JPH1036168A - Production of ceramic linear resistor - Google Patents

Production of ceramic linear resistor

Info

Publication number
JPH1036168A
JPH1036168A JP8194574A JP19457496A JPH1036168A JP H1036168 A JPH1036168 A JP H1036168A JP 8194574 A JP8194574 A JP 8194574A JP 19457496 A JP19457496 A JP 19457496A JP H1036168 A JPH1036168 A JP H1036168A
Authority
JP
Japan
Prior art keywords
mol
resistor
mgal
zno
linear resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8194574A
Other languages
Japanese (ja)
Inventor
Narihisa Motowaki
成久 元脇
Ken Takahashi
高橋  研
Shigeru Tanaka
田中  滋
Kunihiro Maeda
邦裕 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Japan Science and Technology Agency
Original Assignee
Hitachi Ltd
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Research Development Corp of Japan filed Critical Hitachi Ltd
Priority to JP8194574A priority Critical patent/JPH1036168A/en
Publication of JPH1036168A publication Critical patent/JPH1036168A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a ceramic linear resistor aiming at a highly withstanding property by blending specific four components and burning the mixture, and a breaker stably functioning up to a high temperature by using the highly withstanding ceramic linear resistor. SOLUTION: This ceramic linear resistor is obtained by blending 68-90mol% Zn based on ZnO, 5-20mol% Al based on Al2 O3 , 3-10mol% Mg based on MgO and >=1mol% at least one of ZnAl2 O4 and MgAl2 O4 , and sintering the mixture. A resistor element 1 obtained by inserting an insulating rod 2 into an insulating tube 3, is housed in a resistor unit 4 of a breaker shown in the figure, and a bushing 10 for protecting an electric circuit is installed therein. By air from an air tank 9, a piston 7 for opening and closing operations is actuated, main contact points 6a, 6b for turning on electricity are opened for applying the electricity to the resistor unit 4 connected in parallel, and rear resisting contact points 5a, 5b are opened to complete a breaking function. A turning on function is to close the resistor contacting points 5a, 5b by the piston 7 for the opening and closing operations, turn on the electricity to the resistor unit 4 and close the main contacting points 6a, 6b.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、UHV送電用遮断
器の遮断・投入抵抗に好適なセラミックス直線抵抗体の
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a ceramic linear resistor suitable for a breaking / closing resistance of a UHV power transmission circuit breaker.

【0002】[0002]

【従来の技術】UHV送電用遮断器等に用いられる直線
抵抗体に望まれる特性として、電圧対電流特性がオーミ
ックであること、数百〜千Ωcmの抵抗率を有するこ
と、抵抗温度係数がゼロまたは正であること、エネルギ
ー耐量が大きいことなどが挙げられる。上記の諸特性が
実用レベルにある抵抗体として、例えば、特開昭56−
4206号公報に記載のC−Al23系抵抗体、特開昭
63−55904号公報に記載のZnO−Al23−M
gO系抵抗体などがある。C−Al23系抵抗体は、導
電粒子として酸化物絶縁系に分散させた炭素の量とその
接触度合で抵抗値を調節している。また、ZnO−Al
23−MgO系抵抗体は、基本的にZnO結晶粒とZn
Al24およびMgAl24のスピネル結晶粒とからな
り、その抵抗値はこれらの結晶粒の体積割合と粒界の特
性で調節される。
2. Description of the Related Art Characteristics desired for a linear resistor used in a UHV power transmission circuit breaker or the like are that the voltage-current characteristics are ohmic, that the resistivity is several hundred to 1,000 Ωcm, and that the temperature coefficient of resistance is zero. Or, it is positive and has a large energy resistance. As a resistor having the above characteristics at a practical level, for example, Japanese Patent Application Laid-Open No.
No. 4206, C-Al 2 O 3 -based resistor, and JP-A 63-55904, ZnO-Al 2 O 3 -M
gO-based resistors and the like. The resistance value of the C-Al 2 O 3 -based resistor is adjusted by the amount of carbon dispersed as conductive particles in the oxide insulating system and the degree of contact. Also, ZnO-Al
A 2 O 3 —MgO-based resistor basically includes ZnO crystal grains and ZnO
It consists of spinel crystal grains of Al 2 O 4 and MgAl 2 O 4 , and its resistance value is adjusted by the volume ratio of these crystal grains and the characteristics of the grain boundaries.

【0003】[0003]

