JPH10340628A - Heat resistant conductor - Google Patents
Heat resistant conductorInfo
- Publication number
- JPH10340628A JPH10340628A JP9148191A JP14819197A JPH10340628A JP H10340628 A JPH10340628 A JP H10340628A JP 9148191 A JP9148191 A JP 9148191A JP 14819197 A JP14819197 A JP 14819197A JP H10340628 A JPH10340628 A JP H10340628A
- Authority
- JP
- Japan
- Prior art keywords
- plating layer
- conductor
- heat
- thickness
- conductivity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000004020 conductor Substances 0.000 title claims abstract description 48
- 238000007747 plating Methods 0.000 claims abstract description 44
- 230000007774 longterm Effects 0.000 abstract description 7
- 230000004888 barrier function Effects 0.000 abstract description 6
- 238000009792 diffusion process Methods 0.000 abstract description 4
- 238000009713 electroplating Methods 0.000 abstract description 4
- 229910052802 copper Inorganic materials 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract description 3
- 229910052759 nickel Inorganic materials 0.000 abstract description 3
- 230000002093 peripheral effect Effects 0.000 abstract description 2
- 230000003449 preventive effect Effects 0.000 abstract 2
- 230000000052 comparative effect Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- 238000000576 coating method Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005524 ceramic coating Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
Landscapes
- Insulated Conductors (AREA)
- Wire Processing (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Non-Insulated Conductors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、耐熱性と高導電性
を兼ね備えた耐熱絶縁電線用の耐熱導体に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant conductor for a heat-resistant insulated wire having both heat resistance and high conductivity.
【0002】[0002]
【従来の技術】従来より、耐熱絶縁電線としてはたとえ
ばセラミック被膜線やガラス巻線などが知られており、
セラミック被膜線は、耐熱導体表面に熱分解法やゾルゲ
ル法などの塗布法、あるいはCVD法やPVD法などの
気相法によりセラミックコーティングを施して作製さ
れ、ガラス巻線は、耐熱導体にガラスやアルミナなどの
繊維を巻き付けて作製されている。2. Description of the Related Art Conventionally, as a heat-resistant insulated wire, for example, a ceramic-coated wire or a glass winding has been known.
The ceramic coated wire is made by applying a ceramic coating to the surface of the heat-resistant conductor by a coating method such as a pyrolysis method or a sol-gel method, or a gas phase method such as a CVD method or a PVD method. It is made by winding fibers such as alumina.
【0003】一般的な金属Cu導体は、高温において空
気中の酸素と反応し表面に酸化層が形成されることによ
って機械的特性が低下してしまうため、そのような高温
における機械的強度の低下が少ないものが、耐熱導体と
して使用されている。具体的には、Ag線、Ni線、ス
テンレス鋼(以下SUSと記す)線などのようにCu以
外の金属導体、あるいはNiメッキCu線、Niクラッ
ドCu線、SUSクラッドCu線などのように、Cuの
表面に酸素を遮断する層を形成するようにした導体が、
耐熱導体として例示される。[0003] Since a general metal Cu conductor reacts with oxygen in the air at a high temperature to form an oxide layer on its surface, which deteriorates the mechanical properties, the mechanical strength at such a high temperature decreases. Those with few are used as heat-resistant conductors. Specifically, metal conductors other than Cu, such as Ag wire, Ni wire, stainless steel (hereinafter referred to as SUS) wire, or Ni-plated Cu wire, Ni-clad Cu wire, SUS-clad Cu wire, etc. A conductor that forms a layer that blocks oxygen on the surface of Cu is
Exemplified as a heat-resistant conductor.
【0004】ところで近年、これら耐熱電線にはこれま
で以上に厳しい温度条件や電気特性が要求されるように
なり、400℃の高温でも機械的強度の低下が少ないと
いうすぐれた耐熱性とともに高い導電性を、長期に亘っ
て示すことが求められている。[0004] In recent years, these heat-resistant electric wires have been required to have more severe temperature conditions and electric characteristics than ever before, and have excellent heat resistance such that the decrease in mechanical strength is small even at a high temperature of 400 ° C and high electric conductivity. For a long period of time.
