JPH10341149A - Bipolar level shift circuit - Google Patents

Bipolar level shift circuit

Info

Publication number
JPH10341149A
JPH10341149A JP9151399A JP15139997A JPH10341149A JP H10341149 A JPH10341149 A JP H10341149A JP 9151399 A JP9151399 A JP 9151399A JP 15139997 A JP15139997 A JP 15139997A JP H10341149 A JPH10341149 A JP H10341149A
Authority
JP
Japan
Prior art keywords
potential
circuit
type mosfet
low
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9151399A
Other languages
Japanese (ja)
Other versions
JP3624629B2 (en
Inventor
Masami Hashimoto
正美 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP15139997A priority Critical patent/JP3624629B2/en
Publication of JPH10341149A publication Critical patent/JPH10341149A/en
Application granted granted Critical
Publication of JP3624629B2 publication Critical patent/JP3624629B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Logic Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a level shift circuit that converts both positive and negative levels of a low level system into those of a high level system simultaneously with low power consumption by connecting an output terminal of a low level system signal drive circuit having a diode to a high level system latch circuit consisting of inverter circuits in cross connection. SOLUTION: A low level system signal drive circuit 30 employs power supplies whose voltages are -VSS1 and +VDD1 and has diodes 32, 34 at its output terminal. A high level system latch circuit employs power supplies whose voltages are -VSS2 and +VDD2 and has inverter circuits in cross connection. Then a signal from the low level system signal drive circuit 30 is fed directly to the high level system latch circuit. Thus, the high level system latch circuit is inverted by the signal from the low level system signal drive circuit 30. Furthermore, since the diodes 32, 34 are provided to the low level system signal drive circuit 30, a reverse flow from the power supplies of the high level system to the power supplies of the low level system is prevented. As a result, bipolar level conversion is attained with low power consumption without a leakage current.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は絶縁ゲート電界効果
型トランジスタ(以下MOSFETと略す)を用いた半
導体集積回半導体集積回路装置、もしくは該部品を用い
た装置において、負極性および正極性の計4電位以上の
電源を用い、各回路において異なる電位の低電圧系(小
振幅)の信号を高電位系(大振幅)の信号に変換するレ
ベルシフト回路の構成に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor integrated circuit device using an insulated gate field effect transistor (hereinafter abbreviated as a MOSFET) or a device using such parts, which has a negative polarity and a positive polarity. The present invention relates to a configuration of a level shift circuit that converts a low-voltage (small-amplitude) signal having a different potential into a high-potential (large-amplitude) signal in each circuit using a power supply having a potential or higher.

【0002】[0002]

【従来の技術】従来の代表的なレベルシフト回路は図6
の特公昭57−59690号公報の如く、片側の信号レ
ベルのみの変換回路であった。あるいは小振幅を大振幅
に変換するという意味においては図7のようにコンパレ
ータ回路、もしくはオペアンプ回路で小振幅を電源の電
位まで増幅して変換していた。
2. Description of the Related Art A typical conventional level shift circuit is shown in FIG.
As shown in Japanese Patent Publication No. 57-59690, a conversion circuit for only one signal level is used. Alternatively, in the sense of converting a small amplitude into a large amplitude, a small amplitude is amplified to a power supply potential and converted by a comparator circuit or an operational amplifier circuit as shown in FIG.

【0003】[0003]

【発明が解決しようとする課題】さて、前述した従来の
片側のレベル信号レベルのみの変換回路では4電位以上
の多電源の回路には適用できないという問題点があっ
た。またコンパレータ回路もしくはオペアンプ回路によ
る方法では常時、多大な電流が流れ続けるという問題点
があった。
There is a problem in that the above-described conventional conversion circuit of one side only having a level signal level cannot be applied to a circuit of multiple power supplies having four or more potentials. Further, the method using the comparator circuit or the operational amplifier circuit has a problem that a large amount of current always flows.