【発明が解決しようとする課題】C−Al23系抵抗体
は、抵抗温度係数がわずかながら負であるために通電時
に熱暴走を起こす危険性があり、また熱容量が小さくエ
ネルギー耐量が低い。この点を解決すべく開発されたZ
nO−Al23−MgO系抵抗体は、ZnO、Al
23、MgOを原料として用い、混合、成形、焼成を経
て製造されるが、この方法では、原料の混合が均一でな
かったり、焼結時の物質拡散が十分でなかったりして、
原料粉のAl23がZnOへの固溶反応とZnAl24
およびMgAl24の合成反応で完全に消費されず、一
部微量ではあるが未反応のまま焼結体の中に残存してし
まう。このAl23は絶縁性であり、かつ微小であるの
で、粒界に局所的に高抵抗な部分を作り、通電時の電流
分布を不均一にしてしまい、エネルギー耐量を低くして
いた。本発明の目的は、セラミックス直線抵抗体の高耐
量化を図ることにある。また、高耐量のセラミックス直
線抵抗体を用い高温まで安定に動作する遮断器を提供す
ることにある。
The C-Al 2 O 3 -based resistor has a small temperature coefficient of resistance, but has a risk of causing thermal runaway when energized, and has a small heat capacity and a low energy resistance. . Z developed to solve this point
The nO—Al 2 O 3 —MgO-based resistor includes ZnO, Al
With 2 O 3, MgO as a raw material, mixing, molding, are produced through calcination, this method may not be uniform mixing of raw materials, and material diffusion during sintering or not sufficient,
Solid solution reaction of raw material powder Al 2 O 3 into ZnO and ZnAl 2 O 4
However, it is not completely consumed by the synthesis reaction of MgAl 2 O 4 , and remains in the sintered body as a small amount but unreacted. Since this Al 2 O 3 is insulative and minute, a high-resistance portion is locally formed at the grain boundary to make the current distribution non-uniform at the time of energization, thereby lowering the energy resistance. An object of the present invention is to improve the resistance of a ceramic linear resistor. It is another object of the present invention to provide a circuit breaker that operates stably up to a high temperature by using a ceramic linear resistor having a high resistance.

【0004】[0004]

【課題を解決するための手段】上記目的は、ZnをZn
Oに換算して68〜90モル%、AlをAl23に換算
して5〜20モル%、MgをMgOに換算して3〜10
モル%、ZnAl24およびMgAl24のうち少なく
とも一方を1モル%以上混合して焼結することにより達
成される。上記目的は、ZnをZnOに換算して68〜
90モル%、AlをAl23に換算して5〜20モル
%、ZnAl24およびMgAl24のうち少なくとも
一方を1モル%以上混合して焼結することにより達成さ
れる。上記目的は、ZnをZnOに換算して68〜80
モル%、ZnAl24およびMgAl24を各1モル%
以上混合して焼結することにより達成される。上記目的
は、ZnをZnOに換算して68〜80モル%、ZnA
24およびMgAl24を各1モル%以上、SiをS
iO2に換算して0.1〜5モル%を混合して焼結する
ことにより達成される。上記目的は、ZnをZnOに換
算して68〜80モル%、ZnAl24およびMgAl
24を各1モル%以上、SiをSiO2に換算して0.
1〜5モル%、CaをCaOに換算して1〜10モル%
を混合して焼結することにより達成される。上記目的
は、ZnをZnOに換算して68〜80モル%、ZnA
24およびMgAl24を各1モル%以上、SiをS
iO2に換算して0.1〜5モル%、CaO、SrO、
BaOのうち一種以上を0.5〜10モル%を混合して
焼結することにより達成される。上記製造方法によるセ
ラミックス直線抵抗体を用いて遮断器を製造することが
望ましい。上記構成によれば、原料として最初から反応
生成物であるZnAl24およびMgAl24を用いる
ことにより、焼結体中に残存する絶縁性の高いAl23
を減らすことができ通電時の電流分布が均一になりエネ
ルギー耐量が向上する。ここで、上記各成分の組成範囲
を限定した理由を述べる。ZnがZnOに換算して68
モル%未満では抵抗温度係数が小さく、90モル%を超
えると抵抗率が低くなり過ぎる。AlがAl23に換算
して5モル%未満では電圧−電流特性の直線性が悪くな
り、20モル%を超えると抵抗率が大きくなり過ぎる。
ZnAl24およびMgAl24の量は合計1モル%未
満ではエネルギー耐量向上の効果が見られない。Mgが
MgOに換算して3モル%未満では抵抗温度係数が負に
なり熱暴走を引き起こす危険性があり、10モル%を超
えると抵抗率と抵抗温度係数が大きくなり過ぎる。Si
がSiO2に換算して0.1モル%未満では焼結助剤と
しての効果が現れず、5モル%を超えると電圧−電流特
性の直線性が悪くなる。CaO、SrO、BaOについ
ては、0.5モル%未満では高電界下での抵抗率低下の
抑制効果が見られず、10モル%を超えると異相の出現
を招き焼結性の低下をもたらす。また、原料としてZn
Al24およびMgAl24のうち少なくとも一方を合
計1モル%以上用いることによって得られるZnO−A
23−MgO系抵抗体をガス遮断器の投入抵抗部分に
用いると、大きな温度上昇にも抵抗体の破壊を起こさな
い信頼性の高い遮断器を提供できる。
SUMMARY OF THE INVENTION The object of the present invention is to provide Zn
In terms of O and 68 to 90 mol%, 5 to 20 mol% in terms of Al to Al 2 O 3, in terms of Mg to MgO 3 to 10
It is achieved by mixing and sintering at least 1 mol% of at least one of ZnAl 2 O 4 and MgAl 2 O 4 . The purpose is to convert Zn to ZnO of 68 to
This is achieved by mixing and sintering 90 mol%, Al in terms of Al 2 O 3 , 5 to 20 mol%, and at least one of ZnAl 2 O 4 and MgAl 2 O 4 at 1 mol% or more. The purpose is to convert Zn to ZnO of 68 to 80.
Mol%, ZnAl 2 O 4 and MgAl 2 O 4 each 1 mol%
This is achieved by mixing and sintering. The object is to convert Zn to ZnO by 68 to 80 mol%, ZnA
l 2 O 4 and MgAl 2 O 4 are each 1 mol% or more, and Si is S
by mixing 0.1 to 5 mol% in terms of iO 2 is achieved by sintering. The object is to convert Zn to ZnO by 68 to 80 mol%, ZnAl 2 O 4 and MgAl
2 O 4 is 1 mol% or more, and Si is converted to SiO 2 .
1 to 5 mol%, 1 to 10 mol% in terms of Ca converted to CaO
And sintering. The object is to convert Zn to ZnO by 68 to 80 mol%, ZnA
l 2 O 4 and MgAl 2 O 4 are each 1 mol% or more, and Si is S
in terms of the iO 2 and 0.1 to 5 mol%, CaO, SrO,
It is achieved by mixing and sintering 0.5 to 10 mol% of one or more of BaO. It is desirable to manufacture a circuit breaker using the ceramic linear resistor according to the above manufacturing method. According to the above configuration, by using ZnAl 2 O 4 and MgAl 2 O 4 which are reaction products from the beginning as raw materials, the highly insulating Al 2 O 3 remaining in the sintered body is used.
Can be reduced, the current distribution at the time of energization becomes uniform, and the energy resistance is improved. Here, the reason why the composition range of each component is limited will be described. Zn is 68 in terms of ZnO
If it is less than mol%, the temperature coefficient of resistance is small, and if it exceeds 90 mol%, the resistivity becomes too low. If Al is less than 5 mol% in terms of Al 2 O 3 , the linearity of the voltage-current characteristics will be poor, and if it exceeds 20 mol%, the resistivity will be too large.
If the total amount of ZnAl 2 O 4 and MgAl 2 O 4 is less than 1 mol%, the effect of improving the energy resistance cannot be seen. If Mg is less than 3 mol% in terms of MgO, the temperature coefficient of resistance becomes negative and there is a risk of causing thermal runaway. If it exceeds 10 mol%, the resistivity and the temperature coefficient of resistance become too large. Si
If it is less than 0.1 mol% in terms of SiO 2 , the effect as a sintering aid does not appear, and if it exceeds 5 mol%, the linearity of the voltage-current characteristics deteriorates. With respect to CaO, SrO, and BaO, if it is less than 0.5 mol%, the effect of suppressing the decrease in resistivity under a high electric field is not seen. Also, Zn as a raw material
ZnO-A obtained by using at least one of Al 2 O 4 and MgAl 2 O 4 in a total amount of 1 mol% or more
With l 2 O 3 -MgO based resistor in closing resistor portion of the gas circuit breaker can provide a large temperature rise may not cause destruction of the resistor reliable circuit breaker.

