure, and the ratio of the flow potential to the flow pressure changes. Considering this, the phenomenon that the (PE) plot may be obtained as a straight line or the curve may be obtained depending on conditions can be interpreted as a phenomenon caused by the stability of the adsorption layer. Can be strongly affirmed. Here, each measurement point in the above (PE) plot is a value obtained independently of each other, and is a significant value since it is not obtained by deformation of single data.

【0013】従って、(P−E)プロットの各点におけ
る微分勾配を用いてゼータ電位を求めると、その全体で
分布を持った値として表現できる。(P−E)プロット
が直線で得られる場合は、ゼータ電位の分布はシャープ
であり(図6参照)、吸着層は安定している(強い)と
言え、曲線で得られる場合は、ゼータ電位の分布はブロ
ードであり(図7参照)、吸着層は不安定であると判断
できる。このことから、本発明により得られる分布量と
してのゼータ電位を用いたとき、一例としてその分布の
幅、あるいはそれを統計的に処理して得られる標準偏差
は、吸着層の安定性を示すパラメータとなり得ることが
わかる。また、同様にして、ゼータ電位の分布のモード
値は、固−液界面の荷電状態の強さを表すパラメータと
なり得る等、ゼータ電位を一意の値として表す場合に比
して、新たな評価基準を得ることができる。
Therefore, when the zeta potential is obtained using the differential gradient at each point of the (PE) plot, the zeta potential can be expressed as a value having a distribution as a whole. When the (PE) plot is obtained as a straight line, the distribution of the zeta potential is sharp (see FIG. 6), and the adsorption layer can be said to be stable (strong). Is broad (see FIG. 7), and it can be determined that the adsorption layer is unstable. From this, when using the zeta potential as the amount of distribution obtained by the present invention, as an example, the width of the distribution, or the standard deviation obtained by statistically processing it, is a parameter indicating the stability of the adsorption layer It can be seen that Similarly, the mode value of the distribution of the zeta potential can be a parameter indicating the strength of the charged state at the solid-liquid interface. Can be obtained.

【0014】[0014]

【発明の実施の形態】図5は本発明の実施の形態の構成
図で、流動電位法に基づくゼータ電位測定装置に本発明
を適用した例を示している。
FIG. 5 is a block diagram of an embodiment of the present invention, showing an example in which the present invention is applied to a zeta potential measuring device based on the streaming potential method.

【0015】全体として略管状で、その内部に一対の電
極1,2が対向配置された流動電位測定セル10は、そ
の一端側が流動液供給容器11に液供給管11aを介し
て連通しており、また、他端は液受給管12aを介して
流動液受給容器12に連通している。ゼータ電位を測定
すべき固体試料は、セル10内の電極1と2の間に充填
され、そこに充填層3が形成される。
A streaming potential measuring cell 10 having a substantially tubular shape as a whole and having a pair of electrodes 1 and 2 disposed opposite to each other has one end communicating with a flowing liquid supply container 11 via a liquid supply pipe 11a. The other end communicates with the fluid receiving container 12 via the liquid receiving pipe 12a. The solid sample whose zeta potential is to be measured is filled between the electrodes 1 and 2 in the cell 10, and the filling layer 3 is formed there.

【0016】各電極1,2には電位計13が接続されて
おり、この電位計13によって、充填層3を液が流れる
ことによって電極1,2間に生じる電位差、つまり流動
電位Eが測定される。
An electrometer 13 is connected to each of the electrodes 1 and 2, and the electrometer 13 measures a potential difference between the electrodes 1 and 2 due to the flow of the liquid in the packed bed 3, that is, a streaming potential E. You.

【0017】流動液供給容器11は耐圧気密構造の容器
によって構成されており、その内部にはセル10中に流
すべき液が収容されている。また、この供給容器11に
は、圧力源(図示せず)からの気体(例えばN2 )を導
入するための気体通路14aが接続されており、これら
によって液を流動させるための圧力を付与する機構を構
成している。また、この供給容器11には、その内部の
圧力を測定するための圧力計15aと、、液の温度を測
定するための温度計16が設けられている。
The fluid liquid supply container 11 is constituted by a container having a pressure-resistant and airtight structure, and contains therein a liquid to be flowed into the cell 10. Further, a gas passage 14a for introducing a gas (for example, N 2 ) from a pressure source (not shown) is connected to the supply container 11, and a pressure for flowing the liquid is applied by these. Make up the mechanism. Further, the supply container 11 is provided with a pressure gauge 15a for measuring the internal pressure and a thermometer 16 for measuring the temperature of the liquid.

