JPH10379A - Rotary drum type nonmagnetic material sorting and recovering device - Google Patents

Rotary drum type nonmagnetic material sorting and recovering device

Info

Publication number
JPH10379A
JPH10379A JP8177560A JP17756096A JPH10379A JP H10379 A JPH10379 A JP H10379A JP 8177560 A JP8177560 A JP 8177560A JP 17756096 A JP17756096 A JP 17756096A JP H10379 A JPH10379 A JP H10379A
Authority
JP
Japan
Prior art keywords
magnets
magnetic
drum
magnet
conveyor belt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8177560A
Other languages
Japanese (ja)
Other versions
JP4057076B2 (en
Inventor
Masao Ogata
正男 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kizai Inc
Original Assignee
Hitachi Kizai Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kizai Inc filed Critical Hitachi Kizai Inc
Priority to JP17756096A priority Critical patent/JP4057076B2/en
Publication of JPH10379A publication Critical patent/JPH10379A/en
Application granted granted Critical
Publication of JP4057076B2 publication Critical patent/JP4057076B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Sorting Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable sure sorting and recovering by alternately arranging magnets arranged with adjacent opposite surfaces to the same pole having a magnetization direction in the normal direction of a drum and magnets having the magnetization direction in a normal direction in such a manner that the drum side is of the same pole as the magnetic pole of the same polarity and rotating these magnets in the direction opposite to the progressing direction of a conveyor. SOLUTION: The first magnets 16, 16' having the magnetization direction which is approximately the same as the tangent direction of the drum 1 are arranged apart spaced intervals along the circumferential direction of a cylindrical magnetic member 3. The second magnets 17, 17' having the magnetization direction which is approximately the same as the normal direction of the drum 1 are arranged at the respective intervals. These magnets are so arranged that the adjacent opposite surfaces of the first magnets are of the same pole and that the second magnets are of the same pole as the poles of the first magnets to which the drum 1 side is adjacent. The magnetic fluxes generated from the N pole of the second magnets are, therefore, penetrated through the drum 1 and are admitted into the S pole of the second magnets. The magnetic fluxes generated from the second magnets are effectively taken outside. The rotating direction of a magnet rotor 4 is made reverse from the progressing direction of the conveyor, by which the conductive magnetic metallic piece 15 are made to fly forward.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルミニウム、銅
等の導電性非磁性金属を処理物中より分離、回収するた
めの回転ドラム型非磁性金属選別回収装置に関し、特に
小口径の導電性非磁性金属片を回収するための回転ドラ
ム型非磁性金属選別回収装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotating drum type non-magnetic metal sorting / recovering apparatus for separating and recovering a conductive non-magnetic metal such as aluminum and copper from a processed material, and particularly to a small-diameter conductive non-magnetic metal collecting apparatus. The present invention relates to a rotating drum type non-magnetic metal sorting and collecting apparatus for collecting magnetic metal pieces.

【0002】[0002]

【従来の技術】近年、環境問題が注目される中、資源の
再利用化も進んでおり、日常発生する廃棄物の中から、
鉄はもとより非鉄金属類、紙、布類、木片、合成樹脂、
ゴム、ガラス等広い範囲で資源回収が行われ、それに伴
う回収システムにも新しい技術が採用されている。非鉄
金属の中でアルミニウムに代表される非磁性軽金属類を
選別回収する装置は、都市ごみの中のアルミ缶、あるい
は自動車廃車の裁断スクラップに含まれるアルミニウム
等の回収再利用に多用されている。非鉄金属を他の廃棄
物と選別回収する手段として磁力を応用したものは、従
来より、移動交流磁界を応用したリニアモータ型、ロー
タリーキルン状回転円筒の外周に永久磁石を配設したイ
ンサイドドラム型、平滑斜面の下側に永久磁石を配列し
たスライディングセパレータ型、あるいはコンベアベル
トが巻装されるドラムを二重構造のドラム型とし内部に
永久磁石回転子を配設した回転ドラム型等、多数の構造
が提案されている。
2. Description of the Related Art In recent years, as environmental problems have attracted attention, resources are being reused.
Iron as well as non-ferrous metals, paper, cloth, wood chips, synthetic resins,
Resource recovery is performed in a wide range such as rubber and glass, and new technologies are adopted for the recovery system. 2. Description of the Related Art Among non-ferrous metals, a device for sorting and collecting non-magnetic light metals represented by aluminum is frequently used for collecting and reusing aluminum and the like contained in municipal waste aluminum or cutting scraps of scrapped automobiles. Conventionally, those applying magnetic force as a means of sorting and recovering non-ferrous metals from other wastes are conventionally, linear motor type applying moving AC magnetic field, inside drum type in which permanent magnets are arranged around the outer periphery of rotary kiln-shaped rotating cylinder, Numerous structures, such as a sliding separator type in which permanent magnets are arranged below the smooth slope, or a rotating drum type in which the drum around which the conveyor belt is wound has a double-structured drum and permanent magnet rotors are arranged inside Has been proposed.

【0003】上記の中で回転ドラム型が最も多く使用さ
れており、その従来例を図10に示す。図10におい
て、無端状のコンベアベルト10は一方の端部を駆動ロ
ーラ9に、他方の端部をドラム1に巻装されている。駆
動ローラ9をモータ7によりVベルト8を介して矢印R
Rの方向に回転駆動することにより、コンベアベルト1
0を矢印RBの方向に走行させる。従って、従動ローラ
であるドラム1は矢印RDで示す方向に回転する。ま
た、ドラム1は非磁性材料で形成されており、ドラム1
の内部にはドラム1と同心状に永久磁石回転子4が回転
自在に配設されている。
[0003] Among the above, a rotary drum type is most often used, and a conventional example thereof is shown in FIG. In FIG. 10, an endless conveyor belt 10 has one end wound around a drive roller 9 and the other end wound around a drum 1. The drive roller 9 is driven by a motor 7 through a V-belt 8 by an arrow R.
By rotating in the direction of R, the conveyor belt 1
0 travels in the direction of arrow RB. Therefore, the drum 1 as a driven roller rotates in the direction indicated by the arrow RD. The drum 1 is made of a non-magnetic material.
A permanent magnet rotor 4 is rotatably disposed concentrically with the drum 1.

【0004】次に上記永久磁石回転子4の構成を図11
に示す。円筒磁性部材3の外周面上にその法線方向に着
磁された磁石2と磁石2´が、円周方向に沿って等角度
間隔で交互にN極とS極がドラム1側に位置するよう
に、かつそれらの外表面がドラム1の内周面に近接する
ように固設されている。また、永久磁石回転子4はドラ
ム1と同心で回転方向RDと同一方向RMに回転する
が、回転速度(周速)が異なるように別のモータ6によ
りVベルト5を介して回転駆動する二重構造になってい
る。なお、永久磁石回転子4の回転速度は、ドラム1の
回転速度よりも充分に大きくなるように設定されてい
る。
Next, the structure of the permanent magnet rotor 4 is shown in FIG.
Shown in A magnet 2 and a magnet 2 'magnetized in the normal direction on the outer peripheral surface of the cylindrical magnetic member 3 have N poles and S poles alternately positioned at equal angular intervals on the drum 1 side along the circumferential direction. And the outer surfaces thereof are fixed so as to be close to the inner peripheral surface of the drum 1. The permanent magnet rotor 4 is concentric with the drum 1 and rotates in the same direction RM as the rotation direction RD. However, the permanent magnet rotor 4 is rotationally driven via the V-belt 5 by another motor 6 so that the rotation speed (peripheral speed) is different. It has a heavy structure. Note that the rotation speed of the permanent magnet rotor 4 is set to be sufficiently higher than the rotation speed of the drum 1.