【0004】そこで本発明はこのような問題点を解決す
るもので、その目的とするところは4電位以上の多電源
回路における低電位系(小振幅)の信号を高電位系(大
振幅)の信号に、つまり正極性側も負極性側も同時に変
換し、かつ一度変換された後にはリーク電流が存在しな
い回路構成、つまり低消費電力のレベルシフト回路を提
供することである。
Accordingly, the present invention is to solve such a problem. It is an object of the present invention to convert a signal of a low potential system (small amplitude) in a multi-power supply circuit of four or more potentials into a signal of a high potential system (large amplitude). An object of the present invention is to provide a circuit configuration in which a signal, that is, both a positive polarity side and a negative polarity side are converted at the same time, and after conversion once, there is no leakage current, that is, a low power consumption level shift circuit.

【0005】[0005]

【課題を解決するための手段】本発明の両極性レベルシ
フト回路は、低電位系の電源に接続され、かつ出力端子
にダイオード手段を有した低電位系信号駆動回路と、高
電位系の電源に接続され、インバータ回路をたすきがけ
した高電位系ラッチ回路からなり、前記低電位系信号駆
動回路の信号を前記高電位系ラッチ回路に直接加えたこ
とを特徴とする。
According to the present invention, there is provided a bipolar level shift circuit connected to a low potential power supply and having a diode means at an output terminal, and a high potential power supply. And a high-potential-system latch circuit connected to an inverter circuit, and a signal of the low-potential-system signal drive circuit is directly applied to the high-potential-system latch circuit.

【0006】[0006]

【作用】本発明の上記の構成によれば、高電位系ラッチ
回路はインバータ回路のたすきがけで出来ているので、
低電位系信号駆動回路の信号によって高電位系のラッチ
回路を反転することができる。また、低電位系信号駆動
回路の出力端子にはダイオード手段を有しているので高
電位系の電源から低電位系の電源への逆流が防げる。以
上によりリーク電流のない低消費電力の両極性のレベル
変換ができる。
According to the above configuration of the present invention, since the high-potential-system latch circuit is formed by crossing the inverter circuit,
A high-potential latch circuit can be inverted by a signal from the low-potential signal driver circuit. In addition, since the output terminal of the low-potential-system signal drive circuit has a diode means, backflow from the high-potential-system power supply to the low-potential-system power supply can be prevented. As described above, low power consumption bipolar level conversion without leakage current can be performed.

【0007】[0007]