【0005】しかしながら、上記した従来の耐熱導体に
よってでは、そのような要求が充分に満たされていると
はいえず、耐熱性と導電性のどちらかを用途に合わせて
犠牲にしているが現状である。However, the above-mentioned conventional heat-resistant conductor does not sufficiently satisfy such requirements, and either heat resistance or conductivity is sacrificed according to the application. is there.
【0006】たとえば、上記した従来の耐熱導体のう
ち、Ag線はCu線よりも高い導電率を有しているが、
高温での長期使用では軟化して機械的強度が極端に低下
してしまうため、耐熱性に問題がある。Ni線やSUS
線は、400℃程度の高温においても表面に酸化層が生
じにくくすぐれた耐熱性を示すが、導電率はCu線より
も格段に低いため高導電率が要求される用途には不向き
である。SUSクラッドCu線は、大気中の酸素が最外
層のSUS層によって遮られて内側のCu層に達しない
ため、酸化層が生じるおそれもなく、400℃程度の温
度領域での長期使用においても導電率が変化しにくい。
しかしながらSUS層の厚さは、加工性の問題から数十
μm以下にすることは困難であり、そのような厚さのS
US層を備えることによって導電率はCu線に比べて低
くなってしまう。したがって高導電率が要求される用途
にはあまり適さない。For example, among the conventional heat-resistant conductors described above, an Ag wire has a higher conductivity than a Cu wire,
When used for a long time at a high temperature, the material is softened and the mechanical strength is extremely reduced, so that there is a problem in heat resistance. Ni wire or SUS
Although the wire has excellent heat resistance even at a high temperature of about 400 ° C., an oxide layer is less likely to be formed on the surface, but the conductivity is much lower than that of the Cu wire, so it is not suitable for applications requiring high conductivity. Since the SUS clad Cu wire does not reach the inner Cu layer because oxygen in the atmosphere is blocked by the outermost SUS layer, there is no possibility that an oxidized layer is formed and the SUS clad Cu wire is conductive even in long-term use in a temperature range of about 400 ° C. The rate is hard to change.
However, it is difficult to reduce the thickness of the SUS layer to several tens μm or less due to the problem of workability.
By providing the US layer, the conductivity is lower than that of the Cu wire. Therefore, it is not very suitable for applications requiring high conductivity.
【0007】一方、NiメッキCu線やNiクラッドC
u線は、耐熱性もよく導電率もCu線に比べて低下も少
なく、耐熱絶縁電線用の耐熱導体として一般的である。On the other hand, Ni-plated Cu wire or Ni-clad C
The u wire has a good heat resistance and a small decrease in electric conductivity compared to the Cu wire, and is generally used as a heat resistant conductor for heat resistant insulated wires.
【0008】[0008]
【発明が解決しようとする課題】しかしながら、Niと
Cuとが接していると相互拡散が生じ易く、400℃以
上の温度で長期に亘って使用した場合には、Cu中にN
iが拡散することによる導電率の低下が起こる。さら
に、Cuの表面を覆っているNiがCu中に全て拡散す
るようなことが局所的にでも起これば、その部分のCu
は外気に触れるようになり酸素と反応してCuOやCu
2 Oのような酸化層が形成され、最悪の場合に導体の断
線や被膜剥離が生じる。このように、NiメッキCu線
やNiクラッドCu線は、耐熱性も導電性も良好ではあ
るが長期使用に耐え得るだけの信頼性には欠けるという
難点を有している。However, when Ni and Cu are in contact with each other, mutual diffusion is likely to occur, and when used at a temperature of 400 ° C. or more for a long time, N
The conductivity decreases due to the diffusion of i. Furthermore, if all of the Ni covering the surface of Cu diffuses into Cu, even if locally,
Comes into contact with the outside air and reacts with oxygen to react with CuO or Cu
An oxide layer such as 2 O is formed, and in the worst case, the conductor is disconnected or the coating is peeled off. As described above, the Ni-plated Cu wire and the Ni-clad Cu wire have good heat resistance and conductivity, but have a drawback that they lack reliability enough to withstand long-term use.