【0005】このようにして、磁石2のN極から流出し
た磁束Cは、ドラム1およびその上に巻装されたコンベ
アベルト10を通過して磁石2´のS極に流入するの
で、コンベアベルト10の表面に強力な磁界を発生させ
ることになり、処理物(14あるいは15)に種々の影
響を与える。さらにドラム1の前方下側には、コンベア
ベルト10から落下し選別される処理物を回収する容器
18、19が配設され、容器18には紙、布類、木片、
合成樹脂等の非金属片14、容器19にはアルミニウ
ム、銅等の導電性非磁性金属片15がそれぞれ回収され
る。
Thus, the magnetic flux C flowing out of the N pole of the magnet 2 passes through the drum 1 and the conveyor belt 10 wound thereon and flows into the S pole of the magnet 2 '. A strong magnetic field is generated on the surface of the substrate 10, which has various effects on the processed object (14 or 15). Further, on the lower front side of the drum 1, containers 18 and 19 for collecting the processed materials dropped from the conveyor belt 10 and sorted are arranged, and the container 18 includes paper, cloth, wood chips, and the like.
A non-metallic piece 14 such as a synthetic resin and a conductive non-magnetic metal piece 15 such as aluminum and copper are collected in the container 19.

【0006】上記の回転ドラム型非磁性金属選別回収装
置の動作は次の通りである。まず、導電性非磁性金属片
15、非金属片14が混在した処理物をホッパ13の上
端開放部から投入すると、コンベアベルト10の表面に
落下し、コンベアベルト10の走行と共にドラム1の中
心軸を通る垂線の上部領域、すなわち最頂部へと搬送さ
れる。ここで、コンベアベルト10上の処理物はある程
度の厚さを持ち層状となるが、理解を容易にするために
図10では散在した状態で示す。
The operation of the above-mentioned rotary drum type non-magnetic metal sorting and collecting apparatus is as follows. First, when a processed material in which the conductive non-magnetic metal pieces 15 and the non-metal pieces 14 are mixed is thrown in from the upper end opening portion of the hopper 13, it falls on the surface of the conveyor belt 10, and moves along with the center axis of the drum 1 as the conveyor belt 10 runs. To the upper region of the perpendicular passing through, i.e., the top. Here, the processed material on the conveyor belt 10 has a certain thickness and has a layered shape, but is shown in a scattered state in FIG. 10 for easy understanding.

【0007】処理物は、ドラム1の最頂部に達すると、
ドラム1に内設された永久磁石回転子4の高速回転によ
り、円筒磁性部材3の外周面に固設された磁石2および
磁石2´によって発生する高周波交番磁界の中を通過す
る。この時、導電性非磁性金属片15の内部にはファラ
デーの電磁誘導で説明される渦電流が発生し、この渦電
流に起因して発生する磁束の向きと、永久磁石回転子4
より発生する磁束の向きは、レンツの法則に従って相反
するため、両者の相互作用により遠心方向の斥力(反発
力)が生起される。さらにコンベアベルト10の搬送力
が合成力として作用して、導電性非磁性金属片15はコ
ンベアベルト10の走行方向から見てその前方でかつ上
方に飛翔し、ドラム1のほぼ最頂部より放物線の軌跡a
を描いて落下し、容器19へと選別回収される。
When the processed material reaches the top of the drum 1,
Due to the high-speed rotation of the permanent magnet rotor 4 provided inside the drum 1, it passes through a high-frequency alternating magnetic field generated by the magnet 2 and the magnet 2 'fixed on the outer peripheral surface of the cylindrical magnetic member 3. At this time, an eddy current described by the Faraday electromagnetic induction is generated inside the conductive non-magnetic metal piece 15, and the direction of the magnetic flux generated by the eddy current and the permanent magnet rotor 4
Since the directions of the generated magnetic fluxes are opposite according to Lenz's law, a repulsive force (repulsive force) in the centrifugal direction is generated by the interaction between the two. Further, the conveying force of the conveyor belt 10 acts as a combined force, so that the conductive non-magnetic metal pieces 15 fly forward and upward as viewed from the running direction of the conveyor belt 10, and a parabolic shape is formed from almost the top of the drum 1. Locus a
, And is sorted and collected in the container 19.

【0008】また、処理物中の非金属片14は、磁石2
および磁石2´の磁気作用を何等受けることが無いた
め、自重により自由落下して、bの軌跡に沿って容器1
8へ選別回収される。
Further, the non-metallic piece 14 in the processed material is a magnet 2
And does not receive any magnetic action of the magnet 2 ′, falls freely by its own weight, and moves along the locus of “b”.
Sorted and collected to 8.

【0009】従来の永久磁石回転子4の1/4断面図を
図12に示す。図12は、磁石2と磁石2´が、円筒磁
性部材3の外周面上に円周方向に沿って30°の等角度
間隔で固設された場合を示す。磁石の磁化を弱めようと
して磁石内を走る反磁場は、N極とS極の距離が遠くな
るにつれ小さくなる。従って、反磁場の影響を少なくし
磁石の磁気を強くするためには、磁石を固設する部材を
鉄などの磁性材料で形成し、隣合う磁石の磁気回路を接
続して磁石内のN極とS極の距離を長くすれば良いこと
は一般に知られている。図12において反時計方向の角
度をθとすると、ドラム1の外表面法線方向の磁束密度
Bと角度θの関係(磁束密度分布)は図13のようにな
る。なお、角度θが15°以上になると周期的に同様な
磁束密度曲線を描くため、角度θは0°〜15°の範囲
で示す。
FIG. 12 shows a quarter sectional view of a conventional permanent magnet rotor 4. As shown in FIG. FIG. 12 shows a case where the magnet 2 and the magnet 2 ′ are fixed on the outer peripheral surface of the cylindrical magnetic member 3 at equal angular intervals of 30 ° along the circumferential direction. The demagnetizing field running inside the magnet in an attempt to weaken the magnetization of the magnet decreases as the distance between the north pole and the south pole increases. Therefore, in order to reduce the influence of the demagnetizing field and increase the magnet's magnetism, the member for fixing the magnet is formed of a magnetic material such as iron, and the magnetic circuit of the adjacent magnet is connected to connect the N pole in the magnet. It is generally known that the distance between S and the S pole should be increased. Assuming that the angle in the counterclockwise direction in FIG. 12 is θ, the relationship (magnetic flux density distribution) between the magnetic flux density B in the direction normal to the outer surface of the drum 1 and the angle θ is as shown in FIG. When the angle θ becomes 15 ° or more, a similar magnetic flux density curve is periodically drawn, so that the angle θ is shown in the range of 0 ° to 15 °.