【0018】気体通路14aには、同通路14aを開閉
して圧力源からの気体を供給容器11内に導入/停止す
るためのガス導入バルブ14bが設けられているととも
に、供給容器11内の圧力を大気圧にするための大気開
放バルブ14cを備えた分岐路14dが設けられてい
る。従って、大気開放バルブ14cを閉じ、ガス導入バ
ルブ14bを開くことによって、供給容器11内に圧力
源からの大気圧よりも高い気体を導入することができ、
また、逆にガス導入バルブ14bを閉じて大気開放バル
ブ14cを開くことによって、供給容器11内の圧力を
大気圧と等しくすることができるようになっている。
The gas passage 14a is provided with a gas introduction valve 14b for opening and closing the passage 14a to introduce / stop a gas from a pressure source into the supply container 11. There is provided a branch path 14d provided with an atmosphere release valve 14c for bringing the pressure to atmospheric pressure. Therefore, by closing the atmosphere opening valve 14c and opening the gas introduction valve 14b, a gas higher than the atmospheric pressure from the pressure source can be introduced into the supply container 11,
Conversely, by closing the gas introduction valve 14b and opening the atmosphere release valve 14c, the pressure in the supply container 11 can be made equal to the atmospheric pressure.

【0019】流動液受給容器12は、同じく耐圧気密構
造の容器によって構成されており、その上部には内部の
圧力を測定するための圧力計15bが設けられていると
ともに、受給容器12内の圧力を大気圧にするための大
気開放バルブ17aが配設されている。また、受給容器
12の底部には、同容器12内の液を排出するための液
排出バルブ17bが設けられている。この液排出バルブ
17bと大気開放バルブ17aは、流動電位の測定時に
おいてはいずれも閉じられ、受給容器12は気密状態と
なる。
The fluid liquid receiving container 12 is also constituted by a container having a pressure-resistant and airtight structure, and a pressure gauge 15b for measuring the internal pressure is provided at an upper portion thereof. An atmospheric release valve 17a for setting the pressure to atmospheric pressure is provided. At the bottom of the receiving container 12, a liquid discharge valve 17b for discharging the liquid in the container 12 is provided. Both the liquid discharge valve 17b and the atmosphere opening valve 17a are closed when the flow potential is measured, and the receiving container 12 is in an airtight state.

【0020】電位計13および各容器11,12内の圧
力を測定するための圧力計15a,15bの出力は、そ
れぞれA−D変換器21によってデジタル化された後、
コンピュータ22に刻々とサンプリングされる。このサ
ンプリングされた各データはコンピュータ22のメモリ
内に格納されていく。コンピュータ22では、後述する
ように、圧力計15aと15bの出力差によって求めら
れる刻々の流動圧力Pと、その各流動圧力P下において
得られた電位計13の出力つまり流動電位Eとからなる
複数のデータ対(P−E)から、下記の(1)式で示さ
れる公知のゼータ電位算出式を用いて個々にゼータ電位
ζを算出し、得られた複数の算出値をゼータ電位ζの分
布量として捉え、あらかじめ設定されている統計的手法
に基づく演算により、その分布量のモード値、平均値、
標準偏差等を算出し、その結果を表示器23に表示す
る。
The outputs of the electrometer 13 and the pressure gauges 15a and 15b for measuring the pressures in the containers 11 and 12 are digitized by an AD converter 21, respectively.
The data is sampled by the computer 22 every moment. These sampled data are stored in the memory of the computer 22. As will be described later, the computer 22 includes a plurality of flow rates P each obtained from the output difference between the pressure gauges 15a and 15b and the output of the electrometer 13 obtained under each of the flow pressures P, that is, the flow potential E. The zeta potential 個 々 is individually calculated from the data pair (PE) using the known zeta potential calculation formula represented by the following formula (1), and the obtained plurality of calculated values are used as the distribution of the zeta potential 分布. And calculate the distribution mode value, average value,
The standard deviation and the like are calculated, and the result is displayed on the display 23.

【0021】ζ=k・E/P ・・(1) なお、この(1)式におけるkは、液の誘電率、粘性お
よび導電率によって定まる定数である。
Ζ = k ・ E / P (1) where k in the equation (1) is a constant determined by the dielectric constant, viscosity and conductivity of the liquid.