【発明の実施の形態】以下、実施例により本発明の詳細
を示す。図1は本発明の第1の実施例を示す回路図であ
る。図1において破線20に囲まれた中の回路は低電位
系信号駆動回路である。低電位系信号駆動回路20は−
SS1、+VDD1の電源を用いている。破線23に
囲まれた回路は高電位系ラッチ回路である。高電位系ラ
ッチ回路23は−VSS2、+VDD2の電源を用いて
いる。ここで−VSS2、−VSS1、+VDD1、+
DD2の各電源電位の関係を図示したのが図2であ
る。図2において−VSS2は負極性の第2電源電位、
−VSS1は負極性の第1電源電位、+VDD1は正極
性の第1電源電位、+VDD2は正極性の第2電位であ
る。さて、図1の破線20の中において11、12はP
型MOSFETであり、13、14はN型MOSFET
である。P型MOSFET11のソース電極は+V
DD1に接続され、ドレイン電極はP型MOSFET1
2のソース電極に接続されている。P型MOSFET1
2のゲート電極とドレイン電極は互いに接続されてい
る。N型MOSFET13のソース電極は−VSS1
接続され、ドレイン電極はN型MOSFET14のソー
ス電極に接続されている。N型MOSFET14のゲー
ト電極とドレイン電極は互いに接続され、かつP型MO
SFET12のドレイン電極に接続されているとともに
低電位系信号駆動回路20の出力端子22となってい
る。またP型MOSFET11とN型MOSFET13
のそれぞれのゲート電極は互いに接続されれ、かつ低電
位系信号駆動回路20の入力端子21となっている。な
お、MOSFET11、12、15、16、17、18
の基板電位はソース電位と同一電位となるように接続さ
れているが、MOSFET12、14は例外であって、
P型MOSFET12の基板は+VDD2に、N型MO
SFET14の基板は−VSS2に接続されている。ま
た、破線23の中において、15、16はP型MOSF
ETであり、N型MOSFET17、18はN型MOS
FETである。P型MOSFET15、16のソース電
極は+VDD2に接続されている。N型MOSFET1
7、18のソース電極は−VSS2に接続されている。
P型MOSFET15とN型MOSFET17のゲート
電極とドレイン電極はともにそれぞれ接続され、第1の
インバータ回路を形成している。またP型MOSFET
16とN型MOSFET18のゲート電極とドレイン電
極はともにそれぞれ接続され、第2のインバータ回路を
形成している。また第1のインバータ回路の出力端子は
高電位系ラッチ回路23の反転出力端子24となってい
るとともに第2のインバータ回路のゲート入力端子に接
続されている。また第2のインバータ回路の出力端子は
高電位系ラッチ回路23の出力端子25となっていると
ともに第1のインバータ回路のゲート入力端子に接続さ
れている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to examples. FIG. 1 is a circuit diagram showing a first embodiment of the present invention. In FIG. 1, a circuit surrounded by a broken line 20 is a low-potential-system signal driving circuit. The low potential signal drive circuit 20
V SS1, are using the power of + V DD1. A circuit surrounded by a broken line 23 is a high potential latch circuit. The high-potential-system latch circuit 23 uses a power supply of -VSS2 and + VDD2 . Here, -VSS2 , -VSS1 , + VDD1 , +
FIG. 2 illustrates the relationship between the power supply potentials of VDD2 . In FIG. 2, -VSS2 is a second power supply potential of negative polarity,
-VSS1 is a negative first power supply potential, + VDD1 is a positive first power supply potential, and + VDD2 is a positive second potential. By the way, in the broken line 20 in FIG.
13 and 14 are N-type MOSFETs
It is. The source electrode of the P-type MOSFET 11 is + V
DD1 and the drain electrode is a P-type MOSFET1
2 source electrodes. P-type MOSFET1
The gate electrode and the drain electrode are connected to each other. The source electrode of the N type MOSFET13 are connected to -V SS1, the drain electrode is connected to the source electrode of the N-type MOSFET 14. The gate electrode and the drain electrode of the N-type MOSFET 14 are connected to each other, and
It is connected to the drain electrode of the SFET 12 and serves as an output terminal 22 of the low-potential signal drive circuit 20. P-type MOSFET 11 and N-type MOSFET 13
Are connected to each other and serve as input terminals 21 of the low-potential-system signal drive circuit 20. The MOSFETs 11, 12, 15, 16, 17, 18
Are connected so as to have the same potential as the source potential, except for MOSFETs 12 and 14,
The substrate of the P-type MOSFET 12 is connected to + V DD2 and the N-type
Substrate SFET14 is connected to the -V SS2. In the broken line 23, 15 and 16 are P-type MOSFs.
ET, and N-type MOSFETs 17 and 18 are N-type MOS
FET. The source electrode of the P-type MOSFET15,16 is connected to + V DD2. N-type MOSFET1
Source electrodes 7 and 18 are connected to -VSS2 .
The gate electrode and the drain electrode of the P-type MOSFET 15 and the N-type MOSFET 17 are both connected to each other to form a first inverter circuit. Also P-type MOSFET
The gate electrode and the drain electrode of the N-type MOSFET 16 and the N-type MOSFET 18 are connected together to form a second inverter circuit. The output terminal of the first inverter circuit is the inverted output terminal 24 of the high-potential latch circuit 23 and is connected to the gate input terminal of the second inverter circuit. The output terminal of the second inverter circuit is the output terminal 25 of the high-potential latch circuit 23 and is connected to the gate input terminal of the first inverter circuit.