【0009】このように従来の耐熱導体は一長一短であ
って、耐熱性、導電率および長期使用の信頼性の全てを
満足するものは、未だ得られていない。本発明は上記事
情から、従来の耐熱導体の難点を解消しようとして成さ
れたものであり、長期使用に耐え得る安定した耐熱性お
よび導電性を示す耐熱導体を提供することを、その目的
としている。As described above, the conventional heat-resistant conductor has advantages and disadvantages, and a material which satisfies all of the heat resistance, the electric conductivity, and the reliability for long-term use has not yet been obtained. The present invention has been made in view of the above circumstances to solve the problems of conventional heat-resistant conductors, and has as its object to provide a heat-resistant conductor that exhibits stable heat resistance and conductivity that can withstand long-term use. .
【0010】[0010]
【課題を解決するための手段】本発明の耐熱導体は、N
iの拡散を妨げるためにNiとCuとの間にバリアを設
けたものであり、Cu導体の外周に、Crメッキ層およ
びNiメッキ層を順に設けてなることを特徴としてい
る。The heat-resistant conductor according to the present invention comprises N
A barrier is provided between Ni and Cu to prevent the diffusion of i, and a Cr plating layer and a Ni plating layer are sequentially provided on the outer periphery of the Cu conductor.
【0011】本発明においてCrメッキ層の厚さは、
0.2〜2μmであることが好ましく、0.2μmより
薄い場合には、メッキ膜が比較的粗い多孔質になり易
く、バリアとしての効果が不十分になるので、好ましく
ない。一方、Crメッキ層は非常に硬質のメッキ膜とな
り2μmを超えて厚い場合には高温下でクラックを生じ
易くなるので、やはり好ましくない。In the present invention, the thickness of the Cr plating layer is
The thickness is preferably 0.2 to 2 μm, and if the thickness is less than 0.2 μm, the plating film tends to be relatively coarse and porous, and the effect as a barrier becomes insufficient, which is not preferable. On the other hand, the Cr plating layer is a very hard plating film, and if it is thicker than 2 μm, cracks easily occur at high temperatures, which is not preferable.
【0012】本発明においてNiメッキ層は、耐熱層と
しての作用の他、Crメッキ層におけるクラック発生防
止の作用を有しており、その厚さは1〜5μmであるこ
とが好ましい。Niメッキ層の厚さが1μmより薄い場
合にはCrメッキ層に対するクラック防止効果が不十分
になり、5μmを超える場合にはNi自体の導電性が低
いため耐熱導体の導電性が低下するので、ともに好まし
くない。In the present invention, the Ni plating layer has a function of preventing the occurrence of cracks in the Cr plating layer in addition to the function as a heat-resistant layer, and preferably has a thickness of 1 to 5 μm. When the thickness of the Ni plating layer is thinner than 1 μm, the effect of preventing cracks on the Cr plating layer becomes insufficient. When the thickness exceeds 5 μm, the conductivity of the heat-resistant conductor decreases because the conductivity of Ni itself is low. Both are not preferred.
【0013】本発明の耐熱導体は、Cu導体の外周表面
に電気メッキなど常法によって、Crメッキ層とNiメ
ッキ層を順に設けることにより、容易に得ることができ
る。電気メッキ法によればメッキ厚さの調整は容易であ
り、得られるメッキ層は多孔性ではあるが合金層を作ら
ないので可撓性に富む。Crメッキ層がNiメッキ層と
Cu導体との中間に入ることで、Ni/Cuの相互拡散
に対するバリア層の働きをする。なお、本発明において
Cu導体としてはとくに制限はないが、純度99.9%
以上の高導電率のものの使用が好ましい。The heat-resistant conductor of the present invention can be easily obtained by sequentially providing a Cr plating layer and a Ni plating layer on the outer peripheral surface of a Cu conductor by electroplating or the like. According to the electroplating method, the plating thickness can be easily adjusted, and the resulting plating layer is porous but rich in flexibility because it does not form an alloy layer. When the Cr plating layer enters between the Ni plating layer and the Cu conductor, it functions as a barrier layer against Ni / Cu interdiffusion. In the present invention, the Cu conductor is not particularly limited, but the purity is 99.9%.
It is preferable to use one having the above high conductivity.
【0014】[0014]
【発明の実施の形態】以下実施例にしたがって本発明の
詳細を説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to embodiments.