【0022】以上の実施の形態における流動圧力Pと流
動電位Eの測定動作について述べると、まず、流動液供
給容器11内に所定量の流動液を収容するとともに、流
動液受給容器12の大気開放バルブ17aを一旦開いて
同容器12内の気圧を大気圧とした後、流動液受給容器
12の大気開放バルブ17aと液排出バルブ17bを閉
じた状態で、流動液供給容器11内の大気開放バルブ1
4cを閉じ、ガス導入バルブ14bを開くことによっ
て、供給容器11の内部に大気圧よりも高い一定圧力P
P を付与する。この状態では、供給容器11、流動電位
測定セル10、および受給容器12が相互に気密状態で
連通し、かつ、供給容器11と受給容器12の間に差圧
が生じた状態となり、供給容器11内の液はセル10に
向けて流動し、電極1,2間に挟まれた充填層3内を通
過して受給容器12内に流れ込む。この液の流動により
充填層3に発生する流動電位Eは電極1,2を介して電
位計13で測定され、そのデジタル変換データが前記し
たようにコンピュータ22に取り込まれていく。
The operation of measuring the flow pressure P and the flow potential E in the above embodiment will be described. First, a predetermined amount of the fluid is stored in the fluid supply container 11 and the fluid supply container 12 is opened to the atmosphere. After the valve 17a is once opened and the air pressure in the container 12 is set to the atmospheric pressure, the air release valve in the fluid supply container 11 is closed with the air release valve 17a and the liquid discharge valve 17b of the fluid supply container 12 closed. 1
4c is closed and the gas introduction valve 14b is opened, so that a constant pressure P
Give P. In this state, the supply container 11, the streaming potential measurement cell 10, and the receiving container 12 communicate with each other in an airtight state, and a pressure difference is generated between the supply container 11 and the receiving container 12. The liquid inside flows toward the cell 10, passes through the inside of the filling layer 3 sandwiched between the electrodes 1 and 2, and flows into the receiving container 12. The flowing potential E generated in the packed bed 3 by the flow of the liquid is measured by the electrometer 13 via the electrodes 1 and 2, and the digital conversion data is taken into the computer 22 as described above.

【0023】同時に、このような液の流動により、受給
容器12内の液量は液の流速に応じた速度で増加してい
くことになる。この受給容器12内の圧力PC は、同容
器12内の液量の増加分だけ上昇していく。従って、供
給容器11内の圧力PP を一定に保っていても、セル1
0の両端における差圧P(=PP −PC )は、充填層3
中を流れる液の流速の変化に応じて受動的に変化し、刻
々の差圧Pと流動電位Eとの間にずれを生じることがな
い。
At the same time, the flow of the liquid causes the amount of liquid in the receiving container 12 to increase at a speed corresponding to the flow velocity of the liquid. The pressure P C in the receiving container 12 increases by the amount of the liquid in the container 12. Therefore, even if the pressure P P in the supply container 11 is kept constant, the cell 1
The differential pressure P (= P P -P C ) at the two ends of the
It changes passively in accordance with the change in the flow velocity of the liquid flowing therethrough, and there is no deviation between the instantaneous differential pressure P and the streaming potential E.

【0024】さて、コンピュータ22には、このように
して相互に時間的ずれのない正確な流動圧力Pと流動電
位Eのデータ対が多数対格納されるのであるが、前記し
たように、その各対のデータから、個々にゼータ電位ζ
を算出するのである。各対の流動圧力Pと流動電位E
は、それぞれ独立的に測定される値であるから有意な値
である。その各データ対から個々に求めたゼータ電位ζ
は、よってこの充填層3中での固−液界面の荷電状態を
表す分布を持つ情報となる。流動圧力Pと流動電位Eか
らなるデータ対を、1回の測定によって例えば100対
測定すると、ゼータ電位ζも100個算出される。この
とき、各データ対が一様に比例している場合には、各ゼ
ータ電位ζの値も略同一の値をとり、その分布は図6に
例示するようにシャープになるが、そうでない場合に
は、各ゼータ電位ζの値はばらつき、図7に例示するよ
うにブロードなものとなる。この分布状態を、例えば標
準偏差で表せば、その値は、前記したように、固−液界
面に存在する吸着層の安定/不安定(強い/弱い)を表
すパラメータとなり得る。
Now, the computer 22 stores a large number of pairs of accurate data of the flow pressure P and the flow potential E without time lag, as described above. From the pair of data, the zeta potential
Is calculated. Flow pressure P and streaming potential E for each pair
Are significant values because they are measured independently. Zeta potential obtained individually from each data pair ζ
Is information having a distribution indicating the charge state of the solid-liquid interface in the packed layer 3. For example, if 100 pairs of data consisting of the flowing pressure P and the flowing potential E are measured by one measurement, 100 zeta potentials ζ are calculated. At this time, when each data pair is uniformly proportional, the value of each zeta potential と り also takes substantially the same value, and the distribution becomes sharp as illustrated in FIG. In this case, the value of each zeta potential ば ら つ き fluctuates and becomes broad as illustrated in FIG. If this distribution state is represented by, for example, a standard deviation, the value can be a parameter indicating the stability / instability (strong / weak) of the adsorption layer existing at the solid-liquid interface as described above.