【0008】さて、低電位系信号駆動回路20の入力端
子21に正の極性の信号が入力したとすると、出力端子
22には−VSS1もしくはN型MOSFET14のス
レッショルド電圧分だけ降下(上昇)した電位が発生
し、高電位系ラッチ回路23の反転出力端子24に加わ
る。このとき、P型MOSFET15の駆動能力より、
N型MOSFET13、14の駆動能力を充分に高く設
定しておくと、P型MOSFET16とN型MOSFE
T18からなる第2のインバータ回路は反転して出力端
子25に+VDD2を出力するとともにP型MOSFE
T15とN型MOSFET17からなる第1のインバー
タ回路も反転して反転出力端子24は−VSS2とな
る。なお、このときN型MOSFET14のソース電極
とドレイン電極に−VSS2と−VSS1が加わること
になるが、ゲート電極が接続されている電極側に−V
SS2が加わっているので電流が流れることはない。低
電位系信号駆動回路20の入力端子21に負の極性の信
号が入力した場合には以上のほぼ逆なことが起こり、出
力端子25には+VDD2が出力され、P型MOSFE
T12のソース電極とドレイン電極に+VDD2と+V
DD1が加わることになるが、ゲート電極が接続されて
いる電極側に+VDD2が加わっているので電流が流れ
ることはない。以上より、−VSS1、+VDD1の低
電位系信号駆動回路20の信号が高電位系ラッチ回路2
3を経ることにより、−VSS2、+VDD2の信号に
置き変わり、かつ静止状態においてはリーク電流の生じ
ない両極性のレベルシフト回路となっていることが解
る。
If a signal having a positive polarity is input to the input terminal 21 of the low-potential-system signal drive circuit 20, the output terminal 22 drops (rises) by -VSS1 or the threshold voltage of the N-type MOSFET 14. A potential is generated and applied to the inverting output terminal 24 of the high potential latch circuit 23. At this time, due to the driving capability of the P-type MOSFET 15,
If the driving capabilities of the N-type MOSFETs 13 and 14 are set sufficiently high, the P-type MOSFET 16 and the N-type MOSFET
P-type MOSFE with the second inverter circuit consisting of T18 and outputs the + V DD2 to the output terminal 25 is inverted
T15 in the first inverter circuit inverting an output terminal 24 be inverted of N type MOSFET17 becomes -V SS2. At this time, -VSS2 and -VSS1 are applied to the source electrode and the drain electrode of the N-type MOSFET 14, but -V SS2 is applied to the electrode side to which the gate electrode is connected.
Since SS2 is added, no current flows. When a signal of a negative polarity is input to the input terminal 21 of the low-potential-system signal drive circuit 20, the reverse of the above occurs substantially, and + V DD2 is output to the output terminal 25, and the P-type MOSFE
+ V DD2 and + V are applied to the source and drain electrodes of T12.
Although DD1 is applied, no current flows because + V DD2 is applied to the electrode side to which the gate electrode is connected. From the above, -V SS1, + signal of the low-potential system signal driving circuit 20 of V DD1 a high potential system latch circuit 2
It can be seen that after going through 3, the signal is replaced with the signals of -VSS2 and + VDD2 , and the bipolar level shift circuit does not generate a leak current in the stationary state.

【0009】図3は本発明の第2の実施例である。図3
の破線で示す低電位系信号駆動回路30の中の32、3
4はP拡散とN拡散からなるダイオードであり、図
1のMOSFET12、14を置き換えたものである。
FIG. 3 shows a second embodiment of the present invention. FIG.
32, 3 in the low-potential-system signal drive circuit 30 indicated by the broken line
Reference numeral 4 denotes a diode composed of P + diffusion and N + diffusion, which replaces the MOSFETs 12 and 14 in FIG.

【0010】図4は本発明の第3の実施例である。図4
において、40、41はともに低電位系信号駆動回路で
ある。第1の低電位系信号駆動回路40は図1の回路と
同様であるが、図4の第2の低電位系信号駆動回路41
の入力端子にはインバータ回路49を通した反転信号が
加えられ、出力端子46は高電位系ラッチ回路43の出
力端子45に加えられている。この回路手法では高電位
系ラッチ回路43に二本の差動信号が入力するので応答
性が高まる特長がある。
FIG. 4 shows a third embodiment of the present invention. FIG.
, 40 and 41 are low-potential-system signal drive circuits. The first low-potential-system signal drive circuit 40 is the same as the circuit of FIG.
The inverted signal passed through the inverter circuit 49 is applied to the input terminal of the high-potential system latch circuit 43, and the output terminal 46 is applied to the output terminal 45 of the high-potential latch circuit 43. This circuit method has a feature that the responsiveness is improved because two differential signals are input to the high-potential-system latch circuit 43.