【0005】[0005]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。本発明の実施の形態のセラミックス直線抵抗体
は、一般の焼結法により製造することができる。即ち、
所定量の酸化物粉末を混合後、ボールミル等を用いて十
分に混合し乾燥させる。この混合粉末にポリビニールア
ルコールなどの適当なバインダを加えて造粒し、金型に
より成形する。成形体は電気炉で大気中1000〜14
00℃で焼成し、得られた焼結体の上下端面を研磨し、
Al、Au、Pt、Pd等を溶射して電極を形成する。
ここで抵抗体の形状は、ディスク状であっても良いし、
特開昭63−55904号公報に記載されるように、中
心部分に貫通孔を設けた構造であっても良い。
Embodiments of the present invention will be described below. The ceramic linear resistor according to the embodiment of the present invention can be manufactured by a general sintering method. That is,
After mixing a predetermined amount of oxide powder, the mixture is thoroughly mixed and dried using a ball mill or the like. An appropriate binder such as polyvinyl alcohol is added to the mixed powder, granulated, and molded by a mold. The molded body is 1000 to 14 in the atmosphere in an electric furnace.
Firing at 00 ° C, polishing the upper and lower end surfaces of the obtained sintered body,
An electrode is formed by spraying Al, Au, Pt, Pd, or the like.
Here, the shape of the resistor may be a disk shape,
As described in JP-A-63-55904, a structure in which a through-hole is provided at the center may be used.

【0006】以下に本発明を具体的実施例により説明す
る。 《実施例1》出発原料としてZnO、Al23、Mg
O、ZnAl24およびMgAl24の各粉末を表1に
示す組成となるように所定量秤量した。
Hereinafter, the present invention will be described with reference to specific examples. << Example 1 >> ZnO, Al 2 O 3 , Mg as starting materials
O, ZnAl 2 O 4, and MgAl 2 O 4 powders were weighed in predetermined amounts to have the compositions shown in Table 1.

【0007】[0007]

【表1】 [Table 1]

【0008】これらをジルコニアを玉石とし分散媒に純
水を用いて15時間ボールミルで混合しスラリーとした
後、スラリーを乾燥した。得られた混合粉に、粉末に対
して6wt%の3wt%濃度ポリビニールアルコールを加
えて混練後、32メッシュのふるいを通し造粒粉を得
た。造粒粉は金型を用いて圧力4.5MPaで外径99
mmφ−内径40mmφ×厚さ23mmの中心部に孔を設けた
構造に成形し、大気中1250℃で2時間保持して焼成
した。得られた焼結体の上下端面を研磨し、洗浄、乾燥
後、Al電極を溶射により形成し、セラミックス直線抵
抗体を得た。なお、従来の製造方法ではZnAl24
よびMgAl24の合成反応を効率良く行わせるため
に、少量のZnOと他の添加成分とを仮焼した後、残部
のZnOと混合し焼成していたが、本発明の製造方法で
は、原料粉として最初から反応生成物であるZnAl2
4およびMgAl24を用いるため、仮焼工程を省略
することができ、製造工程を短縮しコストを低減するこ
とができた。なお、仮焼によりZnAl24およびMg
Al24が生成するが、仮焼粉および残部のZnOを均
一に混合するのは難しいため、原料粉として最初から反
応生成物であるZnAl24およびMgAl24を用い
る方が、エネルギー耐量の高い抵抗体を得ることができ
る。表1に組成の異なるセラミックス直線抵抗体の抵抗
率とエネルギー耐量を示す。エネルギー耐量は、振幅4
kV周期20msの交流電圧を印加した際の貫通破壊を起
こすまでの注入エネルギーとして求めた。従来例 No.1
と本発明例 No.3〜5とを比較するとAl23をZnAl
24に置き換えることによって抵抗率に大きな影響を及
ぼさずにエネルギー耐量を向上させることができること
がわかる。エネルギー耐量は原料粉中のAl23を減ら
すほど良くなっている。ただし、参考例 No.2のように
ZnAl24の量が1モル%に満たないとエネルギー耐
量向上の効果は見られない。また、従来例 No.1と本発
明例 No.7〜9とを比較するとAl23をMgAl24
置き換えることによっても抵抗率に大きな影響を及ぼさ
ずにエネルギー耐量を向上させることができることがわ
かる。この場合もエネルギー耐量は原料粉中のAl23
を減らすほど良くなっている。しかし、No.6のようにM
gAl24の量が1モル%に満たないとエネルギー耐量
向上の効果は見られない。さらに本発明例 No.11〜16を
見ると、原料としてZnAl24とMgAl24を両方
用いた場合には、エネルギー耐量向上の効果がさらに著
しいことがわかる。
These were made into a slurry by mixing zirconia with a cobblestone and using a pure water as a dispersion medium in a ball mill for 15 hours, and then drying the slurry. To the obtained mixed powder, polyvinyl alcohol of 3 wt% concentration of 6 wt% based on the powder was added and kneaded, and the mixture was passed through a 32 mesh sieve to obtain granulated powder. The granulated powder has an outer diameter of 99 at a pressure of 4.5 MPa using a mold.
It was molded into a structure in which a hole was provided in the center of mmφ-inner diameter 40 mmφ × thickness 23 mm, and calcined at 1250 ° C. in the atmosphere for 2 hours. After polishing and washing and drying the upper and lower end surfaces of the obtained sintered body, an Al electrode was formed by thermal spraying to obtain a ceramic linear resistor. In the conventional manufacturing method, in order to efficiently perform a synthesis reaction of ZnAl 2 O 4 and MgAl 2 O 4 , a small amount of ZnO and other additive components are calcined, and then mixed with the remaining ZnO and calcined. However, in the production method of the present invention, ZnAl 2 , which is a reaction product from the beginning as a raw material powder, is used.
Since O 4 and MgAl 2 O 4 are used, the calcining step can be omitted, and the manufacturing steps can be shortened and the cost can be reduced. Note that ZnAl 2 O 4 and Mg
Although Al 2 O 4 is generated, it is difficult to uniformly mix the calcined powder and the rest of ZnO, so it is better to use ZnAl 2 O 4 and MgAl 2 O 4 which are reaction products from the beginning as a raw material powder. A resistor having high energy resistance can be obtained. Table 1 shows the resistivity and energy tolerance of ceramic linear resistors having different compositions. Energy tolerance is amplitude 4
It was obtained as an implantation energy until a breakthrough occurred when an AC voltage having a kV cycle of 20 ms was applied. Conventional example No.1
And Examples of the present invention Nos. 3 to 5 show that Al 2 O 3 is ZnAl
It can be seen that by replacing with 2 O 4 , the energy resistance can be improved without significantly affecting the resistivity. The energy resistance is improved as the amount of Al 2 O 3 in the raw material powder is reduced. However, if the amount of ZnAl 2 O 4 is less than 1 mol% as in Reference Example No. 2, the effect of improving the energy resistance is not seen. In addition, comparing the conventional example No. 1 and the present invention examples Nos. 7 to 9, it is possible to improve the energy resistance without significantly affecting the resistivity by replacing Al 2 O 3 with MgAl 2 O 4. We can see that we can do it. Also in this case, the energy withstand capability is the same as that of Al 2 O 3 in the raw material powder.
The better you reduce, the better. However, like No.6, M
If the amount of gAl 2 O 4 is less than 1 mol%, the effect of improving the energy resistance cannot be seen. Further, it can be seen from Examples 11 to 16 of the present invention that when both ZnAl 2 O 4 and MgAl 2 O 4 are used as the raw materials, the effect of improving the energy withstand capacity is further remarkable.

