JPH03101005A - Aerial power-transmission line - Google Patents

Aerial power-transmission line

Info

Publication number
JPH03101005A
JPH03101005A JP23790889A JP23790889A JPH03101005A JP H03101005 A JPH03101005 A JP H03101005A JP 23790889 A JP23790889 A JP 23790889A JP 23790889 A JP23790889 A JP 23790889A JP H03101005 A JPH03101005 A JP H03101005A
Authority
JP
Japan
Prior art keywords
interlayer
twisted wire
layer
transmission line
ceramics layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23790889A
Other languages
Japanese (ja)
Inventor
Masanori Ozaki
正則 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP23790889A priority Critical patent/JPH03101005A/en
Publication of JPH03101005A publication Critical patent/JPH03101005A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Insulated Conductors (AREA)

Abstract

PURPOSE:To prevent any damage to a specific conductive ceramics layer while inhibiting generation of pinhole by forming an oxide interlayer on the surface of a twisted wire, and then forming the ceramics layer on the surface of the interlayer. CONSTITUTION:A twisted wire 1 prepared through the process of intertwisting 7 pieces, for example, of metallic element-wires 1 is covered with an interlayer 2 made of an oxide and then is covered with a conductive ceramics layer 3 made of the nitride of transition metal IV/V groups, the carbide thereof and the biboride thereof. The carbide, nitride and biboride respectively of the transition metal IV/V groups all have excellent conductivity so that covering the twisted wire with this ceramics material layer results in improvement in the lightning surge resistance of an aerial power-transmission line. Moreover, metallic elements of same kind of composition contact each other at the interface between the twisted wire 1 and the interlayer 2 while ceramics contact each other at the interface between the interlayer 2 and the conductive ceramics layer 3 so that every interfacial affinity may become excellent to improve every interfacial adhesion as well as to relax stress due to differential thermal expansion. Damage to the conductive ceramics layer 3 is thus prevented while because of the oxide making the interlayer 2, formed by directly oxidizing the twisted wire 1, no defect occurs and covering the periphery of the interlayer with the conductive ceramics layer 3 can prevent generation of a pinhole.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、耐雷性に優れた架空送電線(架空地線を含む
)に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an overhead power transmission line (including an overhead ground wire) with excellent lightning resistance.

〔従来の技術とその課題〕[Conventional technology and its issues]

一般に架空送電線は、裸の銅、アルミニウム、鋼などの
単金属線、またはこれらの複合線を撚合せた撚線が使用
されている。この架空送電線路において発生する事故と
して最も多いのは雪害事故であり、この事故の防止可能
な架空送電線の出現が強く要望されている。
Generally, overhead power transmission lines are made of single metal wires such as bare copper, aluminum, or steel, or stranded wires made by twisting composite wires of these wires. The most common accident that occurs on overhead power transmission lines is snow damage, and there is a strong demand for an overhead power transmission line that can prevent these accidents.

架空送電線は、落雷に遭遇すると雷撃電流にょる発熱で
、撚線に溶損、素線溶断などが発生し、これを防止する
ことは困難であった。
When an overhead power transmission line encounters a lightning strike, the strands of the stranded wires will melt and the wires will melt due to the heat generated by the lightning current, making it difficult to prevent this from happening.

これに鑑み、先に撚線の表面を融点が鉄の融点よりも高
く、かつ導電性を有するセラミックス層により被覆した
架空送電線を捉案した(特願平180476号)。この
架空送電線は耐雷性が著しく向上する優れた効果を示し
た。しかしながら撚線と導電性セラミックス間において
熱膨張の差によりセラミックス層に割れや剥離等の損傷
が生じ易く、また撚線表面の汚染や欠陥によりピンホー
ルが発生し昌い欠点があった。
In view of this, we have previously proposed an overhead power transmission line in which the surface of stranded wires is coated with a ceramic layer that is conductive and has a melting point higher than that of iron (Japanese Patent Application No. 180476). This overhead power transmission line showed an excellent effect of significantly improving lightning resistance. However, due to the difference in thermal expansion between the stranded wire and the conductive ceramic, damage such as cracking or peeling tends to occur in the ceramic layer, and contamination or defects on the surface of the stranded wire can cause pinholes.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は上記の問題につい”ζ検討の結果なされたもの
で、耐雷性に優れ、かつ撚線と導電性セラミックス層と
の親和性を高め熱膨張の差を少なくして、セラミックス
層の割れや剥離などの損傷がなく、また表面汚染や欠陥
を減少してピンホールの発生を抑制した架空送電線を開
発したものである。
The present invention was made as a result of ``ζ study'' on the above-mentioned problem, and it has excellent lightning resistance, improves the affinity between the stranded wire and the conductive ceramic layer, reduces the difference in thermal expansion, and prevents cracking of the ceramic layer. The company has developed an overhead power transmission line that does not suffer from damage such as peeling, reduces surface contamination and defects, and suppresses the occurrence of pinholes.