【0011】図5は本発明の第4の実施例である。図5
においては図4のインバータ回路49を省略して第1の
低電位系信号駆動回路50から第2の低電位系信号駆動
回路51の入力信号を得ている。この回路は図4の回路
に比較して若干素子数が減少する特長がある。
FIG. 5 shows a fourth embodiment of the present invention. FIG.
In FIG. 4, the input signal of the second low-potential-system signal driving circuit 51 is obtained from the first low-potential-system signal driving circuit 50 by omitting the inverter circuit 49 of FIG. This circuit has a feature that the number of elements is slightly reduced as compared with the circuit of FIG.

【0012】また、以上は計4電位の場合を説明してき
たが、5電位以上であってその間のレベル変換であって
もよい。
In the above description, the case of a total of four potentials has been described. However, a level conversion of five potentials or more may be used.

【0013】[0013]

【発明の効果】以上、述べたように本発明によれば、低
電位系(小振幅)の信号を高電位系(大振幅)の信号に
正極側と負極側同時に変換できるという効果がある。
As described above, according to the present invention, there is an effect that a signal of a low potential system (small amplitude) can be simultaneously converted into a signal of a high potential system (large amplitude) on the positive electrode side and the negative electrode side.

【0014】また、動作が終了した静止状態においては
リーク電流が流れず、低消費電力であるという効果があ
る。
Further, there is an effect that no leakage current flows in the stationary state where the operation is completed, and the power consumption is low.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例を示す回路図である。FIG. 1 is a circuit diagram showing a first embodiment of the present invention.

【図2】本発明が使用される多電源系の各電位の関係を
示した電位関係図である。
FIG. 2 is a potential relationship diagram showing a relationship between respective potentials of a multiple power supply system in which the present invention is used.

【図3】本発明の第2の実施例を示す回路図である。FIG. 3 is a circuit diagram showing a second embodiment of the present invention.

【図4】本発明の第3の実施例を示す回路図である。FIG. 4 is a circuit diagram showing a third embodiment of the present invention.

【図5】本発明の第4の実施例を示す回路図である。FIG. 5 is a circuit diagram showing a fourth embodiment of the present invention.

【図6】従来例のレベルシフト回路を示す回路図であ
る。
FIG. 6 is a circuit diagram showing a conventional level shift circuit.

【図7】従来例の小振幅を大振幅に変換する回路例を示
す回路図である。
FIG. 7 is a circuit diagram showing an example of a conventional circuit for converting a small amplitude into a large amplitude.

【符号の説明】[Explanation of symbols]

11、12、15、16・・・P型MOSFET 13、14、17、18・・・N型MOSFET 20、30、40、41、50、51・・・低電位系信
号駆動回路 21、22、24、25、45、46・・・端子 23、43・・・高電位系ラッチ回路 49・・・インバータ回路
11, 12, 15, 16 ... P-type MOSFET 13, 14, 17, 18 ... N-type MOSFET 20, 30, 40, 41, 50, 51 ... Low-potential-system signal drive circuit 21, 22, 24, 25, 45, 46 terminal 23, 43 high-potential latch circuit 49 inverter circuit