【0025】また、各ゼータ電位ζのモード値を算出す
れば、固−液界面の荷電状態の強さを表すパラメータと
なり得る。なお、各ゼータ電位ζの分布量は個数分布と
して求められるが、総インクリメンタル数で除算すれば
規格化することができるから、その場合、それぞれの測
定結果を直接的に比較することが可能となる。
Further, if the mode value of each zeta potential ζ is calculated, it can be a parameter representing the strength of the charged state at the solid-liquid interface. Note that the distribution amount of each zeta potential 求 め is obtained as a number distribution, but can be normalized by dividing by the total incremental number. In this case, it is possible to directly compare the respective measurement results. .

【0026】以上の実施の形態では、流動電位法に基づ
くゼータ電位の測定装置に本発明を適用した例を示した
が、電気泳動法に基づく測定にも、本発明を適用するこ
とは可能である。ただし、この場合、レーザ・ドップラ
ー方式のように一度に多数の粒子の移動を単一現象とし
て捉えて、単一データの解析により分布量を求めたので
は、複数回にわたって互いに独立的に界面動電現象を測
定したとは言えず、例え分布的なデータが得られたとし
てもその分布は有意なデータの集団であるとは言えな
い。従って、電気泳動法に基づく測定に本発明を適用す
る場合には、一つ一つの粒子の移動を測定する方式であ
れば複数個の粒子についてそれぞれに測定を行い、互い
に独立したデータとして取得した結果を、ゼータ電位の
分布量として表示しなければならない。
In the above embodiment, an example is shown in which the present invention is applied to a zeta potential measuring apparatus based on the streaming potential method. However, the present invention can be applied to a measurement based on the electrophoretic method. is there. However, in this case, if the movement of a large number of particles is regarded as a single phenomenon at a time as in the laser Doppler method and the distribution is determined by analyzing a single data, the interfacial dynamics are independent of each other multiple times. It cannot be said that the electrical phenomenon was measured, and even if distributed data is obtained, the distribution is not a significant data group. Therefore, when the present invention is applied to the measurement based on the electrophoresis method, if the method of measuring the movement of each particle is measured for each of a plurality of particles, and obtained as independent data. The result must be displayed as the amount of distribution of the zeta potential.

【0027】[0027]

【発明の効果】以上のように、本発明によれば、固−液
界面の動電現象を複数回にわたって互いに独立的に測定
し、その各回の測定データから個々にゼータ電位を算出
して分布量として捉え、統計的手法に基づく処理を施し
てその分布量を一つまたは複数の所要の表現形式で表す
から、固−液界面に存在する吸着層の安定/不安定の評
価等、ゼータ電位を一意の値として表す従来の方法では
評価できなかった事項を容易に評価できるようになっ
た。例えば、従来方法によりゼータ電位を一意の値とし
て求めた場合、これは分布量として捉えた場合の平均値
を求めていることになると考えられる。この場合には、
例えば2つの試料に関する測定結果間の差が有意である
かどうかの判断は難しいが、分布量として見た場合には
この判断は比較的容易となる。また、一意の値として求
めた場合に、例えば2つの試料間で差がなくとも、分布
量として表現した場合には差があれば、両試料間には差
があると言えるなど、遙かに多くの知見を得ることがで
きる。
As described above, according to the present invention, the electrokinetic phenomena at the solid-liquid interface are measured independently of each other a plurality of times, and the zeta potential is calculated individually from the measurement data of each time to obtain a distribution. It is treated as a quantity and subjected to a process based on a statistical method to represent the distribution quantity in one or a plurality of required expression forms. Therefore, the zeta potential, such as the evaluation of the stability / instability of the adsorption layer existing at the solid-liquid interface, etc. Items that could not be evaluated by the conventional method of expressing as a unique value can now be easily evaluated. For example, when the zeta potential is obtained as a unique value by the conventional method, it is considered that this means that an average value when the zeta potential is regarded as a distribution amount is obtained. In this case,
For example, it is difficult to determine whether the difference between the measurement results of two samples is significant, but this is relatively easy when viewed as a distribution amount. In addition, when obtained as a unique value, for example, even if there is no difference between two samples, if there is a difference when expressed as a distribution amount, it can be said that there is a difference between both samples. Many insights can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】流動電位法によるゼータ電位の測定に際して得
られる流動圧力と流動電位の関係の例を示すグラフ
FIG. 1 is a graph showing an example of the relationship between streaming pressure and streaming potential obtained when measuring zeta potential by the streaming potential method.