【0009】図1は本発明の実施の形態の製造方法によ
るセラミックス直線抵抗体の断面を模式的に示した組織
図である。本図のように焼結体中にAl23が残存しな
いと、通電時の電流分布が均一になる。ところが、本発
明例 No.16のようにスピネル結晶相(ZnAl24とM
gAl24)が大きな体積割合を占めるようになると抵
抗率が大きくなるためにエネルギー耐量が減少する方向
に向かう。No.17のようにスピネル結晶相が一定量を超
えると(ZnAl24とMgAl24をZnO、Al2
3、MgOに換算したときにAl23が20モル%を
超えると)抵抗率が大きくなり過ぎ、エネルギー耐量が
悪くなるので好ましくない。また、No10のようにZnA
24とMgAl24の合計量が1モル%に満たないと
エネルギー耐量向上の効果は見られない。 《実施例2》実施例1のNo.15に近い組成にSiO2を添
加して試料を作製し評価を行った。表2に組成と特性を
示す。
FIG. 1 is an organization diagram schematically showing a cross section of a ceramic linear resistor according to a manufacturing method of an embodiment of the present invention. If Al 2 O 3 does not remain in the sintered body as shown in this figure, the current distribution during energization becomes uniform. However, as in Invention Example No. 16, the spinel crystal phase (ZnAl 2 O 4 and M
When gAl 2 O 4 ) occupies a large volume ratio, the resistivity increases, so that the energy resistance decreases. When the spinel crystal phase exceeds a certain amount as in No. 17, (ZnAl 2 O 4 and MgAl 2 O 4 are replaced with ZnO, Al 2
If Al 2 O 3 exceeds 20 mol% when converted to O 3 or MgO), the resistivity is too large, and the energy resistance is undesirably deteriorated. Also, as in No10, ZnA
If the total amount of l 2 O 4 and MgAl 2 O 4 is less than 1 mol%, the effect of improving the energy resistance cannot be seen. << Example 2 >> A sample was prepared by adding SiO 2 to a composition close to No. 15 of Example 1 and evaluated. Table 2 shows the composition and characteristics.

【0010】[0010]

【表2】 [Table 2]

【0011】気孔率は破断面を走査型電子顕微鏡で観察
し、画像処理を行って求めた。電圧−電流特性の直線性
については、logI=αlog(V/C)で表した場合
(Iは電流、Vは電圧、Cは定数、αは非直線係数)、
αは1.3以下である事が望ましい。そこで直流10V
/cmと1.5kV/cmでのI、Vよりαを決定し、
1.3以内を○印、それより大きい場合を×印を示し
た。No.18は従来例 No.1より焼結性が向上している。N
o.19はNo.18を焼成温度を1150℃に下げて焼成した
ものであるが、気孔率はNo.1と同等である。しかし、N
o.18、19ともにエネルギー耐量は良くない。これに対
し、本発明例 No.20〜22は700J/cc以上の高いエ
ネルギー耐量を示し、SiO2を添加した場合にも原料
としてZnAl24とMgAl24を用いることの有効
性が確認できる。なお、No.23はSiO2の添加量が5モ
ル%を超えており、エネルギー耐量は高いものの直線性
が悪い。
The porosity was determined by observing the fracture surface with a scanning electron microscope and performing image processing. Regarding the linearity of the voltage-current characteristic, when logI = αlog (V / C) (I is current, V is voltage, C is a constant, and α is a non-linear coefficient),
α is desirably 1.3 or less. Then DC 10V
/ Α at 1.5 kV / cm and I / V at 1.5 kV / cm
Within 1.3, a circle was shown, and when larger than 1.3, a cross was shown. No. 18 has improved sinterability compared to Conventional Example No. 1. N
In the case of No. 19, No. 18 was fired by lowering the firing temperature to 1150 ° C., and the porosity was equivalent to that of No. 1. But N
o. Both 18 and 19 have poor energy tolerance. On the other hand, Examples Nos. 20 to 22 of the present invention show a high energy resistance of 700 J / cc or more. Even when SiO 2 is added, the effectiveness of using ZnAl 2 O 4 and MgAl 2 O 4 as raw materials is not significant. You can check. In addition, in No. 23, the added amount of SiO 2 exceeded 5 mol%, and although the energy resistance was high, the linearity was poor.

【0012】《実施例3》実施例2のNo.20の組成にC
aO、SrO、BaOを添加して試料を作製し評価を行
った。表3に組成と特性を示す。
<< Example 3 >> The composition of No. 20 of Example 2
Samples were prepared by adding aO, SrO, and BaO and evaluated. Table 3 shows the composition and characteristics.

【0013】[0013]

【表3】 [Table 3]

【0014】電圧−電流特性の直線性については、高電
界下での抵抗率変化を調べるため、直流10V/cmと
5kV/cmでのI、Vを測定し、抵抗値の減少率が3
0%以内の場合を○、それより大きい場合を×で示し
た。本発明例 No.24〜26のようにCaOを添加し
た試料でも原料粉にZnAl24とMgAl24を用い
ると高いエネルギー耐量が得られる。抵抗率が大きくな
るとエネルギー耐量は下がる傾向にあるがそれでもZn
Al24とMgAl24を用いない従来例 No.1の40
0J/ccよりも大きい。No.27のようにCaOを加え
過ぎると直線性が悪くなる。本発明例 No.27〜30、32〜
34を見るとSrO、BaOを添加した試料でも原料粉に
ZnAl24とMgAl24を用いるとエネルギー耐量
の向上に効果があることがわかる。しかし、No.31、35
のようにSrO、BaOを加え過ぎるとやはり直線性が
悪くなる。本発明例 No.36、38、40、42は、CaO、S
rO、BaOを組み合わせて添加した例であるが、いず
れの組合せにおいてもエネルギー耐量向上の効果が見ら
れる。これに対し、No.37、39、41、43は、CaO、S
rO、BaOの合計が10モル%を超えておりいずれも
直線性が悪い。
Regarding the linearity of the voltage-current characteristics, in order to examine the change in resistivity under a high electric field, I and V were measured at DC 10 V / cm and 5 kV / cm.
The case of 0% or less was indicated by ○, and the case of larger than 0% was indicated by ×. Invention Example No. Even in a sample to which CaO is added as in Examples 24 to 26, when ZnAl 2 O 4 and MgAl 2 O 4 are used for the raw material powder, a high energy resistance can be obtained. When the resistivity increases, the energy resistance tends to decrease, but the Zn
Conventional example No. 1 40 without using Al 2 O 4 and MgAl 2 O 4
Greater than 0J / cc. If CaO is added too much as in No. 27, the linearity will be poor. Invention Examples No. 27 to 30, 32 to
From FIG. 34, it can be seen that the use of ZnAl 2 O 4 and MgAl 2 O 4 as the raw material powder has an effect of improving the energy withstand even in the sample to which SrO and BaO are added. However, No. 31, 35
If SrO and BaO are added too much, the linearity also deteriorates. Invention Examples Nos. 36, 38, 40, and 42 are CaO, S
Although this is an example in which rO and BaO are added in combination, the effect of improving the energy resistance is seen in any combination. On the other hand, No. 37, 39, 41, and 43 are CaO, S
The sum of rO and BaO exceeds 10 mol%, and both have poor linearity.

【0015】《実施例4》本発明のセラミックス直線抵
抗体の製造方法により、実施例3のNo.25の組成の試料
(外径127mm−内径33mm×厚み25mmの貫通孔を有する円
板状)を1650枚製造し、6並列で積層させ1100
kVガス遮断器に組み込んだ。図2は本発明の実施の形
態の全体構成を示す縦断面図である。本図に示すように
遮断器の抵抗体ユニット4は、絶縁筒3内に絶縁棒2に
挿入された本発明の製法による抵抗体素子1が収納され
ている。10は電路を保護するブッシングである。遮断
器の遮断動作は、 1)空気タンク9からの空気により開閉操作用ピストン
7が作動し、通常通電する主接点6a、6bが開き、こ
の主接点6a、6bと並列接続する抵抗体ユニット4に
電流が流れる。 2)その後に抵抗体ユニット4の抵抗接点5a、5bが
開閉操作用ピストン7により開き、遮断動作は完了す
る。一方、投入動作は、 1)抵抗接点5a、5bが開閉操作用ピストン7により
閉じ、抵抗体ユニット4に電流が流れる。 2)主接点6a、6bが開閉操作用ピストン7により閉
じ、投入動作は完了する。 抵抗体ユニット4には主接
点6a、6bを開いたときに数十msecのAC放電電流が
流れ、かつ過電圧を吸収する。なお、開閉操作用ピスト
ン7動作完了時の衝撃は油ダッシュポット8が緩和す
る。本遮断器に連続10回の遮断投入動作を行った結
果、試験中、試験後共に抵抗特性や遮断器に異常は見ら
れず、抵抗体素子のエネルギー耐量が高いため300℃
まで温度上昇しても安定に動作することが確認された。
<< Example 4 >> A sample having a composition of No. 25 of Example 3 (disc shape having a through hole of 127 mm in outer diameter-33 mm in inner diameter × 25 mm in thickness) by the method of manufacturing a ceramic linear resistor of the present invention. 1650 sheets were manufactured and stacked in 6 parallel, and 1100
It was incorporated in a kV gas circuit breaker. FIG. 2 is a longitudinal sectional view showing the entire configuration of the embodiment of the present invention. As shown in the figure, a resistor unit 4 of a circuit breaker contains a resistor element 1 according to the manufacturing method of the present invention inserted into an insulating rod 2 in an insulating cylinder 3. Reference numeral 10 denotes a bushing for protecting the electric circuit. The breaking operation of the circuit breaker is as follows: 1) Opening / closing operation piston 7 is actuated by air from air tank 9 to open main contacts 6a and 6b which are normally energized, and resistor unit 4 connected in parallel with main contacts 6a and 6b Current flows through 2) Thereafter, the resistance contacts 5a and 5b of the resistance unit 4 are opened by the opening / closing operation piston 7, and the shutoff operation is completed. On the other hand, the closing operation is as follows: 1) The resistance contacts 5a and 5b are closed by the opening / closing operation piston 7, and a current flows through the resistor unit 4. 2) The main contacts 6a and 6b are closed by the opening / closing operation piston 7, and the closing operation is completed. When the main contacts 6a and 6b are opened, an AC discharge current of several tens of milliseconds flows through the resistor unit 4 and absorbs overvoltage. The impact when the operation of the opening / closing operation piston 7 is completed is reduced by the oil dash pot 8. The circuit breaker was subjected to 10 continuous breaking and closing operations. As a result, no abnormalities were found in the resistance characteristics and the circuit breaker both during and after the test, and the energy resistance of the resistor element was high.
It was confirmed that the device operates stably even when the temperature rises.

【0016】[0016]

【発明の効果】本発明によれば、焼結体中に残存するA
23を減らすことができ通電時の電流分布が均一にな
り、セラミックス直線抵抗体のエネルギー耐量を10〜
90%向上させる効果が得られる。さらに本発明の製造
方法で製造されたセラミックス直線抵抗体を用いて高温
まで安定に動作する遮断器を提供できる。
According to the present invention, A remaining in the sintered body
l 2 O 3 can be reduced, the current distribution during energization becomes uniform, and the energy resistance of the ceramic
The effect of improving 90% is obtained. Further, it is possible to provide a circuit breaker that operates stably up to a high temperature using the ceramic linear resistor manufactured by the manufacturing method of the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の製造方法によるセラミッ
クス直線抵抗体の断面を模式的に示した組織図である。
FIG. 1 is an organization diagram schematically showing a cross section of a ceramic linear resistor according to a manufacturing method of an embodiment of the present invention.

【図2】本発明の実施の形態の全体構成を示す縦断面図
である。
FIG. 2 is a longitudinal sectional view showing the entire configuration of the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 抵抗体素子 2 絶縁棒 3 絶縁筒 4 抵抗体ユニット 5a 抵抗接点 5b 抵抗接点 6a 主接点 6b 主接点 7 開閉操作用ピストン 8 油ダッシュポット 9 空気タンク 10 ブッシング DESCRIPTION OF SYMBOLS 1 Resistor element 2 Insulating rod 3 Insulating cylinder 4 Resistor unit 5a Resistance contact 5b Resistance contact 6a Main contact 6b Main contact 7 Piston for opening and closing operation 8 Oil dash pot 9 Air tank 10 Bushing

フロントページの続き (72)発明者 田中 滋 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 前田 邦裕 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内Continued on the front page (72) Inventor Shigeru Tanaka 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi Research Laboratory, Hitachi, Ltd. (72) Kunihiro Maeda 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi Research Laboratory, Hitachi, Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 ZnをZnOに換算して68〜90モル
%、AlをAl23に換算して5〜20モル%、Mgを
MgOに換算して3〜10モル%、ZnAl24および
MgAl24のうち少なくとも一方を1モル%以上混合
して焼結することを特徴とするセラミックス直線抵抗体
の製造方法。
1. Zn is converted to ZnO at 68-90 mol%, Al is converted to Al 2 O 3 is 5-20 mol%, Mg is converted to MgO is 3-10 mol%, ZnAl 2 O is used. A method for producing a ceramic linear resistor, comprising mixing at least one of MgO 4 and MgAl 2 O 4 in an amount of 1 mol% or more and sintering the mixture.
【請求項2】 ZnをZnOに換算して68〜90モル
%、AlをAl23に換算して5〜20モル%、ZnA
24およびMgAl24のうち少なくとも一方を1モ
ル%以上混合して焼結することを特徴とするセラミック
ス直線抵抗体の製造方法。
2. Zn is 68 to 90 mol% in terms of ZnO, Al is 5 to 20 mol% in terms of Al 2 O 3 , ZnA
A method of manufacturing a ceramic linear resistor, comprising mixing at least one of l 2 O 4 and MgAl 2 O 4 in an amount of 1 mol% or more and sintering the mixture.
【請求項3】 ZnをZnOに換算して68〜80モル
%、ZnAl24およびMgAl24を各1モル%以上
混合して焼結することを特徴とするセラミックス直線抵
抗体の製造方法。
3. Manufacture of a ceramic linear resistor characterized in that Zn is converted to ZnO in an amount of 68 to 80 mol%, and ZnAl 2 O 4 and MgAl 2 O 4 are mixed in an amount of 1 mol% or more and sintered. Method.
【請求項4】 ZnをZnOに換算して68〜80モル
%、ZnAl24およびMgAl24を各1モル%以
上、SiをSiO2に換算して0.1〜5モル%を混合
して焼結することを特徴とするセラミックス直線抵抗体
の製造方法。
4. Zn is converted to ZnO at 68 to 80 mol%, ZnAl 2 O 4 and MgAl 2 O 4 are each at least 1 mol%, and Si is converted to SiO 2 at 0.1 to 5 mol%. A method for producing a ceramic linear resistor, comprising mixing and sintering.
【請求項5】 ZnをZnOに換算して68〜80モル
%、ZnAl24およびMgAl24を各1モル%以
上、SiをSiO2に換算して0.1〜5モル%、Ca
をCaOに換算して1〜10モル%を混合して焼結する
ことを特徴とするセラミックス直線抵抗体の製造方法。
5. Zn is converted to ZnO at 68 to 80 mol%, ZnAl 2 O 4 and MgAl 2 O 4 are each at least 1 mol%, and Si is converted to SiO 2 at 0.1 to 5 mol%. Ca
Is converted to CaO, and 1 to 10 mol% is mixed and sintered.
【請求項6】 ZnをZnOに換算して68〜80モル
%、ZnAl24およびMgAl24を各1モル%以
上、SiをSiO2に換算して0.1〜5モル%、Ca
O、SrO、BaOのうち一種以上を0.5〜10モル
%を混合して焼結することを特徴とするセラミックス直
線抵抗体の製造方法。
6. Zn is converted to ZnO by 68 to 80 mol%, ZnAl 2 O 4 and MgAl 2 O 4 are respectively 1 mol% or more, and Si is converted to SiO 2 by 0.1 to 5 mol%. Ca
A method for producing a ceramic linear resistor, characterized in that at least one of O, SrO and BaO is mixed at 0.5 to 10 mol% and sintered.
【請求項7】 請求項1から請求項6のうちのいずれか
の請求項に記載の製造方法により製造されたことを特徴
とするセラミックス直線抵抗体。
7. A ceramic linear resistor manufactured by the manufacturing method according to claim 1. Description:
【請求項8】 請求項1から請求項6のうちのいずれか
の請求項に記載の製造方法により製造されたセラミック
ス直線抵抗体を用いて構成したことを特徴とする遮断
器。
8. A circuit breaker comprising a ceramic linear resistor manufactured by the manufacturing method according to any one of claims 1 to 6.
JP8194574A 1996-07-24 1996-07-24 Production of ceramic linear resistor Pending JPH1036168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8194574A JPH1036168A (en) 1996-07-24 1996-07-24 Production of ceramic linear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8194574A JPH1036168A (en) 1996-07-24 1996-07-24 Production of ceramic linear resistor

Publications (1)

Publication Number Publication Date
JPH1036168A true JPH1036168A (en) 1998-02-10

Family

ID=16326808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8194574A Pending JPH1036168A (en) 1996-07-24 1996-07-24 Production of ceramic linear resistor

Country Status (1)

Country Link
JP (1) JPH1036168A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007201143A (en) * 2006-01-26 2007-08-09 Tdk Corp Joining intermediate layer and composite laminate electronic component
CN102787294A (en) * 2011-05-19 2012-11-21 海洋王照明科技股份有限公司 Preparation method and use of titanium-doped zinc-magnesium aluminate film
CN114477994A (en) * 2022-01-25 2022-05-13 广东爱晟电子科技有限公司 High-power ceramic chip resistor and material and preparation thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007201143A (en) * 2006-01-26 2007-08-09 Tdk Corp Joining intermediate layer and composite laminate electronic component
CN102787294A (en) * 2011-05-19 2012-11-21 海洋王照明科技股份有限公司 Preparation method and use of titanium-doped zinc-magnesium aluminate film
CN114477994A (en) * 2022-01-25 2022-05-13 广东爱晟电子科技有限公司 High-power ceramic chip resistor and material and preparation thereof

Similar Documents

Publication Publication Date Title
JPH11340009A (en) Nonlinear resistor
KR920000219B1 (en) Electroconductive cerment compositions for ignition and heating appciances
JPH0712969B2 (en) Alumina porcelain and spark plug
KR101545763B1 (en) Process for producing semiconductor porcelain composition and heater employing semiconductor porcelain composition
JPH1036168A (en) Production of ceramic linear resistor
JP3212672B2 (en) Power resistor
JPWO2014181525A1 (en) PTC thermistor member
Puyané et al. High performance varistor discs obtained from chemically synthesized doped zinc oxide powder
JPH06101401B2 (en) Linear resistor
JP5264929B2 (en) Method for manufacturing voltage nonlinear resistor
JPH01225087A (en) Ceramic heater
JP5334636B2 (en) Voltage non-linear resistor, lightning arrester equipped with voltage non-linear resistor, and method of manufacturing voltage non-linear resistor
Asokan et al. Inhomogeneity in sintered ZnO based non-linear resistors
JP3210063B2 (en) Power resistor
JP6937390B2 (en) Materials for current-voltage non-linear resistors, current-voltage non-linear resistors and their manufacturing methods
JPH09205006A (en) Nonlinear voltage resistor and its manufacturing method
JP3311872B2 (en) Conductive ceramics
JP3462280B2 (en) Alumina-based sintered material for ceramic heater and ceramic heater
JPH07147204A (en) Metal oxide based resistor, power resistor, and power breaker
JPH10106810A (en) Zno ceramic resistor and its manufacture
JP2786367B2 (en) Gas insulated circuit breaker
JP3423751B2 (en) Ceramic linear resistor and neutral grounding resistor using it
CN116745923A (en) Perovskite structure, preparation method thereof and application of perovskite structure in electrode and solid oxide battery
JPH06168802A (en) Ceramics linear resistor and breaker used thereof
CN114436653A (en) Anti-reduction potassium-sodium niobate based lead-free piezoelectric ceramic with fatigue resistance, high inverse voltage resistance and high stability and preparation method thereof