〔課題を解決するための手段および作用〕本発明は金属
素線からなる撚線の表面に酸化物からなる中間層を形成
し、その表面に最外層として遷移金属■、V族の炭化物
、窒化物、ニホウ化物の内掛なくとも1種を主成分とす
る導電性セラミックス層を形成したことを特徴とする架
空送電線である。
[Means and effects for solving the problems] The present invention forms an intermediate layer made of an oxide on the surface of a stranded wire made of metal wires, and a transition metal (III), a group V carbide, or a nitride as the outermost layer on the surface of the stranded wire. This is an overhead power transmission line characterized by forming a conductive ceramic layer containing at least one type of diboride as a main component.

すなわち本発明は、撚線と最外層の導電性セラミックス
との中間層として、撚線の表面を酸化させて酸化物を形
成することにより、撚線と導電性セラミックス層の親和
性を高め熱膨張の差を小さくしたものである。
In other words, the present invention improves the affinity between the stranded wire and the conductive ceramic layer by oxidizing the surface of the stranded wire to form an oxide as an intermediate layer between the stranded wire and the outermost conductive ceramic layer, thereby reducing thermal expansion. This is a smaller difference.

遷移金属■、■族、例えばTi、Zr、Hf、V、Nb
、Taの炭化物、窒化物、ニホウ化物などは、耐酸化性
、耐硫化性に強く、硬度及び融点が高く、摩耗が少なく
、良好な性質を示すと共に、良好な導電性を有するもの
である。このため、この材料で架空送電線を被覆すると
、架空送電線の耐雷性は従来の架空送電線よりも向上す
る。また雷電流の流れる時間はμsecのオーダーで短
いので被覆層から内部導体金属への熱伝達量は少なく、
内部導体金属の溶損を防ぐことができる。さらに架空地
線は避雷作用を果すために、その外層は導電性であるこ
とが必要であり、その体積電気抵抗率は100μΩ−c
m以下であることが望ましい。
Transition metals of the ■ and ■ groups, such as Ti, Zr, Hf, V, Nb
, Ta carbides, nitrides, diborides, etc. have strong oxidation resistance and sulfidation resistance, high hardness and melting point, little wear, good properties, and good electrical conductivity. Therefore, when overhead power lines are coated with this material, the lightning resistance of the overhead power lines is improved compared to conventional overhead power lines. Also, since the time for lightning current to flow is short, on the order of μsec, the amount of heat transferred from the coating layer to the internal conductor metal is small.
Melting loss of the internal conductor metal can be prevented. Furthermore, in order for the overhead ground wire to perform a lightning protection function, its outer layer must be conductive, and its volume electrical resistivity is 100 μΩ-c.
It is desirable that it be less than m.

ところで、このままでは撚線と導電性セラミックス層の
間において、熱膨張率の差によりセラミックス層に割れ
や剥離が生じる。
By the way, if this continues, the ceramic layer will crack or peel due to the difference in thermal expansion coefficient between the twisted wire and the conductive ceramic layer.

そこで本発明においては、撚線の外周を酸化させて酸化
物の中間層を形成し、撚線と導電性セラミックス層間の
親和性を高め、熱膨張の差を小さくしたものである。こ
のようにすることにより撚線と中間層間は同種の金属で
あり、中間層と導電性セラミックス間はセラミックス同
志で接するため親和性が良く密着性を向上すると共に熱
膨張差による応力を緩和し、導電性セラミックス層の損
傷を防止する。また中間層の酸化物は撚線を直接酸化し
て形成するため欠陥がなく、その外周に導電性セラミッ
クス層を被覆するためビンボールの発生を防止する作用
をなすものである。
Therefore, in the present invention, the outer periphery of the stranded wire is oxidized to form an oxide intermediate layer, thereby increasing the affinity between the stranded wire and the conductive ceramic layer and reducing the difference in thermal expansion. By doing this, the stranded wire and the intermediate layer are made of the same type of metal, and the intermediate layer and the conductive ceramic are in contact with each other as ceramics, so they have good affinity, improve adhesion, and alleviate stress due to the difference in thermal expansion. Prevent damage to the conductive ceramic layer. Further, since the oxide of the intermediate layer is formed by directly oxidizing the stranded wire, there is no defect, and since the outer periphery of the oxide is coated with a conductive ceramic layer, it serves to prevent the occurrence of bottle balls.

しかして本発明において中間層の酸化物は、撚線を大気
中または酸化性雰囲気で加熱処理することや、陽極酸化
処理により形成することができる。
In the present invention, the oxide of the intermediate layer can be formed by heat treating the twisted wire in the air or in an oxidizing atmosphere, or by anodizing.

また金属素線としては、銅線、アルミニウム線、鋼線な
どの他架空送電線の素線として用いられるものが適用で
きる。
Further, as the metal wire, wires used as wires of other overhead power transmission lines, such as copper wire, aluminum wire, and steel wire, can be used.

さらに最外層の導電性セラミックス層としては遷移金属
、■、■族のTi、Zr、Hf、V、Nb、Taの炭化
物、窒化物、ニホウ化物のうち何れか1種を主成分とす
るものが用いられる。
Furthermore, the outermost conductive ceramic layer is one whose main component is one of transition metals, carbides, nitrides, and diborides of Ti, Zr, Hf, V, Nb, and Ta of groups 1 and 2. used.

〔実施例] 以下に本発明の一実施例について説明する。〔Example] An embodiment of the present invention will be described below.

第1図に示すように直径3.2aunφの金属素線(1
)を7本撚合せた線に酸化物からなる中間層(2)を被
覆した後、遷移金属■、V族の窒化物、炭化物、ニホウ
化物の導電性セラミックス層(3)を被覆した例につい
て述べる。
As shown in Figure 1, a metal wire (1
) is coated with an intermediate layer (2) made of an oxide, and then coated with a conductive ceramic layer (3) of a transition metal ■, group V nitride, carbide, or diboride. state

実施例1 アルミニウム素線を7本撚合せた撚線の表面を陽極酸化
処理により酸化させて中間層を形成した後、その表面に
化学蒸着によりZrBz層を70μの厚さに形成して架
空送電線を作製した。
Example 1 After oxidizing the surface of a stranded wire made of seven aluminum wires by anodizing treatment to form an intermediate layer, a ZrBz layer with a thickness of 70 μm was formed on the surface by chemical vapor deposition, and the wire was transported overhead. An electric wire was made.

実施例2 銅素線を7本撚合せた撚線の表面を大気中加熱処理によ
り酸化させて中間層を形成した後、その表面に反応性蒸
着によりZrN層を60−の厚さに形成して架空送電線
を作製した。
Example 2 After oxidizing the surface of a stranded wire consisting of seven copper wires twisted together in the atmosphere to form an intermediate layer, a ZrN layer with a thickness of 60 mm was formed on the surface by reactive vapor deposition. An overhead power transmission line was fabricated.

実施例3 硬鋼素線を7本撚合せた撚線の表面を酸素雰囲気中で加
熱処理により酸化させて中間層を形成した後、その表面
に減圧プラズマ溶射によりTi13゜層を11001B
の厚さに形成して架空送電線を作製した。
Example 3 After oxidizing the surface of a stranded wire made of seven hard steel wires by heat treatment in an oxygen atmosphere to form an intermediate layer, a 13° Ti layer of 11001B was applied to the surface by low pressure plasma spraying.
An overhead power transmission line was fabricated by forming it to a thickness of .

比較例1 硬鋼素線を7本撚合せた撚線にプラズマ溶射によりTi
Bz層を100Inaの厚さに形成して架空送電線を作
製した。
Comparative Example 1 Ti was applied to a strand of seven hard steel wires by plasma spraying.
An overhead power transmission line was manufactured by forming a Bz layer to a thickness of 100 Ina.

比較例2 硬鋼素線を7本撚合せた架空送電線を作製した。Comparative example 2 An overhead power transmission line was made by twisting seven hard steel wires together.

このようにして作製した上記架空送電線について、ヒー
トサイクル試験、耐酸化性、耐硫化性について調べた。
The above-mentioned overhead power transmission line thus produced was examined for heat cycle tests, oxidation resistance, and sulfidation resistance.

その結果を第1表に示す。The results are shown in Table 1.

第1表 註)O・・・良  精良  ×・・・不良  −・・・
なしなおヒートサイクル試験は、架空送電線を室温から
400℃に加熱することを100サイクル行なって導電
性セラミックス層の外観割れを観察した。
Table 1 Note) O...Good Good ×...Poor -...
In the heat cycle test, an overhead power transmission line was heated from room temperature to 400° C. for 100 cycles, and cracks in the appearance of the conductive ceramic layer were observed.

耐酸化性は架空送電線を400°Cの大気中に500時
間放置してその、表面状況により酸化の程度を観察した
。また耐硫化性は架空送電線を相対湿度90%、硫化水
素toppmの大気中に1000時間放置してその表面
状況を観察した。
Oxidation resistance was determined by leaving an overhead power transmission line in the atmosphere at 400°C for 500 hours and observing the degree of oxidation based on the surface condition. The sulfidation resistance was determined by leaving an overhead power transmission line in an atmosphere with a relative humidity of 90% and a hydrogen sulfide content of TOPPM for 1000 hours and observing the surface condition.

第1表から明らかなように、本発明の架空送電線は耐酸
化性及び耐硫化性が良好で、ヒートサイクル試験におい
て熱膨張差による導電性セラミックス層の損傷のないこ
とが判る。
As is clear from Table 1, the overhead power transmission line of the present invention has good oxidation resistance and sulfidation resistance, and it can be seen that the conductive ceramic layer is not damaged due to the difference in thermal expansion in the heat cycle test.

〔効果〕〔effect〕

以上に説明したように本発明によれば、耐雷性を有し、
かつ密着性が向上すると共に熱膨張による応力を緩和し
、導電性セラミックス層の損傷を防止し、さらにピンホ
ールの発生を防止した架空送電線が得られるもので工業
上顕著な効果を奏するものである。
As explained above, according to the present invention, it has lightning resistance,
Moreover, it is possible to obtain an overhead power transmission line that improves adhesion, alleviates stress caused by thermal expansion, prevents damage to the conductive ceramic layer, and prevents the occurrence of pinholes, which has a significant industrial effect. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る架空送電線の横断面図
である。 1・・・金属素線、 2・・・中間層、 3・・・導電
性セラミックス層。
FIG. 1 is a cross-sectional view of an overhead power transmission line according to an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Metal wire, 2... Intermediate layer, 3... Conductive ceramic layer.

Claims (1)

【特許請求の範囲】[Claims] 金属素線からなる撚線の表面に酸化物からなる中間層を
形成し、その表面に最外層として遷移金属IV、V族の炭
化物、窒化物、ニホウ化物の内少なくとも1種を主成分
とする導電性セラミックス層を形成したことを特徴とす
る架空送電線。
An intermediate layer made of an oxide is formed on the surface of a stranded wire made of metal wires, and the outermost layer on the surface is mainly composed of at least one of carbides, nitrides, and diborides of transition metals IV and V groups. An overhead power transmission line characterized by forming a conductive ceramic layer.
JP23790889A 1989-09-13 1989-09-13 Aerial power-transmission line Pending JPH03101005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23790889A JPH03101005A (en) 1989-09-13 1989-09-13 Aerial power-transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23790889A JPH03101005A (en) 1989-09-13 1989-09-13 Aerial power-transmission line

Publications (1)

Publication Number Publication Date
JPH03101005A true JPH03101005A (en) 1991-04-25

Family

ID=17022219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23790889A Pending JPH03101005A (en) 1989-09-13 1989-09-13 Aerial power-transmission line

Country Status (1)

Country Link
JP (1) JPH03101005A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4592829B1 (en) * 2009-04-15 2010-12-08 昭和電工株式会社 Method for producing transparent conductive material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4592829B1 (en) * 2009-04-15 2010-12-08 昭和電工株式会社 Method for producing transparent conductive material

Similar Documents

Publication Publication Date Title
JP2587890B2 (en) Electrode for electrical discharge machining and method of manufacturing the same
CA1295890C (en) Electrical wire with refractory coating
JP2959872B2 (en) Electrical contact material and its manufacturing method
JPH03101005A (en) Aerial power-transmission line
JPH0374008A (en) Aerial transmission line
US3238025A (en) High-temperature conductor
JP2992501B2 (en) Powder-in-tube type manufacturing method of HTc superconducting multi-wire strand having silver-based matrix
JPH03101004A (en) Aerial power-transmission line
JPH03101006A (en) Aerial power-transmission line
JPH0656722B2 (en) High frequency wire
JPH0547252A (en) Electric contact material and its manufacture
EP0168609A1 (en) Method for repairing pinholes in dielectric layers
US4750187A (en) Graphitic electrode with protective coating
CA1264616A (en) Temperature resistant coated article
JPH06158353A (en) Steel wire for battery spring
CA1241395A (en) Electrical wire and cable
JP3419055B2 (en) Insulated wire
JP2650057B2 (en) Insulated wire conductor
JP2862606B2 (en) Manufacturing method of thermal head
JPS5827334B2 (en) summary line
JP2746273B2 (en) Insulated wire conductor
JP2857775B2 (en) Oxidation resistance treatment method for metal surface
JP2737950B2 (en) Ceramic insulated wire
JPH02165507A (en) Conductor for overhead distribution line
JPH06314586A (en) Composite material for discharge electrode