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】a)第1、第2、第3、第4の各電位の電
源電位を有する絶縁ゲート電界効果型トランジスタ(以
下MOSFETと略す)を用いた半導体集積回路装置に
おいて、 b)第4電位の電源にソース電位を接続した第1、第2
P型MOSFETと第1電位の電源にソース電位を接続
した第1、第2N型MOSFETとからなり、前記第1
P型MOSFETと第1N型MOSFETのそれぞれの
ゲート電極、およびドレイン電極は互いに接続され第1
インバータ回路を形成し、前記第2P型MOSFETと
第2N型MOSFETのそれぞれのゲート電極、および
ドレイン電極は互いに接続され第2インバータ回路を形
成し、該第1、第2インバータ回路の入力端子となるゲ
ート電極と出力端子となるドレイン電極はそれぞれ互い
にたすきがけに接続されている以上の構成からなる高電
位系ラッチ回路と、 c)第3電位の電源にソース電極を接続した第3P型M
OSFETと、前記第3P型MOSFETのドレイン電
極に正側の電極を接続した第1のダイオード手段と、前
記第1のダイオード手段の負側の電極に正側の電極を接
続した第2のダイオード手段と、前記第2のダイオード
手段の負側の電極にドレイン電極を接続し、かつソース
電極は第2電位の電源に接続した第3N型MOSFET
とからなり、前記第3P型MOSFETと第3N型MO
SFETのゲート電極は互いに接続され低電位系の信号
入力端子となり、前記第1のダイオードと第2のダイオ
ードの接続点が出力端子となっている以上の構成からな
る低電位系信号駆動回路とからなり、 d)前記低電位系信号駆動回路の出力端子が前記高電位
系ラッチ回路の反転出力端子に接続されていることを特
徴とする両極性レベルシフト回路。
1. A semiconductor integrated circuit device using an insulated gate field effect transistor (hereinafter abbreviated as a MOSFET) having first, second, third and fourth power supply potentials. First and second power sources connected to a four-potential power source
A first N-type MOSFET having a source potential connected to a power source of a first potential;
The gate electrode and the drain electrode of the P-type MOSFET and the first N-type MOSFET are connected to each other and
An inverter circuit is formed, and a gate electrode and a drain electrode of the second P-type MOSFET and the second N-type MOSFET are connected to each other to form a second inverter circuit, which is an input terminal of the first and second inverter circuits. A high-potential-system latch circuit having a configuration in which a gate electrode and a drain electrode serving as an output terminal are connected to each other at a cross-point; and c) a third P-type M in which a source electrode is connected to a third potential power supply.
An OSFET, first diode means having a positive electrode connected to the drain electrode of the third P-type MOSFET, and second diode means having a positive electrode connected to the negative electrode of the first diode means. And a third N-type MOSFET having a drain electrode connected to the negative electrode of the second diode means and a source electrode connected to a power supply of a second potential.
And the third P-type MOSFET and the third N-type MO
The gate electrodes of the SFETs are connected to each other to serve as a low-potential signal input terminal, and a low-potential-system signal driving circuit having a configuration in which the connection point between the first diode and the second diode serves as an output terminal. D) The bipolar level shift circuit, wherein an output terminal of the low-potential-system signal drive circuit is connected to an inverted output terminal of the high-potential-system latch circuit.
【請求項2】請求項1記載のダイオード手段がゲート電
極とドレイン電極を互いに接続したMOSFETからな
ることを特徴とする両極性レベルシフト回路。
2. A bipolar level shift circuit according to claim 1, wherein said diode means comprises a MOSFET having a gate electrode and a drain electrode connected to each other.
【請求項3】a)第1、第2、第3、第4の各電位の電
源電位を有する絶縁ゲート電界効果型トランジスタ(以
下MOSFETと略す)を用いた半導体集積回路装置に
おいて、 b)第4電位の電源にソース電位を接続した第1、第2
P型MOSFETと第1電位の電源にソース電位を接続
した第1、第2N型MOSFETとからなり、前記第1
P型MOSFETと第1N型MOSFETのそれぞれの
ゲート電極、およびドレイン電極は互いに接続され第1
インバータ回路を形成し、前記第2P型MOSFETと
第2N型MOSFETのそれぞれのゲート電極、および
ドレイン電極は互いに接続され第2インバータ回路を形
成し、該第1、第2インバータ回路の入力端子となるゲ
ート電極と出力端子となるドレイン電極はそれぞれ互い
にたすきがけに接続されている以上の構成からなる高電
位系ラッチ回路と、 c)第3電位の電源にソース電極を接続した第3P型M
OSFETと、前記第3P型MOSFETのドレイン電
極に正側の電極を接続した第1のダイオード手段と、前
記第1のダイオード手段の負側の電極に正側の電極を接
続した第2のダイオード手段と、前記第2のダイオード
手段の負側の電極にドレイン電極を接続し、かつソース
電極は第2電位の電源に接続した第3N型MOSFET
とからなり、前記第3P型MOSFETと第3N型MO
SFETのゲート電極は互いに接続され低電位系の信号
入力端子となり、前記第1のダイオードと第2のダイオ
ードの接続点が出力端子となっている以上の構成からな
る第1低電位系信号駆動回路と、 d)第3電位の電源にソース電極を接続した第4P型M
OSFETと、前記第4P型MOSFETのドレイン電
極に正側の電極を接続した第3のダイオード手段と、前
記第3のダイオード手段の負側の電極に正側の電極を接
続した第4のダイオード手段と、前記第4のダイオード
手段の負側の電極にドレイン電極を接続し、かつソース
電極は第2電位の電源に接続した第4N型MOSFET
とからなり、前記第4P型MOSFETと第4N型MO
SFETのゲート電極は互いに接続され低電位系の信号
入力端子となり、前記第3のダイオードと第4のダイオ
ードの接続点が出力端子となっている以上の構成からな
る第2低電位系信号駆動回路とからなり、 e)前記第2低電位系信号駆動回路の入力端子には前記
第1低電位系信号駆動回路の入力端子とは反転した信号
が加えられ、前記第1低電位系信号駆動回路の出力端子