【0010】一般に、導電性非磁性金属片が永久磁石回
転子より受ける斥力Fは次の式で表される。 F∝Bg2×f×σ×A/ρ…………(1) ここでBg:磁束密度 f :周波数(=磁石ドラム極数×磁石ドラム回転数) σ :導電率 A :処理物表面積 ρ :密度 選別回収の対象である導電性非磁性金属片15が小口径
の場合、その表面積は小さくなり、斥力Fが小さくなる
ことが式(1)から理解できる。
Generally, the repulsive force F which a conductive non-magnetic metal piece receives from a permanent magnet rotor is expressed by the following equation. F∝Bg 2 × f × σ × A / ρ (1) where Bg: magnetic flux density f: frequency (= number of magnet drum poles × number of rotations of magnet drum) σ: electric conductivity A: surface area of the processed material ρ : Density It can be understood from the equation (1) that when the conductive non-magnetic metal piece 15 to be sorted and collected has a small diameter, its surface area becomes small and the repulsive force F becomes small.

【0011】[0011]

【発明が解決しようとする課題】従来の回転ドラム型非
磁性金属選別回収装置では、導電性非磁性金属片が小口
径になると、永久磁石回転子より受ける斥力が小さくな
り、確実な選別回収が困難であるという問題点があっ
た。また、導電性非磁性金属片の形状が一様ではないた
め、空気抵抗等の理由で自由落下の軌跡も一様にはなら
ず、選別回収の精度が安定しないという問題点も生じて
いた。本発明は、上記問題点を解消し、確実な選別回収
が可能な回転ドラム型非磁性金属選別回収装置を提供す
ることを目的とする。
In the conventional rotating drum type non-magnetic metal sorting and collecting apparatus, when the conductive non-magnetic metal piece has a small diameter, the repulsive force received from the permanent magnet rotor becomes small, so that reliable sorting and collecting can be performed. There was a problem that it was difficult. In addition, since the shape of the conductive non-magnetic metal piece is not uniform, the locus of free fall is not uniform due to air resistance or the like, and there has been a problem that the accuracy of sorting and collecting is not stable. SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide a rotary drum type non-magnetic metal sorting and collecting apparatus capable of surely sorting and collecting.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、駆動ローラと受動ローラおよび補助プー
リに巻装された無端状のコンベアベルトと、前記コンベ
アベルトの内周面に接触して設けられた円筒状非磁性ド
ラムと、前記ドラム内に回転自在に配置され、前記ドラ
ムの内周面に近接して複数個の永久磁石が円筒磁性部材
の円周方向に沿って固設された円筒状の永久磁石回転子
とを有する回転ドラム型非磁性金属選別回収装置におい
て、前記永久磁石は、磁化方向が前記ドラムの接線方向
と略同一であり間隙をおいて配置された第一の磁石と、
前記第一の磁石間の各間隙に配置され磁化方向が前記ド
ラムの法線方向と略同一の第二の磁石とで構成され、前
記第一の磁石の隣接する対向面は同極とし、かつ前記極
間にある第二の磁石は前記ドラム側が前記同極性の磁極
と同極となるように配置され、前記永久磁石回転子は前
記コンベアベルトの進行方向と逆方向に回転される、と
いう技術的手段を採用した。また本発明においては、前
記円筒磁性部材の断面形状を略歯車状とし、前記円筒磁
性部材の凹部の外周面上に前記第一の磁石を固定配置
し、かつ前記円筒磁性部材の凸部に前記第二の磁石を固
定配置しても良い。さらに本発明においては、前記第一
の磁石の内周側磁極面に非磁性板を接着固定し、かつ前
記第二の磁石の内周側磁極面に磁性板を接着固定して、
両磁石部材を前記円筒磁性部材に機械的あるいは接着剤
を併用して固定しても良い。さらに本発明においては、
前記コンベアベルトの側方に、磁気浮上させた導電性非
磁性金属を気体噴射によって分離除去する除去手段を設
けても良い。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides an endless conveyor belt wound around a driving roller, a passive roller and an auxiliary pulley, and an inner peripheral surface of the conveyor belt. A cylindrical non-magnetic drum, and a plurality of permanent magnets rotatably disposed within the drum, and a plurality of permanent magnets fixed along the circumferential direction of the cylindrical magnetic member in proximity to the inner peripheral surface of the drum. A rotating drum type non-magnetic metal sorting and collecting apparatus having a cylindrical permanent magnet rotor formed as described above, wherein the permanent magnet has a magnetization direction substantially the same as a tangential direction of the drum, and the first permanent magnet is disposed with a gap therebetween. And the magnet
The second magnet is arranged in each gap between the first magnets, and has a magnetization direction substantially the same as the normal direction of the drum, and the adjacent facing surfaces of the first magnets have the same polarity, and A technique in which the second magnet between the poles is arranged such that the drum side has the same polarity as the magnetic pole of the same polarity, and the permanent magnet rotor is rotated in a direction opposite to the traveling direction of the conveyor belt. Tactics were adopted. Further, in the present invention, the cross-sectional shape of the cylindrical magnetic member is substantially gear-shaped, the first magnet is fixedly arranged on an outer peripheral surface of a concave portion of the cylindrical magnetic member, and the convex portion of the cylindrical magnetic member has the first magnet. The second magnet may be fixedly arranged. Further, in the present invention, a non-magnetic plate is bonded and fixed to the inner magnetic pole surface of the first magnet, and a magnetic plate is bonded and fixed to the inner magnetic pole surface of the second magnet,
The two magnet members may be fixed to the cylindrical magnetic member by using a mechanical or adhesive agent. Further, in the present invention,
Removal means for separating and removing the magnetically levitated conductive non-magnetic metal by gas injection may be provided on the side of the conveyor belt.

【0013】[0013]

【発明の実施の形態】図1は本発明の一実施例に係る回
転ドラム型非磁性金属選別回収装置の概略断面図であ
る。ただし、従来例と同一部分は同一の参照符号を付
し、その詳細な説明は省略する。本実施例の回転ドラム
型非磁性金属選別回収装置の基本的構造は、図10に示
す従来例の構造と類似するが、ドラム1内部に回転自在
に配設した永久磁石回転子4を特定の構造にしたこと
と、永久磁石回転子4の回転方向をコンベアベルト10
の進行方向と相対的に逆方向としたこと、すなわち従来
例と逆方向の回転させる点で相違する。また、従来例で
は導電性非磁性金属片15をコンベアベルト10の端部
から落下させていたのに対し、本発明ではコンベアベル
ト10の中間領域で磁気浮上させることにより選別回収
させる点も大きな相違点となる。
FIG. 1 is a schematic sectional view of a rotary drum type non-magnetic metal sorting and collecting apparatus according to an embodiment of the present invention. However, the same parts as those in the conventional example are denoted by the same reference numerals, and detailed description thereof will be omitted. The basic structure of the rotating drum type non-magnetic metal sorting and collecting apparatus of the present embodiment is similar to the structure of the conventional example shown in FIG. 10, except that the permanent magnet rotor 4 rotatably disposed inside the drum 1 has a specific structure. Structure and the rotation direction of the permanent magnet rotor 4
In the direction opposite to the traveling direction, that is, the rotation in the direction opposite to the conventional example. Further, in the conventional example, the conductive non-magnetic metal piece 15 is dropped from the end of the conveyor belt 10, whereas the present invention is also greatly different in that the conductive non-magnetic metal piece 15 is separated and collected by magnetically levitating in an intermediate region of the conveyor belt 10. Points.

