JPH1036952A - Method for working nickel-titanium-zirconium (hafnium) shape memory alloy - Google Patents

Method for working nickel-titanium-zirconium (hafnium) shape memory alloy

Info

Publication number
JPH1036952A
JPH1036952A JP8196169A JP19616996A JPH1036952A JP H1036952 A JPH1036952 A JP H1036952A JP 8196169 A JP8196169 A JP 8196169A JP 19616996 A JP19616996 A JP 19616996A JP H1036952 A JPH1036952 A JP H1036952A
Authority
JP
Japan
Prior art keywords
working
shape memory
sheath
alloy
memory alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8196169A
Other languages
Japanese (ja)
Inventor
Koichi Morii
浩一 森井
Takasumi Shimizu
孝純 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP8196169A priority Critical patent/JPH1036952A/en
Publication of JPH1036952A publication Critical patent/JPH1036952A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/001Extruding metal; Impact extrusion to improve the material properties, e.g. lateral extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/02Preliminary treatment of metal stock without particular shaping, e.g. salvaging segregated zones, forging or pressing in the rough
    • B21J1/025Preliminary treatment of metal stock without particular shaping, e.g. salvaging segregated zones, forging or pressing in the rough affecting grain orientation

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)

Abstract

PROBLEM TO BE SOLVED: To work the subject hardly workable alloy to a stock having a desired shape such as a sheet material or a wire rod by covering a lump of a shape memory alloy having a specified compsn. with a sheath of a soft steel and repeating hot working under the conditions of a specified temp. and draft. SOLUTION: A lump of a shape memory alloy contg., by atom, 45 to 50% Ni, one or more kinds of Zr and Hf by 9 to 16%, and te balance Ti is covered with a seath made of a soft steel, hot working is executed under the conditions of 850 to 950 deg.C working starting temp., >=770 deg.C working finishing temp. and <=10% draft per time, and this is repeated for required times. The reason that the lump of the alloy is covered with the sheath is that the generation of partial oxidation cracking caused by oxidation in the case Ti and Zr are exposed to the air is prevented and cracking is prevented by utilizing compressive restraint. In the case the working starting temp. is lower than 850 deg.C or the working finishing temp. is lower than 770 deg.C, the generation of cracking in the material can not be evaded, in the case the working starting temp. is higher than 950 deg.C, the sheath is oxidized and thinned, and the draft of 10% per time is the limit in the hot working.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Ni−Ti系形状
記憶合金において逆変態開始温度(As点)を100℃
以上に高めたものを熱間加工する方法に関する。
The present invention relates to a Ni—Ti based shape memory alloy having a reverse transformation start temperature (As point) of 100 ° C.
The present invention relates to a method for hot-working the raised material.

【0002】[0002]

【従来の技術】形状記憶合金の逆変態すなわちM(マル
テンサイト)相からA(オーステナイト)相への変態
は、合金を加熱してその温度を低温側から高温側へ高め
て行くときに生じ、この逆変態が開始する温度をAs
点、終了する温度をAf点と呼んでいる。 As点およ
びAf点は、正変態(M変態)の開始および終了の温度
であるMs点およびMf点とともに、形状記憶合金の挙
動を特徴づける物性値として重要である。
2. Description of the Related Art A reverse transformation of a shape memory alloy, that is, a transformation from an M (martensite) phase to an A (austenite) phase occurs when an alloy is heated to increase its temperature from a lower temperature to a higher temperature. The temperature at which this reverse transformation starts is As
The point and the ending temperature are called Af point. The As point and the Af point are important as physical property values that characterize the behavior of the shape memory alloy, together with the Ms point and the Mf point, which are the temperatures at which the positive transformation (M transformation) starts and ends.

【0003】よく知られているように、形状記憶合金の
特徴は超弾性と形状記憶効果であるが、これまで行なわ
れて来た形状記憶合金の応用は主として超弾性を利用す
るものであって、形状記憶効果を利用した用途は、あま
り開発されていない。 形状記憶効果の利用とは、合金
をMf点以下の温度で変形しておき、これをAf点以上
の温度に加熱して変形前の形状に戻してやり、そのとき
の変位量や回復力を利用することである。
As is well known, the characteristics of shape memory alloys are superelasticity and shape memory effect, but the application of shape memory alloys performed so far mainly uses superelasticity. Applications using the shape memory effect have not been developed much. The use of the shape memory effect means that an alloy is deformed at a temperature below the Mf point, heated to a temperature above the Af point and returned to its pre-deformed shape, and the displacement and recovery force at that time are used. It is to be.

【0004】Ni−Ti二元系形状記憶合金は、Af点
が高くても60℃程度と、低い温度領域にある。 形状
記憶効果の利用例として火災のときに作動する機器類を
考えたとき、日常起り得るような100℃以下の温度で
は作動せず、異常な、つまりより高い温度ではじめて作
動することが望まれるから、使用する形状記憶合金の逆
変態が、既知の二元系合金のそれより高温で生じる材料
が要求される。
[0004] The Ni-Ti binary shape memory alloy is in a low temperature range of about 60 ° C even at a high Af point. Considering a device that operates in the event of a fire as an example of the use of the shape memory effect, it is desired that the device does not operate at a temperature of 100 ° C. or less, which can occur daily, but operates abnormally, that is, only at a higher temperature. This requires a material in which the inverse transformation of the shape memory alloy used occurs at a higher temperature than that of the known binary alloys.

【0005】この要求にこたえてNi−Ti系形状記憶
合金のAs点を高める努力がなされ、これまでに、P
d,ZrまたはHfを適量添加した三元系合金が有用で
あることがわかっている。 しかし、Pdは高価な金属
であるから、形状記憶効果を利用するバネのようにある
程度の大きさをもつ部品の材料として使用することに
は、困難がある。 第3成分がZrまたはHfならばコ
スト的に実現可能であるが、残念なことに、これら第三
成分MをAs点が100℃を超える程度まで、具体的に
は9原子%またはそれ以上添加すると、Ni−Ti−M
系三元合金の加工性が著しく低下してしまい、所望の形
状の合金素材を得ることが困難になる。 いうまでもな
く、形状記憶合金からたとえばコイルバネをつくろうと
すれば、まず合金の線材を用意する必要がある。
[0005] In response to this demand, efforts have been made to increase the As point of the Ni-Ti based shape memory alloy.
It has been found that a ternary alloy to which d, Zr or Hf is added in an appropriate amount is useful. However, since Pd is an expensive metal, it is difficult to use Pd as a material for a part having a certain size such as a spring utilizing a shape memory effect. If the third component is Zr or Hf, it can be realized cost-effectively, but unfortunately, these third components M are added to the extent that the As point exceeds 100 ° C., specifically 9 atomic% or more. Then, Ni-Ti-M
The workability of the system ternary alloy is significantly reduced, and it becomes difficult to obtain an alloy material having a desired shape. Needless to say, to make a coil spring from a shape memory alloy, for example, it is necessary to first prepare a wire rod of the alloy.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、上記
したように加工の困難なNi−Ti−Zr(Hf)系三
元形状記憶合金を加工して、板材や線材など所望の形状
をもった素材にする方法を提供することにある。
An object of the present invention is to process a Ni-Ti-Zr (Hf) -based ternary shape memory alloy, which is difficult to process as described above, to obtain a desired shape such as a plate or a wire. An object of the present invention is to provide a method for making a material having a specific quality.

【0007】[0007]

【課題を解決するための手段】本発明のNi−Ti−Z
r(Hf)系形状記憶合金の加工方法は、Ni:45〜
50原子%、ならびにZrおよびHfの1種または2種
(2種の場合は合計量):9〜16原子%を含有し、残
部が実質上Tiからなる合金組成を有する形状記憶合金
の塊を軟鋼のシースで包み、加工開始温度850〜95
0℃、加工終止温度770℃以上の温度条件で、1回の
圧下率10%以下の熱間加工を行ない、これを必要な回
数繰り返すことからなる。
The Ni-Ti-Z of the present invention
The processing method of the r (Hf) -based shape memory alloy is Ni: 45 to
A mass of a shape memory alloy containing 50 atomic% and one or two of Zr and Hf (in the case of two types, the total amount): 9 to 16 atomic%, with the balance being substantially composed of Ti; Wrap in mild steel sheath, processing start temperature 850-95
The hot working at a rolling reduction of 10% or less is performed at a temperature condition of 0 ° C. and a working end temperature of 770 ° C. or more, and this is repeated a required number of times.

【0008】[0008]

【作用】本発明において、加工の対象とする形状記憶合
金の組成を上記のように定めた理由は、つぎのとおりで
ある。
In the present invention, the reason why the composition of the shape memory alloy to be processed is determined as described above is as follows.

【0009】Ni:45〜50原子% Ni−Ti系合金において形状記憶効果を確保するため
には、Ni量が最低45原子%あることが必要である。
第三成分であるZrまたはHfは、周期律表で同じ族
にあるTiを置き換える形で添加することが、金属組織
の安定性の面から好ましく、その観点からNi量の上限
は50原子%となる。 また、Ni量が50原子%を超
えると、ZrまたはHfの添加によるAs点上昇の効果
が急激に小さくなる。
Ni: 45 to 50 atomic% In order to secure the shape memory effect in the Ni-Ti alloy, it is necessary that the Ni content is at least 45 atomic%.
It is preferable to add Zr or Hf as the third component in such a manner as to replace Ti belonging to the same group in the periodic table from the viewpoint of the stability of the metallographic structure. From that viewpoint, the upper limit of the Ni content is 50 atomic%. Become. If the amount of Ni exceeds 50 atomic%, the effect of increasing the As point by adding Zr or Hf sharply decreases.

【0010】ZrまたはHf(2種の場合は合計量
で):9〜16原子% これら元素の添加によりAs点を100℃以上に高める
ためには、少なくとも9原子%の添加が必要である。
一方、16%を超える大量の添加は、合金を極端に脆く
して、本発明の目的とする加工性の改善を妨げる。
Zr or Hf (in the case of two kinds, in total): 9 to 16 atomic% In order to raise the As point to 100 ° C. or more by adding these elements, it is necessary to add at least 9 atomic%.
On the other hand, the addition of a large amount exceeding 16% makes the alloy extremely brittle and hinders the improvement of workability aimed at by the present invention.

【0011】合金の塊を加工時にシースで包むのは、ひ
とつは、合金を構成する成分のうちTiおよびZrは活
性の高い金属であって、熱間加工温度において大気にさ
らすと酸化が進み、それに伴って部分的な酸化割れが生
じるからである。 いまひとつは、シースによる圧縮拘
束力を利用してワレを防ぐことである。 この目的にか
なう適度の強度と高い加工性を有する限り、シース材料
は任意であって、軟鋼とよばれる炭素鋼は、価格が低廉
なうえに加工しやすい点で最適のものであるから、代表
的にシース材料として挙げた。 炭素鋼に限らずステン
レス鋼でも加工が容易なものは、シース材料として当然
に使用可能であって、本願において「軟鋼」の語は、そ
れらを包含する意味に用いている。
One of the reasons for enclosing a lump of alloy in a sheath during processing is that Ti and Zr are highly active metals among the constituents of the alloy, and when exposed to the atmosphere at a hot working temperature, oxidation proceeds. This is because partial oxidative cracking occurs accordingly. Another is to prevent cracking by using the compressive restraining force of the sheath. As long as it has appropriate strength and high workability for this purpose, the sheath material is arbitrary, and carbon steel called mild steel is the most suitable because it is inexpensive and easy to process. It was mentioned as a sheath material. Not only carbon steel but also stainless steel that can be easily processed can be naturally used as a sheath material, and the term “mild steel” is used in the present application to include them.

【0012】熱間加工の温度条件を前記のように定めた
理由は、加工開始温度が850℃より低いかまたは加工
終止温度が770℃を下回ると、シースを用い圧下率を
10%以下にしても、材料のワレの発生が避けられない
からであり、加工開始温度が950℃を超えるとシース
自体が酸化されて薄くなり、ときに被加工材が露出した
りするおそれが出てくるからである。
The reason why the temperature condition of the hot working is determined as described above is that when the working start temperature is lower than 850 ° C. or the working end temperature is lower than 770 ° C., the draft is reduced to 10% or less using a sheath. This is also because the occurrence of cracks in the material is inevitable. If the processing start temperature exceeds 950 ° C., the sheath itself is oxidized and thinned, and sometimes the work material may be exposed. is there.

【0013】圧下率10%は、本発明による熱間加工の
限界である。
A reduction of 10% is the limit of the hot working according to the present invention.

【0014】[0014]

【実施例】上述したところを実施例によって説明すれ
ば、まず被加工材として表1に示す合金組成をもつ3種
のNi−Ti−Zr三元形状記憶合金を、真空誘導炉で
溶製した。 合金溶湯を直径20cmの円柱状インゴット
に鋳込み、インゴットを輪切りにして高さ5cmの円板状
のサンプルとした。
The above description will be made by way of examples. First, three kinds of Ni-Ti-Zr ternary shape memory alloys having the alloy compositions shown in Table 1 were melted in a vacuum induction furnace. . The alloy melt was cast into a cylindrical ingot having a diameter of 20 cm, and the ingot was sliced into a disk-shaped sample having a height of 5 cm.

【0015】1)各サンプルを900℃,1000℃ま
たは1050℃に加熱し、圧下率5%の据込み鍛造を行
なった。 その結果は表1に記したとおりで、例外なく
ワレが発生し、以後の加工ができなかった。
1) Each sample was heated to 900 ° C., 1000 ° C. or 1050 ° C., and was subjected to upsetting forging at a draft of 5%. The results were as shown in Table 1. Cracks occurred without exception, and further processing was not possible.

【0016】 表1 No. 合金組成(原子%) 加工開始温度 Ni Ti Zr 900℃ 1000℃ 1050℃ 1 48.5 40.5 11.0 ワレ発生 ワレ発生 ワレ発生 2 49.0 40.0 11.0 ワレ発生 ワレ発生 ワレ発生 3 49.5 39.5 11.0 ワレ発生 ワレ発生 ワレ発生 加工率がもっと低ければワレを避けることも不可能では
ないが、5%に届かない低加工率では、加工回数が増え
て生産性が低く、工業的な実施に耐えない。
Table 1 No. alloy composition (atomic%) processing start temperature Ni Ti Zr 900 ° C 1000 ° C 1050 ° C 1 48.5 40.5 11.0 Cracking Cracking Cracking 2 49.0 40.0 11.0 Cracking Cracking Cracking 3 49.5 39.5 11.0 Cracking Occurrence of cracks Occurrence of cracks It is not impossible to avoid cracks if the processing rate is lower, but at a low processing rate of less than 5%, the number of times of processing increases, productivity is low, and it cannot withstand industrial implementation.

【0017】2)厚さ5mmの軟鋼(S45C)の円筒と
板とから、一方が他方の中にちょうど入る寸法をもった
一組の有底円筒状体の缶を製作し、これをシースとして
使用し、図1AおよびBに示すように、上記の円板状サ
ンプル(1)を内缶(2)と外缶(3)で包んだ。 この
シースされたサンプルNo.1〜3を、温度900℃,1
000℃または1050℃に加熱して、圧下率8%の鍛
造を行なった。 各サンプルとも、加熱温度900℃で
はワレが生じ、1000℃および1050℃では鍛造可
能であった。 ただし、1050℃の場合、シース自体
の酸化が激しく、鍛造を繰り返すに従って除々にシース
が薄くなっていく点と、シースと内容物である被加工材
合金とが融着してしまい、鍛造後のシース除去に支障が
生じる点で、問題がある。
2) From a cylinder and a plate of mild steel (S45C) having a thickness of 5 mm, a set of a bottomed cylindrical body having a size such that one can just fit into the other is manufactured, and this is used as a sheath. As shown in FIGS. 1A and 1B, the disk-shaped sample (1) was wrapped in an inner can (2) and an outer can (3). This sheathed sample No. 1 to 3 at a temperature of 900 ° C, 1
Heating was performed at 000 ° C. or 1050 ° C., and forging was performed at a draft of 8%. In each sample, cracking occurred at a heating temperature of 900 ° C, and forging was possible at 1000 ° C and 1050 ° C. However, in the case of 1050 ° C., the sheath itself is strongly oxidized, and the sheath gradually becomes thinner as the forging is repeated, and the sheath and the material alloy as the contents are fused together, and the forged material is subjected to forging. There is a problem in that the removal of the sheath is hindered.

【0018】3)上記の実験により、鍛造のためにはあ
る程度以上の温度に加熱する必要があることを経験し、
また加熱温度よりも実際の加工開始温度および加工終了
温度の方が重要であることが察せられた。 そこで、サ
ンプルNo.1〜3を、上記と同様に軟鋼製の缶のシース
に入れ、表2に掲げた条件で鍛造した。 加工性を、表
2にあわせて示す。
3) From the above-mentioned experiments, he experienced that forging requires heating to a certain temperature or higher.
It was also found that the actual processing start temperature and actual processing end temperature were more important than the heating temperature. Therefore, the sample No. Samples 1 to 3 were placed in a mild steel can sheath in the same manner as described above, and were forged under the conditions listed in Table 2. The workability is shown in Table 2.

【0019】 表2 加工開始温度 加工終了温度 加工率 加工性 790〜810℃ 630〜690℃ 10% ワレ発生 890〜920℃ 770〜850℃ 10% ワレなし 880〜920℃ 770〜860℃ 15% ワレ発生 4)第二の条件が好結果を与えたので、シース材料をS
US304ステンレス鋼に変えて、鍛造試験を繰り返し
た。 多数回鍛造を繰り返すとシースにワレが生じるこ
と、またそのまま鍛造を続けると、包まれている合金に
もワレが生じることが経験された。 これらの事実か
ら、シース材料としてはなるべく粘り強いものを使用す
べきことがわかる。
Table 2 Processing start temperature Processing end temperature Processing rate Workability 790-810 ° C 630-690 ° C 10% Crack generation 890-920 ° C 770-850 ° C 10% No crack 880-920 ° C 770-860 ° C 15% Crack Occurrence 4) Since the second condition gave a good result, the sheath material was changed to S
The forging test was repeated, changing to US 304 stainless steel. It has been experienced that if the forging is repeated many times, the sheath is cracked, and if the forging is continued as it is, the sheathed alloy is also cracked. From these facts, it can be seen that the sheath material should be as tough as possible.

【0020】5)前記の軟鋼製の缶のシースを用い、加
工開始温度890〜920℃、加工終止温度770〜8
50℃、圧下率10%の据え込みを4回繰り返し、扁平
な鍛造物を得た。 これを図2に示すように切断し、シ
ースを除去して、幅5cm×長さ15cm×厚さ2.5cmの
角柱状の材料を得た。 それらのサンプルを、一部はそ
のまま、一部は再度軟鋼製のシースで包んだ。 シース
は、厚さ3mmの軟鋼(S45C)板で製作した。 両者
を加熱し、加工開始温度をおおよそ800℃,900
℃,1000℃,1050℃または1100℃にえらん
で、圧下率10%の鍛造を加えた。
5) Using the above-mentioned mild steel can sheath, a processing start temperature of 890 to 920 ° C. and a processing end temperature of 770 to 8
Upsetting at 50 ° C. and a rolling reduction of 10% was repeated four times to obtain a flat forged product. This was cut as shown in FIG. 2 and the sheath was removed to obtain a prismatic material having a width of 5 cm, a length of 15 cm and a thickness of 2.5 cm. The samples were partially wrapped and partially wrapped again in a mild steel sheath. The sheath was made of a mild steel (S45C) plate having a thickness of 3 mm. Both are heated and the processing start temperature is about 800 ° C, 900
C., 1000.degree. C., 1050.degree. C. or 1100.degree. C., and forging with a draft of 10% was added.

【0021】シースのないサンプルは、加工開始温度8
00℃および900℃でワレが生じた。 1000℃以
上ではワレがなかったが、酸化が認められた。 酸化は
1050℃でかなり顕著であって材料の破損を招き、1
100℃では激しく進行し、シースなしで高温で加工す
るのは不可能なことがわかった。
A sample without a sheath has a processing start temperature of 8
Cracks occurred at 00 ° C and 900 ° C. At 1000 ° C. or higher, no cracks were observed, but oxidation was observed. Oxidation is quite pronounced at 1050 ° C., leading to material failure,
It progressed violently at 100 ° C., and it was found that it was impossible to work at a high temperature without a sheath.

【0022】一方、シースで包んだサンプルは、加工開
始温度800℃ではワレが生じたが、900℃以上では
鍛造可能であった。 ただし、1100℃の場合はシー
スの酸化による損耗が進み、加熱−鍛造を繰り返してい
るうちにシースが破損して中の合金が露出した。
On the other hand, the sample wrapped in the sheath cracked at a processing start temperature of 800 ° C., but could be forged at 900 ° C. or higher. However, in the case of 1100 ° C., wear due to oxidation of the sheath progressed, and the sheath was damaged during repeated heating and forging, exposing the alloy therein.

【0023】[0023]

【発明の効果】本発明により、これまで加工性が低くて
所望の形状を与えることが絶望視されていたNi−Ti
−Zr(Hf)系三元形状記憶合金の熱間加工が可能に
なり、これから板材または線材が得られるようになっ
た。 それに伴い、在来のNi−Ti系二元形状記憶合
金より高い逆変態温度(As点)をもつ合金たとえばA
s点が100℃を超えるものが、この合金の形状記憶効
果を利用する種々の機器の作動素子として使用できるよ
うになった。
According to the present invention, it has been hoped that Ni-Ti, which is low in workability and gives a desired shape, has been hopeless.
Hot working of a -Zr (Hf) -based ternary shape memory alloy has become possible, and a plate or a wire can be obtained therefrom. Accordingly, an alloy having a higher reverse transformation temperature (As point) than a conventional Ni—Ti-based binary shape memory alloy, for example, A
Those having an s point exceeding 100 ° C. can be used as operating elements of various devices utilizing the shape memory effect of this alloy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例で使用した、形状記憶合金の
素材をシースで包んだ被加工材を示す図であって、Aは
縦断面図、Bは平面図。
FIG. 1 is a view showing a workpiece in which a shape memory alloy material is wrapped in a sheath used in an embodiment of the present invention, wherein A is a longitudinal sectional view and B is a plan view.

【図2】 図1の被加工材を鍛造したものから、さらに
サンプルを切り出す状況を示す斜視図。
FIG. 2 is a perspective view showing a state in which a sample is further cut out from a forged workpiece of FIG. 1;

【符号の説明】[Explanation of symbols]

1 形状記憶合金の円板状サンプル 2 内缶 3 外缶 1 Disc-shaped sample of shape memory alloy 2 Inner can 3 Outer can

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Ni:45〜50原子%、ならびにZr
およびHfの1種または2種(2種の場合は合計量):
9〜16原子%を含有し、残部が実質上Tiからなる合
金組成を有する形状記憶合金の塊を軟鋼のシースで包
み、加工開始温度850〜950℃、加工終止温度77
0℃以上の温度条件で、1回の圧下率10%以下の熱間
加工を行ない、これを必要な回数繰り返すことからなる
Ni−Ti−Zr(Hf)系形状記憶合金の加工方法。
1. Ni: 45 to 50 atomic%, and Zr
And one or two of Hf (in the case of two, the total amount):
A lump of a shape memory alloy containing 9 to 16 at% and having an alloy composition substantially consisting of Ti is wrapped in a mild steel sheath, and a working start temperature of 850 to 950 ° C and a working end temperature of 77.
A method of processing a Ni-Ti-Zr (Hf) -based shape memory alloy, comprising performing hot working at a rolling reduction of 10% or less once under a temperature condition of 0 ° C or more and repeating the necessary number of times.
JP8196169A 1996-07-25 1996-07-25 Method for working nickel-titanium-zirconium (hafnium) shape memory alloy Pending JPH1036952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8196169A JPH1036952A (en) 1996-07-25 1996-07-25 Method for working nickel-titanium-zirconium (hafnium) shape memory alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8196169A JPH1036952A (en) 1996-07-25 1996-07-25 Method for working nickel-titanium-zirconium (hafnium) shape memory alloy

Publications (1)

Publication Number Publication Date
JPH1036952A true JPH1036952A (en) 1998-02-10

Family

ID=16353362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8196169A Pending JPH1036952A (en) 1996-07-25 1996-07-25 Method for working nickel-titanium-zirconium (hafnium) shape memory alloy

Country Status (1)

Country Link
JP (1) JPH1036952A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019073754A1 (en) * 2017-10-10 2019-04-18 株式会社古河テクノマテリアル Ti-Ni ALLOY, WIRE, ELECTRIFICATION ACTUATOR AND TEMPERATURE SENSOR USING SAME, AND METHOD FOR MANUFACTURING Ti-Ni ALLOY MATERIAL

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019073754A1 (en) * 2017-10-10 2019-04-18 株式会社古河テクノマテリアル Ti-Ni ALLOY, WIRE, ELECTRIFICATION ACTUATOR AND TEMPERATURE SENSOR USING SAME, AND METHOD FOR MANUFACTURING Ti-Ni ALLOY MATERIAL
JPWO2019073754A1 (en) * 2017-10-10 2020-09-17 株式会社古河テクノマテリアル Ti-Ni alloy, wire rod using it, energizing actuator and temperature sensor, and manufacturing method of Ti-Ni alloy
US11313732B2 (en) 2017-10-10 2022-04-26 Furukawa Techno Material Co., Ltd. Ti—Ni-based alloy; wire, electrically conductive actuator, and temperature sensor, each using this alloy; and method of producing a Ti—Ni-based alloy

Similar Documents

Publication Publication Date Title
EP3587606A1 (en) Ni-based super heat-resistant alloy and method for manufacturing same
EP3772544A1 (en) Method for manufacturing super-refractory nickel-based alloy and super-refractory nickel-based alloy
EP3612656A2 (en) Precipitation hardenable cobalt-nickel base superalloy and article made thereform
JP7057935B2 (en) Heat resistant Ir alloy
JPH09279309A (en) Iron-chrome-nickel heat resistant alloy
TWI225102B (en) Reaction-inert material with high hardness for thermally stressed members
JP2019516015A (en) Ferrite alloy
JP4987615B2 (en) Titanium alloy for heat-resistant members with excellent high-temperature fatigue strength and creep resistance
KR101994559B1 (en) Ferritic stainless steel foil and method for manufacturing the same
JP2007063635A (en) Stainless steel strip
JP2559136B2 (en) Zr alloy for reactor fuel cladding support grid
JPH1036952A (en) Method for working nickel-titanium-zirconium (hafnium) shape memory alloy
EP0384013A1 (en) Method for strengthening coldworked nickel-base alloys
WO2018117135A1 (en) Heat-resistant ir alloy
JP2956130B2 (en) Nozzle for zinc die casting
JP2722628B2 (en) Plastic working method for B-containing Ni-base heat-resistant alloy
JP3721637B2 (en) Method for producing Ca-containing austenitic heat resistant steel
JP5831283B2 (en) Titanium alloy member whose shape is deformed in the same direction as the processing direction by heat treatment and its manufacturing method
JP2728305B2 (en) Hot working method of intermetallic compound TiA ▲ -based alloy
EP0090115A2 (en) Cold worked ferritic alloys and components
JP7470937B2 (en) Heat-resistant Ir alloy
JPH108168A (en) Nickel-titanium-zirconium(hafnium) shape memory alloy improved in workability
JPH0148342B2 (en)
JPH07144294A (en) Austenitic stainless steel welding material having excellent hydrogen brittleness resistance
JP2019019366A (en) Ferritic stainless steel and heat resistant member