が前記高電位系ラッチ回路の反転出力端子に接続され、
前記第2低電位系信号駆動回路の出力端子が前記高電位
系ラッチ回路の出力端子に接続されていることを特徴と
する両極性レベルシフト回路。
3. A semiconductor integrated circuit device using an insulated gate field effect transistor (hereinafter abbreviated as a MOSFET) having power supply potentials of first, second, third, and fourth potentials. First and second power sources connected to a four-potential power source
A first N-type MOSFET having a source potential connected to a power source of a first potential;
The gate electrode and the drain electrode of the P-type MOSFET and the first N-type MOSFET are connected to each other and
An inverter circuit is formed, and a gate electrode and a drain electrode of the second P-type MOSFET and the second N-type MOSFET are connected to each other to form a second inverter circuit, which is an input terminal of the first and second inverter circuits. A high-potential-system latch circuit having a configuration in which a gate electrode and a drain electrode serving as an output terminal are connected to each other at a cross-point; and c) a third P-type M in which a source electrode is connected to a third potential power supply.
An OSFET, first diode means having a positive electrode connected to the drain electrode of the third P-type MOSFET, and second diode means having a positive electrode connected to the negative electrode of the first diode means. And a third N-type MOSFET having a drain electrode connected to the negative electrode of the second diode means and a source electrode connected to a power supply of a second potential.
And the third P-type MOSFET and the third N-type MO
A first low-potential-system signal drive circuit having a configuration in which the gate electrodes of the SFETs are connected to each other to serve as a low-potential-system signal input terminal, and the connection point between the first diode and the second diode serves as an output terminal. And d) a fourth P-type M having a source electrode connected to a power supply of a third potential.
An OSFET, third diode means having a positive electrode connected to the drain electrode of the fourth P-type MOSFET, and fourth diode means having a positive electrode connected to the negative electrode of the third diode means. And a fourth N-type MOSFET having a drain electrode connected to the negative electrode of the fourth diode means and a source electrode connected to a power supply of a second potential.
The fourth P-type MOSFET and the fourth N-type MO
A second low-potential-system signal drive circuit having a configuration in which the gate electrodes of the SFETs are connected to each other to serve as a low-potential-system signal input terminal, and the connection point between the third diode and the fourth diode serves as an output terminal. E) a signal inverted from the input terminal of the first low-potential-system signal drive circuit is applied to the input terminal of the second low-potential-system signal drive circuit, and Is connected to the inverted output terminal of the high-potential latch circuit,
An output terminal of the second low-potential-system signal drive circuit is connected to an output terminal of the high-potential-system latch circuit.
【請求項4】請求項3記載のダイオード手段がゲート電
極とドレイン電極を互いに接続したMOSFETからな
ることを特徴とする両極性レベルシフト回路。
4. A bipolar level shift circuit according to claim 3, wherein said diode means comprises a MOSFET having a gate electrode and a drain electrode connected to each other.
【請求項5】請求項3記載の第2低電位系信号駆動回路
の入力端子に加えられる信号が第1低電位系信号駆動回
路から形成されることを特徴とする両極性レベルシフト
回路。
5. A bipolar level shift circuit according to claim 3, wherein the signal applied to the input terminal of the second low-potential-system signal drive circuit is formed from the first low-potential-system signal drive circuit.
JP15139997A 1997-06-09 1997-06-09 Bipolar level shift circuit Expired - Fee Related JP3624629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15139997A JP3624629B2 (en) 1997-06-09 1997-06-09 Bipolar level shift circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15139997A JP3624629B2 (en) 1997-06-09 1997-06-09 Bipolar level shift circuit

Publications (2)

Publication Number Publication Date
JPH10341149A true JPH10341149A (en) 1998-12-22
JP3624629B2 JP3624629B2 (en) 2005-03-02

Family

ID=15517747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15139997A Expired - Fee Related JP3624629B2 (en) 1997-06-09 1997-06-09 Bipolar level shift circuit

Country Status (1)

Country Link
JP (1) JP3624629B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001211065A (en) * 2000-01-26 2001-08-03 Sanyo Electric Co Ltd Level shift circuit
JP2005150989A (en) * 2003-11-13 2005-06-09 New Japan Radio Co Ltd Level shift circuit
US7049876B2 (en) 2004-10-25 2006-05-23 Delphi Technologies, Inc. Level shift circuits and related methods
JP2008067224A (en) * 2006-09-08 2008-03-21 Fuji Electric Device Technology Co Ltd Level shift circuit and dc/dc converter
CN106899289A (en) * 2017-02-23 2017-06-27 电子科技大学 A kind of controllable type level displacement circuit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001211065A (en) * 2000-01-26 2001-08-03 Sanyo Electric Co Ltd Level shift circuit
JP2005150989A (en) * 2003-11-13 2005-06-09 New Japan Radio Co Ltd Level shift circuit
US7049876B2 (en) 2004-10-25 2006-05-23 Delphi Technologies, Inc. Level shift circuits and related methods
JP2008067224A (en) * 2006-09-08 2008-03-21 Fuji Electric Device Technology Co Ltd Level shift circuit and dc/dc converter
CN106899289A (en) * 2017-02-23 2017-06-27 电子科技大学 A kind of controllable type level displacement circuit

Also Published As

Publication number Publication date
JP3624629B2 (en) 2005-03-02

Similar Documents

Publication Publication Date Title
KR940001251B1 (en) Voltage control circuit
US4920284A (en) CMOS level converter circuit with reduced power consumption
JP3069043B2 (en) Power transistor driving method and circuit, and integrated circuit including the circuit
KR100336236B1 (en) Semiconductor integrated circuit device
US4737667A (en) Driving circuitry for a MOSFET having a source load
US20040207450A1 (en) Voltage level shifter and system mounting voltage level shifter therein
KR100301151B1 (en) Logic Amplifier
JPH08204536A (en) Interface circuit and level conversion circuit
JPH10341149A (en) Bipolar level shift circuit
JPH09148913A (en) High potential difference level shift circuit
EP0326996A2 (en) Semiconductor integrated circuit including an effective signal level conversion circuit
JP3624630B2 (en) Bipolar level shift circuit
JP3698040B2 (en) Bipolar level shift circuit
JP2888513B2 (en) Logic circuit
JPH06283979A (en) Level shifter circuit
JPS6232722A (en) Push-pull output circuit
US6218867B1 (en) Pass transistor circuit
US6049226A (en) Level converter
JP3666185B2 (en) Pass transistor logic circuit
JP3292114B2 (en) Driving device for voltage-driven transistor
JPH098638A (en) Cmos input/output buffer circuit
JP3666184B2 (en) Pass transistor logic semiconductor device
JPH04304011A (en) Interface circuit for isolator
JP2753247B2 (en) Semiconductor integrated circuit device
JP2776072B2 (en) Level conversion circuit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees