JPH1036961A - Film formation by sputtering method - Google Patents

Film formation by sputtering method

Info

Publication number
JPH1036961A
JPH1036961A JP19243396A JP19243396A JPH1036961A JP H1036961 A JPH1036961 A JP H1036961A JP 19243396 A JP19243396 A JP 19243396A JP 19243396 A JP19243396 A JP 19243396A JP H1036961 A JPH1036961 A JP H1036961A
Authority
JP
Japan
Prior art keywords
sputtering
gaseous
reaction vessel
atmosphere
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19243396A
Other languages
Japanese (ja)
Inventor
Yuji Takatsuka
裕二 高塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP19243396A priority Critical patent/JPH1036961A/en
Publication of JPH1036961A publication Critical patent/JPH1036961A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To suppress the generation of foreign matter and nodules on a target material by specifying the partial pressures of gaseous Kr and gaseous Xe or the total of the partial pressures in an atmosphere within a reaction vessel. SOLUTION: In an atmosphere within a reaction vessel in which thin coating film is formed on the surface of a substrate by sputtering, the partial pressures of gaseous Kr or gaseous Xe or the total partial pressure of the gaseous mixture therebetween is regulated to >=70% of the total pressure. In this way, the quality of the thin coating film to be obtd. and the producibility of sputtering can be improved only by changing the atmosphere in the reaction vessel with the conventional sputtering device as it is. For example, in the atmosphere within the reaction vessel, the total pressure is regulated to about 0.4Pa, the ratio of the partial pressures of gaseous Kr and gaseous Xe is regulated to >=70% of the total pressure, that of oxygen is regulated to 0.008Pa, and the balance gaseous Ar.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、スパッタリング
法による成膜方法に関し、より詳しくは、スパッタリン
グを行う反応容器内雰囲気に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a film forming method using a sputtering method, and more particularly, to an atmosphere in a reaction vessel for performing sputtering.

【0002】[0002]

【従来の技術】スパッタリングによる成膜法では、金
属、合金、硫化物、酸化物または窒化物等のターゲット
材を陰極とし、100Paから0.1Pa程度に減圧し
た反応容器内で放電を起こすことによりスパッタリング
して、陽極である基板の表面上に薄膜を成長させる。
2. Description of the Related Art In a film forming method by sputtering, a target material such as a metal, an alloy, a sulfide, an oxide or a nitride is used as a cathode, and discharge is caused in a reaction vessel reduced in pressure from 100 Pa to about 0.1 Pa. Sputtering grows a thin film on the surface of the substrate, which is the anode.

【0003】前記反応容器内に導入するプロセスガスと
して、アルゴン(Ar)、またはアルゴンと酸素、窒
素、水蒸気、過酸化水素水等の反応性ガスとの混合ガス
が一般に用いられている。
As a process gas introduced into the reaction vessel, argon (Ar) or a mixed gas of argon and a reactive gas such as oxygen, nitrogen, water vapor, and hydrogen peroxide is generally used.

【0004】このスパッタリング法は、高品質の薄膜を
得る方法として工業的に広く用いられている。例えば、
磁気記録媒体ではハードディスクのCo/Cr、カーボ
ン膜、CoCrTa系膜、光磁気ディスクの窒化シリコ
ン(SiNX )膜やTbFeCo系膜、半導体のWSi
系膜、MoSi系膜、コンパクトディスクのAl膜、透
明導電膜では液晶、熱線反射ガラス等のインジウム錫酸
化物(ITO)膜等である。
[0004] The sputtering method is widely used industrially as a method for obtaining a high quality thin film. For example,
Magnetic recording media include Co / Cr and carbon films of hard disks, CoCrTa-based films, silicon nitride (SiN x ) and TbFeCo-based films of magneto-optical disks, and WSi of semiconductors.
System film, MoSi system film, Al film of a compact disk, and a transparent conductive film such as a liquid crystal and an indium tin oxide (ITO) film such as a heat ray reflective glass.

【0005】[0005]

【発明が解決しようとする課題】しかし、アルゴンガス
を主体とした反応容器内雰囲気では、カーボン膜、WS
i、MoSi、ITO等のスパッタリングを続けていく
と、ターゲット材の表面に異物が発生する。この異物
は、ターゲット材や反応容器内ガスを原料とする生成物
である。具体的には、スパッタリングの初期に円柱形、
円錐形、板状等の微細な異物が発生し、これがスパッタ
リング時間を重ねるにつれ成長し、「ノジュール」と呼
ばれる目視可能な大きさの異物にまで成長する。そし
て、この異物は、成膜速度の低下、異常放電や膜欠陥発
生の原因となり、ひいては薄膜の品質低下や生産性低下
の原因となる。スパッタリング装置の設計変更によって
この異物の発生を防止することが試みられているが、設
計変更によらずに、従来のスパッタリング装置において
も改善策を講じる必要があった。
However, in an atmosphere in a reaction vessel mainly composed of argon gas, carbon film, WS
As the sputtering of i, MoSi, ITO or the like is continued, foreign substances are generated on the surface of the target material. The foreign matter is a product using the target material and the gas in the reaction vessel as a raw material. Specifically, a cylindrical shape at the beginning of sputtering,
Fine foreign matters such as cones and plates are generated, which grow as the sputtering time is increased, and grow into visible foreign matters called "nodules". The foreign matter causes a reduction in the film forming speed, abnormal discharge and occurrence of a film defect, and also causes a deterioration in the quality and productivity of the thin film. Attempts have been made to prevent the generation of such foreign matter by changing the design of the sputtering apparatus, but it was necessary to take measures to improve the conventional sputtering apparatus regardless of the design change.

【0006】そこで、本発明は、従来のスパッタリング
装置において、反応容器内の雰囲気を変えるという簡便
な手段によって、ターゲット材上の異物、ノジュールの
発生を抑制し、得られる薄膜の品質を向上する方法を提
供することを目的とする。
Accordingly, the present invention provides a method for suppressing the generation of foreign matter and nodules on a target material and improving the quality of a thin film obtained by a simple means of changing the atmosphere in a reaction vessel in a conventional sputtering apparatus. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】上記目的を解決するため
の本発明のスパッタリング法による成膜方法は、金属、
合金、酸化物または窒化物をターゲット材に用い、反応
容器内で該ターゲット材を陰極とし、基板を陽極とし、
該ターゲット材をスパッタリングして該基板の表面上に
該ターゲット材の薄膜を成膜するに際し、前記反応容器
内の雰囲気において、Kr元素気体またはXe元素気体
の分圧、あるいはこれらの混合気体ではこれらの分圧の
総和を全圧の70%以上とする。
In order to achieve the above object, the present invention provides a method for forming a film by sputtering.
Using an alloy, oxide or nitride as a target material, the target material as a cathode in the reaction vessel, the substrate as an anode,
In sputtering the target material to form a thin film of the target material on the surface of the substrate, in an atmosphere in the reaction vessel, a partial pressure of a Kr element gas or a Xe element gas, or a mixed gas of these elements. The total sum of the partial pressures is 70% or more of the total pressure.

【0008】[0008]

【実施例】本発明者らは、異物の発生を抑制するスパッ
タリング条件を探索するために、ターゲット表面がエッ
チングされる様子を詳細に観察した。その結果、容器内
に導入されたガスがイオン化され、電界に加速されてタ
ーゲット表面に入射するイオンの分子質量が大きいほど
異物の発生が抑制されることを見いだした。
EXAMPLES The present inventors have observed in detail how a target surface is etched in order to search for sputtering conditions for suppressing generation of foreign matter. As a result, it has been found that the gas introduced into the container is ionized, accelerated by the electric field, and the generation of foreign matter is suppressed as the molecular mass of the ions incident on the target surface increases.

【0009】更に、スパッタリングにおける反応容器内
の雰囲気に、Ar元素より重い、Kr元素または/及び
Xe元素の気体を導入し、KrやXeの各分圧または合
計分圧が全圧の70%以上になるようにすることで、従
来のスパッタリング装置はそのままで、反応容器内の雰
囲気を変えるだけの簡便な手段によって、ターゲット材
上の異物、ノジュールの発生が抑制でき、得られる薄膜
の品質向上やスパッタリングの生産性を向上できること
を見出し、本発明に至った。以下実施例により本発明を
更に具体的に説明する。
Further, a gas of a Kr element and / or a Xe element, which is heavier than the Ar element, is introduced into the atmosphere in the reaction vessel during sputtering, and the partial pressure of Kr or Xe or the total partial pressure is 70% or more of the total pressure. By using the conventional sputtering apparatus as it is, it is possible to suppress the generation of foreign matter and nodules on the target material by simple means simply changing the atmosphere in the reaction vessel, and to improve the quality of the obtained thin film and The present inventors have found that the productivity of sputtering can be improved, and have reached the present invention. Hereinafter, the present invention will be described more specifically with reference to examples.

【0010】異物、ノジュールの発生 [実施例1〜5]スパッタリング装置には、徳田製作所
製スパッタリング装置CFS−8EPを用い、ターゲッ
トには直径5インチのITOターゲットを用いた。反応
容器内の雰囲気は、全圧を0.4Paとし、表1に示す
分圧のKrガス、Xeガス、および0.008Paの酸
素ガスを導入し、残りはArガスとした。スパッタリン
グ電流は0.8A、スパッタリング電圧は270Vとし
た。
Generation of foreign matter and nodules [Examples 1 to 5] A sputtering device CFS-8EP manufactured by Tokuda Seisakusho was used as a sputtering device, and an ITO target having a diameter of 5 inches was used as a target. The atmosphere in the reaction vessel was set to a total pressure of 0.4 Pa, Kr gas, Xe gas, and oxygen gas of 0.008 Pa having partial pressures shown in Table 1 were introduced, and the rest was Ar gas. The sputtering current was 0.8 A, and the sputtering voltage was 270 V.

【0011】[0011]

【表1】 [Table 1]

【0012】実施例1〜実施例5では、スパッタリング
総時間が75時間のところでターゲット材を観察したとこ
ろ、いずれも異物、ノジュールの発生はみられなかっ
た。
In Examples 1 to 5, when the target material was observed for a total sputtering time of 75 hours, no foreign matter or nodule was found in any case.

【0013】[比較例1]反応容器内の雰囲気の全圧を
0.4Paとし、Ar分圧98%、酸素分圧2%とした
他は、実施例1〜5と同様の条件でスパッタリングし、
スパッタリング総時間が75時間のところでターゲット
材を観察したところ、ターゲット上に多くの異物、ノジ
ュールが観察された。
Comparative Example 1 Sputtering was performed under the same conditions as in Examples 1 to 5, except that the total pressure of the atmosphere in the reaction vessel was 0.4 Pa, the partial pressure of Ar was 98%, and the partial pressure of oxygen was 2%. ,
When the target material was observed at a total sputtering time of 75 hours, many foreign substances and nodules were observed on the target.

【0014】成膜およびその評価 実施例1〜5と比較例1の条件において、5分間のスパ
ッタリングにより、10cm角のガラス板に、成膜温度
200℃で1000オングストロームのITO膜を10
枚成膜して、該ITO膜の性能を調べた。結果を表2に
示す。ピンホール数は、目視でピンホールがあったガラ
ス板の枚数を示した。電気抵抗は10枚の平均値であ
る。ピンホール数、電気抵抗において、実施例1〜5が
比較例1より優れていることがわかる。
Film formation and evaluation Under the conditions of Examples 1 to 5 and Comparative example 1, a 1000 Å ITO film was formed on a 10 cm square glass plate at a film formation temperature of 200 ° C. by sputtering for 5 minutes.
Then, the performance of the ITO film was examined. Table 2 shows the results. The number of pinholes indicates the number of glass plates having pinholes visually. The electric resistance is an average value of 10 sheets. It can be seen that Examples 1 to 5 are superior to Comparative Example 1 in the number of pinholes and the electrical resistance.

【0015】[0015]

【表2】 [Table 2]

【0016】[実施例6〜10]ZnOにGa23
5.7Wt%混合して焼結した直径5インチのターゲッ
トを表3の雰囲気条件でスパッタリング電流0.7Aで
75時間スパッタリングした後、10cm角のガラス板
に、5分間のスパッタリングにより、成膜温度200℃
で1000オングストロームのZnO・Ga膜を10枚
成膜して、該ZnO・GaO膜の性能を調べた。結果を
表4に示す。ピンホール数は目視で、ピンホールがあっ
たガラス板の枚数を示した。電気抵抗は10枚の平均値
である。
[Examples 6 to 10] A target having a diameter of 5 inches, which was obtained by mixing 5.7 Wt% of Ga 2 O 3 with ZnO and sintered, was sputtered at a sputtering current of 0.7 A for 75 hours under the atmosphere conditions shown in Table 3. Sputtering on a 10 cm square glass plate for 5 minutes, film formation temperature 200 ° C
Then, ten ZnO.Ga films having a thickness of 1000 Å were formed, and the performance of the ZnO.GaO film was examined. Table 4 shows the results. The number of pinholes was visually indicated by the number of glass plates having pinholes. The electric resistance is an average value of 10 sheets.

【0017】[比較例2]Ar100%とした以外は、
実施例6〜10と同様の条件で、スパッタリングで成膜
を行い、その性能を調べた結果を表4に示す。
[Comparative Example 2] Except that Ar was set to 100%,
Table 4 shows the results obtained by performing film formation by sputtering under the same conditions as in Examples 6 to 10, and examining the performance.

【0018】[0018]

【表3】 [Table 3]

【0019】[0019]

【表4】 [Table 4]

【0020】表4から、比較例2に対して実施例6〜1
0で、比抵抗とピンホール数が改善されていることが分
かる。
From Table 4, it can be seen that Examples 6 to 1 correspond to Comparative Example 2.
0 indicates that the specific resistance and the number of pinholes are improved.

【0021】[実施例11〜15、比較例3]実施例6
〜10と比較例2のガス組成とスパッタリング条件で、
WSi密度99%ターゲットとMoSi密度98.5%
のスパッタリングを室温にて行った。75時間のスパッ
タリング後に、10枚の6インチ丸のSi基板に5分間
のスパッタリングで成膜してピンホール数を調査した。
Si基板上のピンホールはレーザ光を用いたピンホール
測定装置で1μm以上のピンホールを測定した。結果を
表5に示す。
[Examples 11 to 15, Comparative Example 3] Example 6
With the gas composition and sputtering conditions of Comparative Examples 2 and 10,
WSi density 99% target and MoSi density 98.5%
Was performed at room temperature. After the sputtering for 75 hours, a film was formed on 10 6-inch round Si substrates by sputtering for 5 minutes, and the number of pinholes was examined.
For pinholes on the Si substrate, pinholes of 1 μm or more were measured with a pinhole measuring device using laser light. Table 5 shows the results.

【0022】[0022]

【表5】 [Table 5]

【0023】表5からピンホール数が実施例11〜15
では比較例3に比べて激減していることが分かる。従っ
て、Kr元素気体やXe元素気体の導入については、I
TOに限らず、MoSi、WSiやTi等のターゲット
材でも異物の発生の抑制効果があった。
From Table 5, it is found that the number of pinholes is in Examples 11 to 15.
It can be seen that the value is greatly reduced as compared with Comparative Example 3. Therefore, regarding the introduction of the Kr element gas or the Xe element gas,
Not only TO but also a target material such as MoSi, WSi or Ti has an effect of suppressing generation of foreign matter.

【0024】[0024]

【発明の効果】本発明は以上のように構成されているの
で、従来からのスパッタリング装置の反応容器内の雰囲
気を変えるという簡便な手段によって、ターゲット材上
の異物、ノジュールの発生を抑制し、得られる薄膜の品
質および生産性を向上することができた。
Since the present invention is configured as described above, the generation of foreign matter and nodules on the target material can be suppressed by a simple means of changing the atmosphere in the reaction vessel of the conventional sputtering apparatus. The quality and productivity of the obtained thin film could be improved.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 反応容器内で、金属、合金、酸化物また
は窒化物からなるターゲット材を陰極とし、基板を陽極
として、該ターゲット材のスパッタリングにより該基板
の表面上に該ターゲット材の薄膜を成膜する方法におい
て、前記反応容器内の雰囲気にKr元素気体、Xe元素
気体またはこれらの混合気体を導入し、Kr元素気体ま
たはXe元素気体の分圧またはこれらの分圧の総和を全
ガス圧の70%以上とすることを特徴とするスパッタリ
ング法による成膜方法。
In a reaction vessel, a target material made of a metal, an alloy, an oxide or a nitride is used as a cathode and a substrate is used as an anode, and a thin film of the target material is formed on the surface of the substrate by sputtering the target material. In the method of forming a film, a Kr element gas, a Xe element gas, or a mixed gas thereof is introduced into the atmosphere in the reaction vessel, and a partial pressure of the Kr element gas or the Xe element gas or a total of these partial pressures is determined as a total gas pressure. A film formation method by a sputtering method characterized by being 70% or more of the above.
JP19243396A 1996-07-22 1996-07-22 Film formation by sputtering method Pending JPH1036961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19243396A JPH1036961A (en) 1996-07-22 1996-07-22 Film formation by sputtering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19243396A JPH1036961A (en) 1996-07-22 1996-07-22 Film formation by sputtering method

Publications (1)

Publication Number Publication Date
JPH1036961A true JPH1036961A (en) 1998-02-10

Family

ID=16291234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19243396A Pending JPH1036961A (en) 1996-07-22 1996-07-22 Film formation by sputtering method

Country Status (1)

Country Link
JP (1) JPH1036961A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3303984A4 (en) * 2015-05-27 2019-02-13 Saint-Gobain Performance Plastics Corporation Conductive thin film composite
JP2022067102A (en) * 2020-04-20 2022-05-02 日東電工株式会社 Method for producing light-transmitting electrically conductive layer laminated body
JP2022075677A (en) * 2020-04-20 2022-05-18 日東電工株式会社 Production method of optically transparent conductive layer and optically transparent conductive film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3303984A4 (en) * 2015-05-27 2019-02-13 Saint-Gobain Performance Plastics Corporation Conductive thin film composite
US11047037B2 (en) 2015-05-27 2021-06-29 Saint-Gobain Performance Plastics Corporation Conductive thin film composite
JP2022067102A (en) * 2020-04-20 2022-05-02 日東電工株式会社 Method for producing light-transmitting electrically conductive layer laminated body
JP2022075677A (en) * 2020-04-20 2022-05-18 日東電工株式会社 Production method of optically transparent conductive layer and optically transparent conductive film

Similar Documents

Publication Publication Date Title
Lemperiere et al. Influence of the nitrogen partial pressure on the properties of dc-sputtered titanium and titanium nitride films
JP2003297150A (en) Transparent electrically conductive laminate and manufacturing method therefor
US20060005745A1 (en) Method of producing a titanium-suboxide-based coating material, correspondingly produced coating material and sputter target provided there-with
KR910009840B1 (en) Corrosion-resistant and heat-resistant amorphous aluminum -based alloy thin film and process for producing the same
JPWO2004065656A1 (en) ITO thin film, film forming method thereof, transparent conductive film, and touch panel
JPWO2003106732A1 (en) Article coated with titanium compound film, method for producing the article, and sputtering target used for coating the film
JPH02232358A (en) Production of transparent conductive film and apparatus for producing such film
JPH07224379A (en) Sputtering method and device therefor
JPH1036961A (en) Film formation by sputtering method
JPH11302017A (en) Transparent electrically conductive film
JP3782355B2 (en) ITO sputtering target
Golan et al. Novel sputtering method for Pd–Al2O3 UV transparent conductive coatings
JP3973838B2 (en) Method using hydrogen and oxygen gas in sputter deposition of aluminum-containing film and aluminum-containing film obtained thereby
JP3515966B2 (en) Method for manufacturing magneto-optical recording element
Jouan et al. Elaboration of nitride thin films by reactive sputtering
JPS6321298A (en) Production of thin film of piezoelectric zinc oxide crystal
JPH05279846A (en) Target for sputtering and formation of sputtered tion film
JP2001335917A (en) Method for producing crystalline alumina thin film at low temperature
JP2004323941A (en) Method of depositing zinc oxide film
JPS63237207A (en) Production of perpendicular magnetic recording medium
JP2007284740A (en) Method for forming zinc-oxide-based transparent conductive film
JPS58197607A (en) Method of forming transparent conductive film
JPH06299347A (en) Production of electric insulating platelike material
JP3318380B2 (en) Magneto-optical recording element and method of manufacturing the same
JP3831433B2 (en) Transparent conductive film and method for producing the same