【図2】同じく流動電位法によるゼータ電位の測定に際
して得られる流動圧力と流動電位の関係の他の例を示す
グラフ
FIG. 2 is a graph showing another example of the relationship between streaming pressure and streaming potential obtained when measuring zeta potential by the streaming potential method.

【図3】測定誤差の生じにくい方法により測定した流動
圧力と流動電位の関係の例を示すグラフ
FIG. 3 is a graph showing an example of a relationship between a flowing pressure and a flowing potential measured by a method that hardly causes a measurement error.

【図4】同じく測定誤差の生じにくい方法により測定し
た流動圧力と流動電位の関係の他の例を示すグラフ
FIG. 4 is a graph showing another example of the relationship between the flowing pressure and the flowing potential measured by a method that is unlikely to cause a measurement error.

【図5】本発明の実施の形態の全体構成図FIG. 5 is an overall configuration diagram of an embodiment of the present invention.

【図6】本発明の実施の形態により得られるゼータ電位
の分布状態の例を示すグラフ
FIG. 6 is a graph showing an example of a distribution state of zeta potential obtained according to the embodiment of the present invention.

【図7】本発明の実施の形態により得られるゼータ電位
の分布状態の他の例を示すグラフ
FIG. 7 is a graph showing another example of a distribution state of zeta potential obtained according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,2 電極 3 充填層 10 流動電位測定セル 11 流動液供給容器 12 流動液受給容器 13 電位計 14a 気体通路 14b ガス導入バルブ 15a,15b 圧力計 21 A−D変換器 22 コンピュータ 23 表示器 1, 2 electrode 3 packed bed 10 flowing potential measuring cell 11 flowing liquid supply container 12 flowing liquid receiving container 13 potentiometer 14a gas passage 14b gas introduction valve 15a, 15b pressure gauge 21 A / D converter 22 computer 23 display

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 固−液界面の荷電状態をゼータ電位を用
いて評価する方法であって、固−液界面の動電現象を、
複数回にわたって互いに独立的に測定し、その各回の測
定データから個々にゼータ電位を算出し、その算出した
複数のゼータ電位を当該固−液界面の荷電状態を表す分
布量として捉え、統計的手法に基づく処理を施してその
分布量を一つまたは複数の所要の表現形式で表すことを
特徴とするゼータ電位評価方法。
1. A method for evaluating the charge state of a solid-liquid interface by using a zeta potential, wherein the electrokinetic phenomenon at the solid-liquid interface is
Measured multiple times independently of each other, calculate the zeta potential individually from the measurement data of each time, capture the calculated plurality of zeta potentials as a distribution amount representing the charge state of the solid-liquid interface, and use a statistical method A zeta-potential evaluation method characterized by performing a process based on an expression and expressing the distribution amount in one or a plurality of required expression forms.
【請求項2】 固−液界面の動電現象を測定する界面動
電現象測定手段と、その測定手段により複数回にわたっ
て互いに独立的に測定された界面動電現象測定データを
記憶する記憶手段と、その記憶された各回の測定データ
から個々にゼータ電位を算出し、その複数のゼータ電位
算出結果を分布量として所定の統計的演算を施したうえ
で出力する演算手段を備えたゼータ電位測定装置。
2. An electrokinetic phenomenon measuring means for measuring an electrokinetic phenomenon at a solid-liquid interface, and a storage means for storing electrokinetic phenomenon measurement data measured independently a plurality of times by the measuring means. A zeta-potential measuring device including a calculating means for individually calculating a zeta-potential from the stored measurement data, performing a predetermined statistical calculation as a distribution amount of the plurality of zeta-potential calculation results, and outputting the result. .
JP14381897A 1997-06-02 1997-06-02 Evaluation method for zeta potential and measuring apparatus for zeta potential Pending JPH10332621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14381897A JPH10332621A (en) 1997-06-02 1997-06-02 Evaluation method for zeta potential and measuring apparatus for zeta potential

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14381897A JPH10332621A (en) 1997-06-02 1997-06-02 Evaluation method for zeta potential and measuring apparatus for zeta potential

Publications (1)

Publication Number Publication Date
JPH10332621A true JPH10332621A (en) 1998-12-18

Family

ID=15347679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14381897A Pending JPH10332621A (en) 1997-06-02 1997-06-02 Evaluation method for zeta potential and measuring apparatus for zeta potential

Country Status (1)

Country Link
JP (1) JPH10332621A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002065112A1 (en) * 2001-02-14 2002-08-22 Riken Apparatus for detecting interaction between biopolymer and ligand and method thereof
WO2006110246A2 (en) * 2005-04-08 2006-10-19 Caterpillar Inc. Diagnostic and prognostic method and system
JP2008522143A (en) * 2004-11-29 2008-06-26 オ・テ・ベ・エス・アー Electrokinetic method for determining the electrostatic charge state of a porous membrane during filtration and its use
JP2015102386A (en) * 2013-11-22 2015-06-04 花王株式会社 Method of measuring zeta potential distribution

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002065112A1 (en) * 2001-02-14 2002-08-22 Riken Apparatus for detecting interaction between biopolymer and ligand and method thereof
JP2008522143A (en) * 2004-11-29 2008-06-26 オ・テ・ベ・エス・アー Electrokinetic method for determining the electrostatic charge state of a porous membrane during filtration and its use
WO2006110246A2 (en) * 2005-04-08 2006-10-19 Caterpillar Inc. Diagnostic and prognostic method and system
WO2006110246A3 (en) * 2005-04-08 2007-07-12 Caterpillar Inc Diagnostic and prognostic method and system
US7499777B2 (en) 2005-04-08 2009-03-03 Caterpillar Inc. Diagnostic and prognostic method and system
JP2015102386A (en) * 2013-11-22 2015-06-04 花王株式会社 Method of measuring zeta potential distribution

Similar Documents

Publication Publication Date Title
Tison Experimental data and theoretical modeling of gas flows through metal capillary leaks
US5837888A (en) Process for measuring vapor transmission through materials
US8413488B2 (en) Measuring procedure and measuring device for measuring physical quantities of non-compressible media
CN106153522B (en) Core porosity measuring device and measuring method
EP0557150B1 (en) System and method of introducing and controlling compressed gases for impurity analysis
CN101377469A (en) Method and apparatus for real-time detecting mixing gas component content by thermal conductivity detector
Lindner et al. Switched wall jet for dynamic response measurements
JPH10332621A (en) Evaluation method for zeta potential and measuring apparatus for zeta potential
US7082826B2 (en) Gas flow meter and method for measuring gas flow rate
CN206339467U (en) Core porosity measurement apparatus
JPH1038835A (en) Method and device for zeta potential measurement
JP3533815B2 (en) Method and apparatus for measuring zeta potential
RU2298774C1 (en) Method for controlling reservoir sealing tightness
CN202916258U (en) Calibration device for gas sensor
EP2820401B1 (en) Device and method for calorimetrically measuring sorption processes
Le Bris et al. Automated pH-ISFET measurements under hydrostatic pressure for marine monitoring application
JPH08101158A (en) Flow potential measuring method
RU2421700C1 (en) Method of determining leakage in articles
JP2000019144A (en) Zeta potential measuring method and measuring device
JP3211530B2 (en) Streaming potential measurement device
JPH1038836A (en) Flow potential measuring device
JP3367234B2 (en) Streaming potential measurement method
US3360980A (en) Vapor pressure measuring system and method
CN211553699U (en) Testing device for high-temperature high-pressure-drop internal pressure porosity stress sensitivity
JPH11190711A (en) Method and apparatus for measuring zeta potential