【0014】まず本発明装置の全体構造について図1を
用いて詳述する。無端状のコンベアベルト10は、一方
の端部を駆動ローラ9に、他方の端部を受動ローラ11
に、さらに両ローラの下方に位置する補助プーリ12の
3点を軸として巻装されている。駆動ローラ9をモータ
7によりVベルト8を介して矢印RRの方向に回転駆動
することによって、コンベアベルト10を矢印RBの方
向に走行させる機能を有している。
First, the overall structure of the apparatus of the present invention will be described in detail with reference to FIG. The endless conveyor belt 10 has a drive roller 9 at one end and a passive roller 11 at the other end.
The auxiliary pulley 12 is further wound around three rollers located below the rollers. The drive roller 9 has a function of rotating the conveyor belt 10 in the direction of the arrow RB by rotating the drive roller 9 in the direction of the arrow RR via the V-belt 8 by the motor 7.

【0015】また、複数個の永久磁石を有し回転自在に
配置された永久磁石回転子4を内蔵した円筒状非磁性ド
ラム1は、コンベアベルト10の処理物搬送領域の裏面
に接触するように配置されている。永久磁石回転子4
は、モータ6によりVベルト5を介して矢印RM方向、
すなわち従来例である図10とは反対となる時計方向に
回転させる。この時、ドラム1はコンベアベルト10と
接触しているため矢印RD方向に回転する。従って、永
久磁石回転子4の回転方向とドラム1の回転方向とは逆
方向となる。
The cylindrical non-magnetic drum 1 having a plurality of permanent magnets and having a rotatable permanent magnet rotator 4 built therein is brought into contact with the back surface of the conveyed belt 10 in the processed material transport area. Are located. Permanent magnet rotor 4
Is in the direction of the arrow RM via the V belt 5 by the motor 6,
That is, it is rotated clockwise, which is opposite to the conventional example shown in FIG. At this time, since the drum 1 is in contact with the conveyor belt 10, it rotates in the direction of arrow RD. Therefore, the rotation direction of the permanent magnet rotor 4 and the rotation direction of the drum 1 are opposite.

【0016】上記構成により、紙、布類、木片、合成樹
脂等の非金属片14および導電性非磁性金属片15が混
在した処理物は、ホッパー13よりコンベアベルト10
上に供給されると、RB方向に搬送され永久磁石回転子
4の上部領域に到達する。処理物中の非金属片14は磁
石による磁気作用を受けないため、永久磁石回転子4の
上部領域を通過し受動ローラ11に達した後、自重によ
り自由落下して回収容器18へ回収される。
According to the above configuration, a processed material in which non-metal pieces 14 such as paper, cloth, wood, and synthetic resin and conductive non-magnetic metal pieces 15 coexist is conveyed by the hopper 13 to the conveyor belt 10.
When supplied above, it is conveyed in the RB direction and reaches the upper region of the permanent magnet rotor 4. Since the non-metallic pieces 14 in the processing object are not subjected to the magnetic action by the magnet, they pass through the upper region of the permanent magnet rotor 4 and reach the passive roller 11, and then fall freely by their own weight and are collected in the collection container 18. .

【0017】一方、導電性非磁性金属片15は永久磁石
回転子4の上部領域に到達すると、永久磁石回転子4か
ら磁気作用を受けてコンベアベルト10の上方に浮上
し、例えば図6に示すような手段によって分離除去され
る。浮上した導電性非磁性金属片を、噴射気体(例えば
空気)を利用して分離除去する例を図6に示す。図6の
構造では、コンベアベルト10の一方の側に空気噴射装
置20を設置し、コンベアベルト10の走行方向(紙面
に垂直方向)と直交する方向から空気を噴射して、導電
性非磁性金属片15をコンベアベルト10の他方の側に
吹き飛ばして(図中破線で示す。)回収するようにして
いる。
On the other hand, when the conductive non-magnetic metal piece 15 reaches the upper region of the permanent magnet rotor 4, it receives a magnetic action from the permanent magnet rotor 4 and floats above the conveyor belt 10, for example, as shown in FIG. It is separated and removed by such means. FIG. 6 shows an example in which a floating conductive non-magnetic metal piece is separated and removed by using a jet gas (for example, air). In the structure shown in FIG. 6, an air jet device 20 is installed on one side of the conveyor belt 10, and air is jetted from a direction perpendicular to the running direction of the conveyor belt 10 (perpendicular to the plane of the drawing) to form a conductive non-magnetic metal. The piece 15 is blown off to the other side of the conveyor belt 10 (indicated by a broken line in the drawing) and collected.

【0018】次に本発明の永久磁石回転子の構造を図2
により詳述する。図2に本実施例の永久磁石回転子4の
1/4断面図を示す。円筒磁性部材3の円周方向に沿っ
て、磁化方向がドラム1の接線方向と略同一の第一の磁
石16、16´を間隙をおいて配置し、磁化方向がドラ
ム1の法線方向と略同一の第二の磁石17、17´を第
一の磁石16、16´間の各間隙に配置する。また第一
の磁石16、16´の隣接する対向面は同極とし、第二
の磁石17、17´はドラム1側が隣接する第一の磁石
16、16´と同極となるように配置する。すなわち図
2において、第一の磁石16は第二の磁石17側がN
極、第二の磁石17´側がS極で、第一の磁石16´も
第二の磁石17´側がS極となるように磁化されてい
る。さらに、第二の磁石17はドラム1側がN極で、第
二の磁石17´はドラム1側がS極となるように磁化さ
れている。
Next, the structure of the permanent magnet rotor of the present invention is shown in FIG.
This will be described in detail below. FIG. 2 shows a quarter sectional view of the permanent magnet rotor 4 of this embodiment. Along the circumferential direction of the cylindrical magnetic member 3, first magnets 16 and 16 ′ whose magnetization directions are substantially the same as the tangential direction of the drum 1 are arranged with a gap therebetween, and the magnetization direction is the same as the normal direction of the drum 1. Substantially identical second magnets 17, 17 'are arranged in each gap between the first magnets 16, 16'. Opposite facing surfaces of the first magnets 16 and 16 ′ have the same polarity, and the second magnets 17 and 17 ′ are arranged so that the drum 1 side has the same polarity as the adjacent first magnets 16 and 16 ′. . That is, in FIG. 2, the first magnet 16 is N
The first magnet 16 'is magnetized such that the second magnet 17' side is the S pole, and the second magnet 17 'side is the S pole. Further, the second magnet 17 is magnetized so that the drum 1 side has an N pole, and the second magnet 17 'has the drum 1 side having an S pole.