【0015】実施例1 外径0.5mmのCu素線に、厚さ1μmのCrメッキ
層と厚さ2μmのNiメッキ層を電気メッキにより形成
して、本発明の耐熱導体を得た。導電率を測定したとこ
ろ、同外径のCu素線を100%としたときの98%と
いう値を得た。Example 1 A 1 μm-thick Cr plating layer and a 2 μm-thick Ni plating layer were formed on a Cu wire having an outer diameter of 0.5 mm by electroplating to obtain a heat-resistant conductor of the present invention. When the conductivity was measured, a value of 98% was obtained when the Cu wire having the same outer diameter was taken as 100%.
【0016】そして、この耐熱導体の高温における安定
性を調べるため、温度400℃の恒温槽中に1000時
間放置した後、取り出して導電率を測定したところ、変
化はみられず98%であった。さらに、425℃の恒温
槽中に1000時間放置した後、取り出して導電率を測
定したところ、やはり98%であった。そして450℃
の恒温槽中に1000時間放置した後、取り出して導電
率を測定したところ変化はみられず98%であった。Then, in order to examine the stability of the heat-resistant conductor at a high temperature, it was left in a thermostat at a temperature of 400 ° C. for 1000 hours, taken out, and measured for its conductivity. . Further, after being left in a constant temperature bath at 425 ° C. for 1000 hours, it was taken out and measured for the electrical conductivity. And 450 ° C
After leaving in a thermostat for 1000 hours, it was taken out and the conductivity was measured. As a result, no change was observed and it was 98%.
【0017】実施例2 Crメッキ層の厚さを2μmとした他は実施例1と同様
にして、本発明の耐熱導体を得た。その導電率は97%
であった。Example 2 A heat-resistant conductor of the present invention was obtained in the same manner as in Example 1 except that the thickness of the Cr plating layer was changed to 2 μm. Its conductivity is 97%
Met.
【0018】そして、この耐熱導体を実施例1と同様に
して400℃、425℃、そして450℃の高温で10
00時間ずつ保持して導電率の変化を調べたところ、各
段階での導電率の変化はみられず、97%であった。Then, the heat-resistant conductor was heated at a high temperature of 400 ° C., 425 ° C., and 450 ° C. in the same manner as in Example 1.
When the change in the electrical conductivity was examined by holding for 00 hours, the electrical conductivity did not change at each stage, and was 97%.
【0019】実施例3 Crメッキ層の厚さを2μm、Niメッキ層の厚さを5
μmとした他は実施例1と同様にして、本発明の耐熱導
体を得た。その導電率は95%であった。Example 3 The thickness of the Cr plating layer was 2 μm and the thickness of the Ni plating layer was 5 μm.
A heat-resistant conductor of the present invention was obtained in the same manner as in Example 1 except that the thickness was changed to μm. Its conductivity was 95%.
【0020】そして、この耐熱導体を実施例1と同様に
して400℃、425℃、そして450℃の高温で10
00時間ずつ保持して導電率の変化を調べたところ、各
段階での導電率の変化はみられず、95%であった。Then, the heat-resistant conductor was heated at a high temperature of 400 ° C., 425 ° C., and 450 ° C. in the same manner as in Example 1.
When the change in the electrical conductivity was examined by holding for 00 hours, the electrical conductivity did not change at each stage, and was 95%.
【0021】比較例1 CrメッキもNiメッキも施さない他は実施例1と同様
で、その導電率を100%として実施例の導電率を測定
した外径0.5mmのCu導体について、実施例と同様
の方法によって高温における安定性を調べようとしたと
ころ、加熱により酸化してしまったため測定不能であっ
た。Comparative Example 1 The same procedure as in Example 1 was carried out except that neither Cr plating nor Ni plating was performed, and the electric conductivity of the example was set to 100%. When the stability at a high temperature was examined by the same method as that described above, the measurement was impossible due to oxidation by heating.
【0022】比較例2 Crメッキを施さずNiメッキ層の厚さを3μmとした
他は実施例1と同様にして、耐熱導体を得た。その導電
率は98%であった。Comparative Example 2 A heat-resistant conductor was obtained in the same manner as in Example 1 except that the thickness of the Ni plating layer was changed to 3 μm without applying Cr plating. Its conductivity was 98%.
【0023】そして、この耐熱導体を実施例1と同様に
して400℃で1000時間保持して導電率の変化を調
べたところ、80%に低下した。さらに425℃で10
00時間保持しようとしたところ、NiがCu中に拡散
してしまったため測定を終了させた。Then, the heat-resistant conductor was held at 400 ° C. for 1000 hours in the same manner as in Example 1 and the change in conductivity was examined. 10 minutes at 425 ° C
When holding for 00 hours, the measurement was terminated because Ni diffused into Cu.
【0024】比較例3 Crメッキ層の厚さを0.1μm、Niメッキ層の厚さ
を3μmとした他は実施例1と同様にして、本発明の耐
熱導体を得た。その導電率は98%であった。Comparative Example 3 A heat-resistant conductor of the present invention was obtained in the same manner as in Example 1 except that the thickness of the Cr plating layer was 0.1 μm and the thickness of the Ni plating layer was 3 μm. Its conductivity was 98%.
【0025】そして、この耐熱導体を実施例1と同様に
して400℃で1000時間保持して導電率の変化を調
べたところ、82%に低下した。さらに425℃で10
00時間保持しようとしたところ、NiがCu中に拡散
してしまったため測定を終了させた。When this heat-resistant conductor was held at 400 ° C. for 1,000 hours in the same manner as in Example 1, and the change in conductivity was examined, it was reduced to 82%. 10 minutes at 425 ° C
When holding for 00 hours, the measurement was terminated because Ni diffused into Cu.
【0026】比較例4 Crメッキ層の厚さを5μm、Niメッキ層の厚さを3
μmとした他は実施例1と同様にして、本発明の耐熱導
体を得た。その導電率は97%であった。Comparative Example 4 The thickness of the Cr plating layer was 5 μm, and the thickness of the Ni plating layer was 3
A heat-resistant conductor of the present invention was obtained in the same manner as in Example 1 except that the thickness was changed to μm. Its conductivity was 97%.
【0027】そして、この耐熱導体を実施例1と同様に
して400℃で1000時間保持して導電率の変化を調
べたところ、65%に低下した。さらに425℃で10
00時間保持しようとしたところ、メッキ層にクラック
が入ってしまったため、測定を終了させた。Then, the heat-resistant conductor was held at 400 ° C. for 1000 hours in the same manner as in Example 1 and the change in conductivity was examined. 10 minutes at 425 ° C
When holding for 00 hours, cracks were formed in the plating layer, and thus the measurement was terminated.
【0028】比較例5 外径0.5mmのCu素線に厚さ100μmのSUSク
ラッドを備えた耐熱導体について、導電率を測定したと
ころ50%という低い値であった。Comparative Example 5 The electrical conductivity of a heat-resistant conductor provided with a SUS clad having a thickness of 100 μm on a Cu wire having an outer diameter of 0.5 mm was measured and found to be as low as 50%.
【0029】そして、この耐熱導体を実施例1と同様に
して400℃、425℃、そして450℃の高温で10
00時間ずつ保持して導電率の変化を調べたところ、各
段階での導電率は50%のままで変化はみられなかっ
た。Then, the heat-resistant conductor was heated at a high temperature of 400 ° C., 425 ° C., and 450 ° C. in the same manner as in Example 1.
When the change in the electrical conductivity was examined while being held for 00 hours, the electrical conductivity at each stage remained unchanged at 50%, and no change was observed.
【0030】これらの実施例および比較例の測定結果を
次の表1に示す。The measurement results of these examples and comparative examples are shown in Table 1 below.
【0031】[0031]
【表1】 表1からも明らかなように、Cu導体に適切な厚さでC
rメッキ層を設けた後Niメッキ層を設けることによっ
て、本発明の耐熱導体は、耐熱温度450℃以上、導電
率95%以上の特性を長期に亘って安定して示すことが
できた。[Table 1] As is evident from Table 1, the thickness of C
By providing the Ni plating layer after the formation of the r plating layer, the heat-resistant conductor of the present invention was able to stably exhibit properties of a heat-resistant temperature of 450 ° C. or more and a conductivity of 95% or more over a long period of time.
【0032】[0032]
【発明の効果】以上説明したように、本発明によれば、
長期使用に耐え得る安定した耐熱性および導電性を示す
耐熱導体を提供し得る。したがって、従来導体の耐熱性
に依存していたセラミック被膜線やガラス巻線などにお
いて、耐熱性および長期使用時の信頼性を向上させるこ
とが可能になる。As described above, according to the present invention,
A heat-resistant conductor exhibiting stable heat resistance and conductivity that can withstand long-term use can be provided. Therefore, it becomes possible to improve the heat resistance and the reliability in long-term use of a ceramic-coated wire, a glass winding, etc., which have conventionally depended on the heat resistance of the conductor.
【0033】[0033]
Claims (3)
Niメッキ層を順に設けてなることを特徴とする耐熱導
体。1. A heat-resistant conductor comprising a Cu conductor and a Cr plating layer and a Ni plating layer sequentially provided on the outer periphery of the Cu conductor.
μmであることを特徴とする特許請求の範囲請求項1記
載の耐熱導体。2. The thickness of the Cr plating layer is 0.2 to 2
2. The heat-resistant conductor according to claim 1, wherein said heat-resistant conductor has a thickness of μm.
であることを特徴とする特許請求の範囲請求項2記載の
耐熱導体。3. The Ni plating layer has a thickness of 1 to 5 μm.
3. The heat-resistant conductor according to claim 2, wherein:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9148191A JPH10340628A (en) | 1997-06-05 | 1997-06-05 | Heat resistant conductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9148191A JPH10340628A (en) | 1997-06-05 | 1997-06-05 | Heat resistant conductor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10340628A true JPH10340628A (en) | 1998-12-22 |
Family
ID=15447295
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9148191A Withdrawn JPH10340628A (en) | 1997-06-05 | 1997-06-05 | Heat resistant conductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10340628A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100688472B1 (en) * | 2005-01-28 | 2007-03-02 | 송기현 | Dohydration hole boring method of 2 column creases pipe for tender ground dohydration synthetic resin material and the 2 column creases pipe for the same |
-
1997
- 1997-06-05 JP JP9148191A patent/JPH10340628A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100688472B1 (en) * | 2005-01-28 | 2007-03-02 | 송기현 | Dohydration hole boring method of 2 column creases pipe for tender ground dohydration synthetic resin material and the 2 column creases pipe for the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS59103216A (en) | Electric contact | |
US3109053A (en) | Insulated conductor | |
US5443905A (en) | Heat and oxidation resistant composite electrical conductor | |
JP2975246B2 (en) | Sn-plated wire for electrical contact and method of manufacturing the same | |
EP0188370A2 (en) | Electrical wire with refractory coating | |
JPH10340628A (en) | Heat resistant conductor | |
US7150924B2 (en) | Metal based resistance heating element and method for preparation therefor | |
JPS63192895A (en) | Coating member | |
JPH11250739A (en) | Heat-resistant conductor | |
JP4090767B2 (en) | Heat-generating material mainly composed of MoSi2 having a low oxygen diffusible glassy coating | |
JPH03105803A (en) | Inorganic insulation wire and its manufacture | |
JPS63195283A (en) | Ceramic coated member | |
JP4276548B2 (en) | Molybdenum external lead wire for lamps with oxidation resistance | |
JPH06309946A (en) | Heat resistant electric wire | |
KR100321402B1 (en) | Molybdenum silicide based heater which has the glassy surface layer with low oxygen diffusivity | |
JPS63299011A (en) | Optical fiber coated with oxide ceramic superconductor | |
JP2773865B2 (en) | Heat- and oxidation-resistant conductor for coil winding | |
JPH0750566B2 (en) | Heat resistant and oxidation resistant conductor for coil winding | |
JPS63292516A (en) | Glass fiber covered with oxide superconductor layer | |
JPH03101005A (en) | Aerial power-transmission line | |
JPH05290644A (en) | Super heat resistant insulated electric wire | |
JPH04301317A (en) | Insulated electric wire | |
JPH0614446B2 (en) | Heat resistant insulated wire | |
JPH05249353A (en) | Metal coated optical fiber and its production | |
JPH04126312A (en) | Metallic base material for superconductive oxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20040907 |