【0019】上記の磁石配置によれば、第二の磁石のN
極から発生した磁束は、ドラム1を貫通して当該磁石に
隣接する第二の磁石のS極に流入する。ここで第二の磁
石17、17´に注目すると、両磁石の間には図示の如
く磁化された第一の磁石16が存在するので、第二の磁
石17のN極とS極との間で短絡する磁束を実質的にな
くすことができる。従って、第二の磁石17から発生す
る磁束を有効に外部に取り出すことが可能となり、もっ
てドラム1表面の磁束密度を向上させることができる。
According to the above magnet arrangement, the N of the second magnet
The magnetic flux generated from the pole passes through the drum 1 and flows into the south pole of the second magnet adjacent to the magnet. Attention is paid here to the second magnets 17 and 17 ′. Since the magnetized first magnet 16 exists between the two magnets as shown in FIG. The magnetic flux that causes a short circuit can be substantially eliminated. Therefore, the magnetic flux generated from the second magnet 17 can be effectively extracted to the outside, and the magnetic flux density on the surface of the drum 1 can be improved.

【0020】図2は第一の磁石16、16´の等角度間
隔を30°とした場合を示し、その場合のドラム1の外
表面の法線方向の磁束密度分布を図3に示す。図3にお
いて縦軸は磁束密度B、横軸はX軸から反時計方向の角
度θを示す。角度θが15°以上になると周期的に同様
な磁束密度曲線を描くため、角度θは0°〜15°の範
囲で示す。
FIG. 2 shows the case where the equiangular intervals between the first magnets 16 and 16 'are set to 30 °, and FIG. 3 shows the magnetic flux density distribution in the normal direction of the outer surface of the drum 1 in this case. 3, the vertical axis indicates the magnetic flux density B, and the horizontal axis indicates the counterclockwise angle θ from the X axis. When the angle θ becomes 15 ° or more, a similar magnetic flux density curve is periodically drawn. Therefore, the angle θ is shown in the range of 0 ° to 15 °.

【0021】磁束密度について従来例(図13)と比較
すると、従来例では磁束密度Bの最大値(絶対値)は3
600Gであるのに対し、本実施例(図3)では490
0Gと約1.36倍の数値となり、ドラム1の外表面の
磁束密度が向上していることが明らかである。
When comparing the magnetic flux density with the conventional example (FIG. 13), the maximum value (absolute value) of the magnetic flux density B is 3 in the conventional example.
In contrast to 600 G, this embodiment (FIG. 3) has 490 G.
0G, which is about 1.36 times the numerical value, and it is clear that the magnetic flux density on the outer surface of the drum 1 is improved.

【0022】図2および図12において、Hは非磁性金
属片が受ける遠心方向の斥力ベクトル、Vはドラムの回
転による接線方向の速度ベクトル、Fは斥力ベクトルH
と速度ベクトルVとの合成ベクトルを示す。同一条件で
の渦電流の発生による斥力の大きさは、対象物に作用す
る磁束密度の二乗に比例する。すなわち、本実施例にお
いて第一の磁石16、16´により発生する高周波交番
磁界は、従来例において磁石2、2´により発生する高
周波交番磁界の約1.36倍の大きさとなり、非磁性金
属片が受ける遠心方向の斥力ベクトルHの大きさは約
1.8倍となる。従って、導電性非磁性金属片が小口径
になってもより確実な選別回収が可能となる。
In FIGS. 2 and 12, H is a centrifugal repulsion vector received by the non-magnetic metal piece, V is a tangential velocity vector due to rotation of the drum, and F is a repulsion vector H
4 shows a composite vector of the velocity vector V and the velocity vector V. The magnitude of the repulsion caused by the generation of the eddy current under the same condition is proportional to the square of the magnetic flux density acting on the object. That is, the high-frequency alternating magnetic field generated by the first magnets 16 and 16 'in the present embodiment is about 1.36 times as large as the high-frequency alternating magnetic field generated by the magnets 2 and 2' in the conventional example. The magnitude of the centrifugal repulsion vector H received by the piece is about 1.8 times. Therefore, even if the conductive non-magnetic metal piece has a small diameter, more reliable sorting and collection can be performed.

【0023】次に、本発明において、永久磁石回転子4
の回転方向をコンベアベルト10の進行方向と相対的に
逆方向とした理由について、図4および図5を用いて説
明する。
Next, in the present invention, the permanent magnet rotor 4
The reason why the direction of rotation is relatively opposite to the direction of travel of the conveyor belt 10 will be described with reference to FIGS.

【0024】図4に従来例の状態、すなわち永久磁石回
転子4の回転方向RMとコンベアベルト10の進行方向
と相対的に同一方向である状態を示す。図4では、コン
ベアベルト10の進行方向RBと同方向の搬送力FB
と、永久磁石回転子4の電磁誘導から説明される斥力F
Mとの合力FTが作用するため、導電性非磁性金属片1
5は永久磁石回転子4の前方方向に飛翔する。従って従
来は、導電性非磁性金属片15を永久磁石回転子4の前
方に、できるだけ遠方に飛翔させることによって、選別
精度の向上を図っている。
FIG. 4 shows a state of the conventional example, that is, a state in which the rotation direction RM of the permanent magnet rotor 4 and the traveling direction of the conveyor belt 10 are relatively the same. In FIG. 4, the conveying force FB is the same as the traveling direction RB of the conveyor belt 10.
And the repulsive force F explained from the electromagnetic induction of the permanent magnet rotor 4
Since the resultant FT with M acts, the conductive non-magnetic metal piece 1
5 flies forward of the permanent magnet rotor 4. Therefore, conventionally, the sorting accuracy is improved by causing the conductive non-magnetic metal piece 15 to fly as far as possible in front of the permanent magnet rotor 4.

【0025】図5に本発明の状態、すなわち永久磁石回
転子4の回転方向RMとコンベアベルト10の進行方向
と相対的に逆方向である状態を示す。なお図5では、第
一の磁石を省略してある。図5の場合も図4と同様に、
コンベアベルト10の進行方向RBと同方向の搬送力F
Bと、永久磁石回転子4の電磁誘導から説明される斥力
FMとの合力FTが作用するが、斥力FMは搬送力FB
とは逆向きになり、上向きの合力FTが発生するため、
導電性非磁性金属片15は永久磁石回転子4の鉛直上方
方向に浮上する。
FIG. 5 shows a state of the present invention, that is, a state in which the rotation direction RM of the permanent magnet rotor 4 is relatively opposite to the traveling direction of the conveyor belt 10. In FIG. 5, the first magnet is omitted. In the case of FIG. 5, similarly to FIG.
Conveying force F in the same direction as the traveling direction RB of the conveyor belt 10
B and a repulsive force FM, which is explained by the electromagnetic induction of the permanent magnet rotor 4, acts on the repulsive force FM.
And the upward resultant force FT occurs,
The conductive non-magnetic metal piece 15 floats vertically above the permanent magnet rotor 4.

【0026】上記により、導電性非磁性金属片15が永
久磁石回転子4の鉛直上方方向に浮上する距離は、永久
磁石回転子4の回転方向がコンベアベルト10の進行方
向と相対的に逆方向、すなわち図5の状態の方が従来例
の図4の状態よりも大きいことが判る。本発明はコンベ
アベルトの鉛直上方方向に磁気浮上した導電性非磁性金
属片を除去する方式を採用しているため、図5の方式が
より適していることは容易に理解できる。
As described above, the distance in which the conductive non-magnetic metal piece 15 floats vertically above the permanent magnet rotor 4 depends on the rotation direction of the permanent magnet rotor 4 being relatively opposite to the traveling direction of the conveyor belt 10. That is, it can be seen that the state of FIG. 5 is larger than the state of FIG. Since the present invention employs a method of removing the conductive non-magnetic metal pieces magnetically levitated vertically above the conveyor belt, it can be easily understood that the method of FIG. 5 is more suitable.

【0027】図7に他の実施例の永久磁石回転子4の1
/4断面図を示す。図7において、円筒磁性部材3の断
面形状を略歯車状とし、円筒磁性部材3の凹部の外周面
上に第一の磁石16、16´を配置し、円筒磁性部材3
の凸部の外周面上に第二の磁石17、17´を配置す
る。第一の磁石16、16´および第二の磁石17、1
7´は、磁化方向が前述の実施例と同様になるように配
置する。
FIG. 7 shows one of the permanent magnet rotors 4 of another embodiment.
FIG. In FIG. 7, the cross-sectional shape of the cylindrical magnetic member 3 is substantially gear-shaped, and first magnets 16 and 16 ′ are arranged on the outer peripheral surface of the concave portion of the cylindrical magnetic member 3.
The second magnets 17 and 17 ′ are arranged on the outer peripheral surface of the convex portion. The first magnet 16, 16 'and the second magnet 17, 1
7 'is arranged such that the magnetization direction is the same as in the above-described embodiment.

【0028】図7に示す構成を採用することにより、第
二の磁石17、17´は略歯車状の円筒磁性部材3の凸
部にて磁気回路を構成する(外部磁界を発生する)た
め、有効磁路長が大きくなり、磁石動作点が高くなる。
さらに第一の磁石16、16´の反発力との相互作用に
より、高効率の磁石ドラムを得ることができる。
By adopting the configuration shown in FIG. 7, the second magnets 17 and 17 'form a magnetic circuit (generate an external magnetic field) with the convex portion of the substantially gear-shaped cylindrical magnetic member 3. The effective magnetic path length increases, and the magnet operating point increases.
Further, a highly efficient magnet drum can be obtained by interaction with the repulsive force of the first magnets 16, 16 '.

【0029】図7は第一の磁石16、16´の等角度間
隔を30°とした場合を示し、その場合のドラム1の外
表面の法線方向の磁束密度分布を図8に示す。図8にお
いて縦軸は磁束密度B、横軸はX軸から反時計方向の角
度θを示す。角度θが15°以上になると周期的に同様
な磁束密度曲線を描くため、角度θは0°〜15°の範
囲で示す。
FIG. 7 shows a case where the equiangular interval between the first magnets 16 and 16 'is 30 °, and FIG. 8 shows the magnetic flux density distribution in the normal direction of the outer surface of the drum 1 in that case. 8, the vertical axis indicates the magnetic flux density B, and the horizontal axis indicates the counterclockwise angle θ from the X axis. When the angle θ becomes 15 ° or more, a similar magnetic flux density curve is periodically drawn. Therefore, the angle θ is shown in the range of 0 ° to 15 °.

【0030】磁束密度について従来例(図13)と比較
すると、従来例では磁束密度Bの最大値(絶対値)は3
600Gであるのに対し、本実施例(図8)では580
0Gと約1.6倍の数値となり、ドラム1の外表面の磁
束密度が大幅に向上していることが明らかである。ま
た、非磁性金属片が受ける遠心方向の斥力ベクトルHの
大きさは約2.5倍となるため、導電性非磁性金属片が
小口径になっても、さらにより確実な選別回収が可能と
なる。
When comparing the magnetic flux density with the conventional example (FIG. 13), the maximum value (absolute value) of the magnetic flux density B is 3 in the conventional example.
In contrast to 600 G, this embodiment (FIG. 8) has 580 G.
0G, which is about 1.6 times the numerical value, and it is clear that the magnetic flux density on the outer surface of the drum 1 is greatly improved. In addition, since the magnitude of the repulsion vector H in the centrifugal direction received by the non-magnetic metal piece is about 2.5 times, even if the conductive non-magnetic metal piece has a small diameter, it is possible to more reliably sort and recover. Become.

【0031】図9に組立性を考慮した永久磁石回転子4
の構造を示す。なお、従来例と同一部分については同一
の参照符号を付し、その詳細な説明は省略する。図9に
おける永久磁石回転子4は、第一の磁石16、16´を
接着固定した非磁性板21と第二の磁石17、17´を
接着固定した磁性板22を、それぞれボルト23により
円筒磁性部材3に固定した構造を採用している。すなわ
ち、接着固定と機械的固定を併用した構成である。上記
の構成を採用することにより、磁力による反発力があっ
ても機械的に強制固定が可能なため組立性が向上し、作
業時間の短縮等によるコスト低減が実現できる。
FIG. 9 shows the permanent magnet rotor 4 in consideration of the assembling property.
The structure of is shown. The same parts as those in the conventional example are denoted by the same reference numerals, and detailed description thereof will be omitted. The permanent magnet rotor 4 shown in FIG. 9 is a cylindrical magnet having a non-magnetic plate 21 with the first magnets 16 and 16 ′ bonded and fixed and a magnetic plate 22 with the second magnets 17 and 17 ′ bonded and fixed by bolts 23. The structure fixed to the member 3 is adopted. That is, the configuration is such that both the adhesive fixing and the mechanical fixing are used. By employing the above configuration, even if there is a repulsive force due to a magnetic force, it is possible to mechanically forcibly fix it, so that the assemblability is improved and the cost can be reduced by shortening the working time and the like.

【0032】図1に示す本発明に係る装置と、図10に
示す従来の装置をそれぞれ製作し、導電性非磁性金属片
の選別回収効率を比較した結果について以下に記述す
る。図1に示す本発明に係る装置の、各部の主要寸法、
材質および仕様は以下の通りである。 ドラム1:φ200×300mm、FRP 永久磁石回転子4:φ190×250mm、極数16 Nd−Fe−B系希土類磁石(日立金属製HS−40A
H) 回転数2500rpm 駆動ローラ9−受動ローラ11間距離:1000mm 駆動ローラ9−ドラム1間距離:600mm コンベアベルト10の有効幅:240mm コンベアベルト10の表面移動速度:51m/min また従来の装置は、受動ローラ11および補助プーリ1
2を取外した以外は、本発明に係る装置と同様の構成で
ある。
The apparatus according to the present invention shown in FIG. 1 and the conventional apparatus shown in FIG. 10 were manufactured respectively, and the results of comparing the sorting and collecting efficiency of the conductive non-magnetic metal pieces are described below. The main dimensions of each part of the device according to the invention shown in FIG.
The materials and specifications are as follows. Drum 1: φ200 × 300 mm, FRP permanent magnet rotor 4: φ190 × 250 mm, number of poles 16 Nd-Fe-B based rare earth magnet (Hitachi Metals HS-40A)
H) Number of revolutions 2500 rpm Distance between driving roller 9 and passive roller 11: 1000 mm Distance between driving roller 9 and drum 1: 600 mm Effective width of conveyor belt 10: 240 mm Surface moving speed of conveyor belt 10: 51 m / min , Passive roller 11 and auxiliary pulley 1
The configuration is the same as that of the device according to the present invention, except that 2 is removed.

【0033】比較試験に供した処理物は、概略形状φ5
×10mmの樹脂ペレット5000cm3に、φ10×0.
5mmのアルミ片100枚を混入したものとし、コンベア
ベルト10への供給は振動フィーダを用いて、繰返し試
験を行なった。比較試験結果を表1に示す。
The processed material subjected to the comparative test has a rough shape of φ5.
5,000 cm 3 of resin pellets of 10 mm × 10 mm, φ10 × 0.
100 pieces of 5 mm aluminum pieces were mixed, and the supply to the conveyor belt 10 was repeated using a vibration feeder. Table 1 shows the results of the comparative test.

【0034】[0034]

【表1】 [Table 1]

【0035】表1より平均回収率を比較すると、従来の
装置が40.8%であるのに対し、本発明に係る装置は
73.0%と高い値を示している。従って、小口径の導
電性非磁性金属片の選別回収は、従来のものに比べて本
発明に係る装置の方が格段に優れていることが明らかで
ある。
Comparing the average recoveries from Table 1, the conventional apparatus shows 40.8%, whereas the apparatus according to the present invention shows a high value of 73.0%. Therefore, it is clear that the apparatus according to the present invention is much superior to the conventional apparatus for sorting and recovering small-diameter conductive non-magnetic metal pieces.

【0036】[0036]

【発明の効果】本発明は上記のような構成および作用を
有するので、従来公知の回転ドラム型非磁性金属選別回
収装置における問題点を解決し、特に処理物中に混在す
る小口径の導電性非磁性金属片を精度良く確実に選別回
収することができる。
Since the present invention has the above-described structure and operation, it solves the problems of the conventionally known rotary drum type non-magnetic metal sorting / recovering apparatus, and in particular, the small-diameter conductive material mixed in the processed material. Non-magnetic metal pieces can be sorted and recovered accurately and reliably.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る選別回収装置の概略断
面図である。
FIG. 1 is a schematic sectional view of a sorting and collecting apparatus according to one embodiment of the present invention.

【図2】本発明の一実施例に係る選別回収装置の永久磁
石回転子の1/4断面を示す図である。
FIG. 2 is a view showing a quarter section of a permanent magnet rotor of the sorting and collecting apparatus according to one embodiment of the present invention.

【図3】図2の永久磁石回転子を採用した選別回収装置
における磁束密度分布である。
FIG. 3 is a magnetic flux density distribution in a sorting and collecting apparatus employing the permanent magnet rotor of FIG.

【図4】従来の選別回収装置の導電性非磁性金属片に作
用する力を説明するための図である。
FIG. 4 is a view for explaining a force acting on a conductive non-magnetic metal piece of a conventional sorting and collecting apparatus.

【図5】本発明の一実施例に係る選別回収装置の導電性
非磁性金属片に作用する力を説明するための図である。
FIG. 5 is a diagram for explaining a force acting on a conductive non-magnetic metal piece of the sorting and collecting apparatus according to one embodiment of the present invention.

【図6】本発明の一実施例に係る分離除去手段を示す図
である。
FIG. 6 is a view showing a separating and removing unit according to one embodiment of the present invention.

【図7】本発明の他の実施例に係る選別回収装置の永久
磁石回転子の1/4断面を示す図である。
FIG. 7 is a view showing a quarter section of a permanent magnet rotor of a sorting and collecting apparatus according to another embodiment of the present invention.

【図8】図7の永久磁石回転子を採用した選別回収装置
における磁束密度分布である。
FIG. 8 is a magnetic flux density distribution in a sorting and collecting apparatus employing the permanent magnet rotor of FIG. 7;

【図9】本発明の他の実施例に係る選別回収装置の永久
磁石回転子の1/4断面を示す図である。
FIG. 9 is a view showing a quarter section of a permanent magnet rotor of a sorting and collecting apparatus according to another embodiment of the present invention.

【図10】従来の選別回収装置の概略断面図である。FIG. 10 is a schematic sectional view of a conventional sorting and collecting apparatus.

【図11】図10の要部拡大図である。FIG. 11 is an enlarged view of a main part of FIG. 10;

【図12】従来の選別回収装置の永久磁石回転子の1/
4断面を示す図である。
FIG. 12 shows 1/1 of the permanent magnet rotor of the conventional sorting and collecting device.
It is a figure showing four sections.

【図13】従来の選別回収装置における磁束密度分布で
ある。
FIG. 13 is a magnetic flux density distribution in a conventional sorting and collecting apparatus.

【符号の説明】[Explanation of symbols]

1…ドラム、2、2´…磁石、3…円筒磁性部材、4…
永久磁石回転子、5、8…Vベルト、6、7…モータ、
9…駆動ローラ、10…コンベアベルト、11…受動ロ
ーラ、12…補助プーリ、13…ホッパ、14…非金属
片、15…導電性非磁性金属片、16、16´…第一の
磁石、17、17´…第二の磁石 18、19…回収容器、20…空気噴射装置 21…非磁性板、22…磁性板、23…ボルト
DESCRIPTION OF SYMBOLS 1 ... drum, 2 '2 ... magnet, 3 ... cylindrical magnetic member, 4 ...
Permanent magnet rotor, 5,8 ... V belt, 6,7 ... motor,
9: drive roller, 10: conveyor belt, 11: passive roller, 12: auxiliary pulley, 13: hopper, 14: non-metallic piece, 15: conductive non-magnetic metal piece, 16, 16 ': first magnet, 17 , 17 ': second magnet 18, 19: collection container, 20: air injection device 21: non-magnetic plate, 22: magnetic plate, 23: bolt

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 駆動ローラと受動ローラおよび補助プー
リに巻装された無端状のコンベアベルトと、前記コンベ
アベルトの内周面に接触して設けられた円筒状非磁性ド
ラムと、前記ドラム内に回転自在に配置され、前記ドラ
ムの内周面に近接して複数個の永久磁石が円筒磁性部材
の円周方向に沿って固設された円筒状の永久磁石回転子
とを有する回転ドラム型非磁性金属選別回収装置におい
て、 前記永久磁石は、磁化方向が前記ドラムの接線方向と略
同一であり間隙をおいて配置された第一の磁石と、前記
第一の磁石間の各間隙に配置され磁化方向が前記ドラム
の法線方向と略同一の第二の磁石とで構成され、 前記第一の磁石の隣接する対向面は同極とし、かつ前記
極間にある第二の磁石は前記ドラム側が前記同極性の磁
極と同極となるように配置され、 前記永久磁石回転子は前記コンベアベルトの進行方向と
逆方向に回転されることを特徴とする回転ドラム型非磁
性金属選別回収装置。
An endless conveyor belt wound around a driving roller, a passive roller and an auxiliary pulley; a cylindrical non-magnetic drum provided in contact with an inner peripheral surface of the conveyor belt; A cylindrical permanent magnet rotor, which is rotatably disposed and has a plurality of permanent magnets fixed along the circumferential direction of the cylindrical magnetic member in proximity to the inner peripheral surface of the drum. In the magnetic metal sorting and collecting apparatus, the permanent magnets are arranged in a first magnet having a magnetization direction substantially the same as a tangential direction of the drum and arranged with a gap therebetween, and in each gap between the first magnets. The second magnet has a magnetization direction substantially the same as the normal direction of the drum, and the opposing surface of the first magnet has the same polarity, and the second magnet between the poles is the drum. Side is the same polarity as the same polarity magnetic pole Arranged, the permanent magnet rotor rotating drum type non-magnetic metal sorting recovery apparatus characterized by being rotated in the direction opposite to the traveling direction of the conveyor belt.
【請求項2】 前記円筒磁性部材の断面形状を略歯車状
とし、前記円筒磁性部材の凹部の外周面上に前記第一の
磁石を固定配置し、かつ前記円筒磁性部材の凸部に前記
第二の磁石を固定配置したことを特徴とする請求項1記
載の回転ドラム型非磁性金属選別回収装置。
2. The cylindrical magnetic member has a substantially gear-shaped cross section, the first magnet is fixedly arranged on an outer peripheral surface of a concave portion of the cylindrical magnetic member, and the first magnet is fixed to a convex portion of the cylindrical magnetic member. 2. The rotary drum type non-magnetic metal sorting and collecting apparatus according to claim 1, wherein the two magnets are fixedly arranged.
【請求項3】 前記第一の磁石の内周側磁極面に非磁性
板を接着固定し、かつ前記第二の磁石の内周側磁極面に
磁性板を接着固定して、両磁石部材を前記円筒磁性部材
に機械的あるいは接着剤を併用して固定することを特徴
とする請求項1または2記載の回転ドラム型非磁性金属
選別回収装置。
3. A non-magnetic plate is bonded and fixed to the inner magnetic pole surface of the first magnet, and a magnetic plate is bonded and fixed to the inner magnetic pole surface of the second magnet, so that the two magnet members are connected to each other. 3. The rotary drum type non-magnetic metal sorting and collecting apparatus according to claim 1, wherein the cylindrical magnetic member is fixed to the cylindrical magnetic member using a mechanical or adhesive agent.
【請求項4】 前記コンベアベルトの側方に、磁気浮上
させた導電性非磁性金属を気体噴射によって分離除去す
る除去手段を有することを特徴とする請求項1、2また
は3のいずれかに記載の回転ドラム型非磁性金属選別回
収装置。
4. The apparatus according to claim 1, further comprising a removing means for separating and removing the magnetically levitated conductive non-magnetic metal by gas injection on a side of the conveyor belt. Rotary drum type non-magnetic metal sorting and recovery equipment.
JP17756096A 1996-06-18 1996-06-18 Rotating drum type nonmagnetic metal sorting and collecting device Expired - Fee Related JP4057076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17756096A JP4057076B2 (en) 1996-06-18 1996-06-18 Rotating drum type nonmagnetic metal sorting and collecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17756096A JP4057076B2 (en) 1996-06-18 1996-06-18 Rotating drum type nonmagnetic metal sorting and collecting device

Publications (2)

Publication Number Publication Date
JPH10379A true JPH10379A (en) 1998-01-06
JP4057076B2 JP4057076B2 (en) 2008-03-05

Family

ID=16033105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17756096A Expired - Fee Related JP4057076B2 (en) 1996-06-18 1996-06-18 Rotating drum type nonmagnetic metal sorting and collecting device

Country Status (1)

Country Link
JP (1) JP4057076B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005199143A (en) * 2004-01-14 2005-07-28 Japan Superconductor Technology Inc Classification apparatus
CN114472294A (en) * 2021-04-21 2022-05-13 钟远芳 Flushing and drying equipment for tooth gap debris of precision gear of differential

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0960781A3 (en) * 1993-04-30 2000-05-24 Shintom Co., Ltd Car-mounted sound device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005199143A (en) * 2004-01-14 2005-07-28 Japan Superconductor Technology Inc Classification apparatus
CN114472294A (en) * 2021-04-21 2022-05-13 钟远芳 Flushing and drying equipment for tooth gap debris of precision gear of differential

Also Published As

Publication number Publication date
JP4057076B2 (en) 2008-03-05

Similar Documents

Publication Publication Date Title
JPH11347442A (en) Rotary drum type nonmagnetic metal sorting recovery device
US5207330A (en) Magnetic pulley
JP4057076B2 (en) Rotating drum type nonmagnetic metal sorting and collecting device
US10427167B2 (en) Device and method for separating weakly magnetic particles
JP4057077B2 (en) Rotating drum type nonmagnetic metal sorting and collecting device
KR102298216B1 (en) Nonferrous metal screening system using eddy current.
US8627961B2 (en) Eddy current separator
JP2966263B2 (en) Rotary drum type non-magnetic metal sorting and recovery equipment
JP4057073B2 (en) Rotating drum type nonmagnetic metal sorting and collecting device
JP4012584B2 (en) Rotating drum type nonmagnetic metal sorting and collecting device
JP3252269B2 (en) Rotary drum type non-magnetic metal sorting and recovery equipment
JP3227728B2 (en) Non-magnetic metal separator
JP3015955B1 (en) Non-ferrous metal sorting machine
RU68363U1 (en) MAGNETIC TWO-CASED DRUM SEPARATOR FOR ENRICHMENT OF DRY BULK WEAK MAGNETIC ORES
JP3230268B2 (en) Non-magnetic metal separation belt conveyor device
JP3226948B2 (en) Aluminum / copper separation equipment
JP2001121028A (en) Magnetism generating drum and magnetic sorter using the same
JPH044054A (en) Nonmagnetic metal separating belt conveyor
CN110898990B (en) Sorting cylinder of high-speed rotating magnetic roller eddy current sorting machine
KR0179027B1 (en) Belt conveyor for non-magnetic metals
KR960006806Y1 (en) Waste separation apparatus
JP2002172347A (en) Magnetic separator
JP3230253B2 (en) Non-magnetic metal separation belt conveyor
KR100208862B1 (en) Nonmagnetic metal separating belt conveyor machine
JPS6324744B2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees