JP2746273B2 - Insulated wire conductor - Google Patents

Insulated wire conductor

Info

Publication number
JP2746273B2
JP2746273B2 JP63317032A JP31703288A JP2746273B2 JP 2746273 B2 JP2746273 B2 JP 2746273B2 JP 63317032 A JP63317032 A JP 63317032A JP 31703288 A JP31703288 A JP 31703288A JP 2746273 B2 JP2746273 B2 JP 2746273B2
Authority
JP
Japan
Prior art keywords
wire
copper
conductor
coating layer
electric wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63317032A
Other languages
Japanese (ja)
Other versions
JPH02162611A (en
Inventor
繁 奥田
忍 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Sumitomo Electric Industries Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP63317032A priority Critical patent/JP2746273B2/en
Publication of JPH02162611A publication Critical patent/JPH02162611A/en
Application granted granted Critical
Publication of JP2746273B2 publication Critical patent/JP2746273B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/14Extreme weather resilient electric power supply systems, e.g. strengthening power lines or underground power cables

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、ポリエチレンなどによって絶縁被覆され
る被覆電線用導体に関し、特に電柱間等に架線される被
覆電線用導体に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductor for a coated electric wire which is insulated and coated with polyethylene or the like, and particularly to a conductor for a coated electric wire which is laid between utility poles or the like.

[従来の技術] 電柱間等に架線される架空配電線用導体としては、従
来からタフピッチ銅や無酸素銅を材料とする硬銅線が使
用されている。集合した複数本の硬銅線は撚り合わせら
れ、この撚線上にポリエチレン、ポリ塩化ビニルなどに
よる絶縁被覆が施される。また、銅線の単線として用
い、この単線上に絶縁被覆を施したものである。
[Related Art] Hard copper wires made of tough pitch copper or oxygen-free copper have been used as conductors for overhead distribution lines that are wired between utility poles and the like. The assembled plurality of hard copper wires are twisted, and an insulation coating of polyethylene, polyvinyl chloride, or the like is applied on the twisted wires. Further, it is used as a single copper wire, and the single wire is coated with an insulating coating.

[発明が解決しようとする課題] タフピッチ銅や無酸素銅に冷間伸線加工を施した場
合、得られた線材表面にしばしば残留応力が存在したり
する。残留応力としては、特に引張残留応力が存在す
る。また、撚り合わせられた各銅線表面には、撚りを解
除しようとする撚線反発力が必然的に生ずる。この撚線
反発力は、各銅線の表面上に引張残留応力として現われ
る。さらに、各銅線には、ドラムに巻かれていたときに
ついた巻癖に起因する残留応力が存在することもある。
[Problem to be Solved by the Invention] When cold drawing is performed on tough pitch copper or oxygen-free copper, residual stress often exists on the surface of the obtained wire. As the residual stress, there is particularly a tensile residual stress. In addition, a twisted wire repulsive force for untwisting is inevitably generated on the surface of each twisted copper wire. This stranded wire repulsion appears as a tensile residual stress on the surface of each copper wire. Furthermore, each copper wire may have a residual stress due to a curl generated when the copper wire is wound on the drum.

従来の被覆電線では、上述のような残留応力が1つの
要因となった断線を生じることがあった。したがって、
被覆された電線内に雨水が侵入したりすると、被覆層内
部は腐蝕しやすい環境となり、銅線表面に酸化被膜が形
成したりする。このような腐蝕環境と上述の残留応力と
が互いに影響し合うと、銅線に応力腐蝕割れが生じ、そ
の結果断線にまで至る。
In the case of a conventional coated electric wire, a disconnection in which the above-described residual stress is one factor may occur. Therefore,
If rainwater enters the covered electric wire, the inside of the covering layer becomes an environment that is easily corroded, and an oxide film is formed on the surface of the copper wire. When such a corrosive environment and the above-mentioned residual stress affect each other, stress corrosion cracking occurs in the copper wire, and as a result, the wire breaks.

そこで、この発明は、上述の応力腐蝕割れ現象を生じ
させない被覆電線用導体を提供することを目的とする。
Therefore, an object of the present invention is to provide a conductor for a covered electric wire which does not cause the stress corrosion cracking phenomenon described above.

[課題を解決するための手段] この発明は、銅の素線を複数本集合して撚線にした被
覆電線用導体であって、少なくとも外層に位置する銅素
線の表面にSi被覆層が形成されていることを特徴とす
る。
[Means for Solving the Problems] The present invention relates to a conductor for a covered electric wire in which a plurality of copper wires are assembled into a stranded wire, and a Si coating layer is formed on at least the surface of the copper wire located in the outer layer. It is characterized by being formed.

[発明の作用効果] Siは腐蝕環境に対して安定した性質を示す。一般的に
Siは脆いが、延性のある金属の表面にSi薄膜を形成させ
た場合、金属の変形に従ってSi薄膜もある程度変形する
ことが可能である。
[Effects of the Invention] Si exhibits stable properties against a corrosive environment. Typically
Although Si is brittle, when a Si thin film is formed on the surface of a ductile metal, the Si thin film can be deformed to some extent according to the deformation of the metal.

撚線を構成する銅素線の表面にSi薄膜を形成すると、
たとえ被覆電線内に雨水が侵入したとしても、Si薄膜の
存在によって銅線と雨水とが接触することを防止でき
る。したがって、前述したような応力腐蝕割れによる断
線が生じなくなる。
When a Si thin film is formed on the surface of a copper strand that constitutes a stranded wire,
Even if rainwater enters the covered electric wire, the presence of the Si thin film can prevent the copper wire from contacting the rainwater. Therefore, disconnection due to stress corrosion cracking as described above does not occur.

撚線を構成するすべての銅素線の表面にSi被覆層を形
成してもよいが、応力腐蝕割れが起こりやすい外層の銅
素線の表面にSi被覆層を形成するようにしてもよい。
The Si coating layer may be formed on the surface of all the copper wires constituting the stranded wire, but the Si coating layer may be formed on the surface of the outer copper wire where stress corrosion cracking easily occurs.

Si被覆層の厚みは、好ましくは、0.1〜20μmの範囲
内にあるようにされる。この厚みが0.1μm未満であれ
ば、内部の銅素線を保護する効果が少ない。一方、厚み
が20μmを越えるならば、銅素線が曲げられたときSi被
覆層にクラックが入りやすくなり、雨水と銅素線とが接
触するおそれがある。
The thickness of the Si coating layer is preferably in the range from 0.1 to 20 μm. When the thickness is less than 0.1 μm, the effect of protecting the internal copper wires is small. On the other hand, if the thickness exceeds 20 μm, cracks are likely to occur in the Si coating layer when the copper wire is bent, and there is a possibility that rainwater and the copper wire may come into contact.

Si薄膜を形成する方法として、熱CVD法、減圧CVD法、
プラズマCVD法、光CVD法などの各種CVD法、スパッタリ
ング法、イオンプレーティング法、蒸着法などがある。
CVD法またはスパッタリング法によれば、緻密なSi薄膜
を得ることができる。
As a method of forming a Si thin film, a thermal CVD method, a reduced pressure CVD method,
There are various CVD methods such as a plasma CVD method and an optical CVD method, a sputtering method, an ion plating method, and a vapor deposition method.
According to the CVD method or the sputtering method, a dense Si thin film can be obtained.

[実施例] H2ガスをキャリアガスとし、SiCl4をソースガスとす
る混合ガスが供給されているCVD反応容器内へ、400℃に
加熱されている直径2.0mmφの銅線を連続的に供給し、1
3.56MHzのラジオ波を印加すると、銅線表面にSiの薄膜
が連続的に生成された。こうして、銅線の表面に厚さ5
μmのSi薄膜を形成した。このようにして得られた銅線
を19本集合して撚線にし、この撚線の上にポリエチレン
被覆を施した。
[Example] A copper wire having a diameter of 2.0 mm and heated to 400 ° C is continuously supplied into a CVD reaction vessel supplied with a mixed gas using H 2 gas as a carrier gas and SiCl 4 as a source gas. Then 1
When a 3.56 MHz radio wave was applied, a thin film of Si was continuously formed on the surface of the copper wire. Thus, a thickness of 5
A μm Si thin film was formed. Nineteen copper wires thus obtained were assembled into a stranded wire, and a polyethylene coating was applied on the stranded wire.

この被覆電線の内部に希釈アンモニア水を注入して応
力腐蝕割れテストを行なったところ、3か月経過しても
断線は見られなかった。
When a diluted ammonia water was injected into the inside of the coated electric wire to perform a stress corrosion cracking test, no disconnection was observed even after 3 months.

比較のため、Si被覆層を有していない直径2.0mmφの
銅線を19本集合して撚線にし、この撚線にポリエチレン
被覆を施した。この被覆電線の内部に希釈アンモニア水
を注入して応力腐蝕割れテストを行なったところ、約1
か月経過したときに応力腐蝕割れを起こして断線した。
For comparison, nineteen copper wires having a diameter of 2.0 mm and having no Si coating layer were assembled into a stranded wire, and the stranded wire was coated with polyethylene. When a diluted ammonia water was injected into the inside of the covered electric wire, a stress corrosion cracking test was performed.
After a lapse of months, the wire broke due to stress corrosion cracking.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】銅の素線を複数本集合して撚線にした被覆
電線用導体において、 少なくとも外層に位置する銅素線は、その表面にSi被覆
層が形成されていることを特徴とする、被覆電線用導
体。
An insulated wire conductor in which a plurality of copper strands are assembled into a stranded wire, wherein at least the copper strand located in the outer layer has a Si coating layer formed on the surface thereof. A conductor for insulated wires.
【請求項2】前記Si被覆層の厚みが、0.1〜20μmの範
囲内にある、請求項1に記載の被覆電線用導体。
2. The coated electric wire conductor according to claim 1, wherein the thickness of the Si coating layer is in a range of 0.1 to 20 μm.
【請求項3】前記撚線を構成するすべての銅素線の表面
にSi被覆層が形成されている、請求項1または2に記載
の被覆電線用導体。
3. The insulated wire conductor according to claim 1, wherein an Si coating layer is formed on the surface of all of the copper strands constituting the stranded wire.
【請求項4】前記Si被覆層は、CVD法によって形成され
る、請求項1ないし3のいずれかに記載の被覆電線用導
体。
4. The conductor for a coated electric wire according to claim 1, wherein said Si coating layer is formed by a CVD method.
【請求項5】前記Si被覆層は、スパッタリング法によっ
て形成される、請求項1ないし3のいずれかに記載の被
覆電線用導体。
5. The conductor for a covered electric wire according to claim 1, wherein said Si covering layer is formed by a sputtering method.
JP63317032A 1988-12-15 1988-12-15 Insulated wire conductor Expired - Lifetime JP2746273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63317032A JP2746273B2 (en) 1988-12-15 1988-12-15 Insulated wire conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63317032A JP2746273B2 (en) 1988-12-15 1988-12-15 Insulated wire conductor

Publications (2)

Publication Number Publication Date
JPH02162611A JPH02162611A (en) 1990-06-22
JP2746273B2 true JP2746273B2 (en) 1998-05-06

Family

ID=18083664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63317032A Expired - Lifetime JP2746273B2 (en) 1988-12-15 1988-12-15 Insulated wire conductor

Country Status (1)

Country Link
JP (1) JP2746273B2 (en)

Also Published As

Publication number Publication date
JPH02162611A (en) 1990-06-22

Similar Documents

Publication Publication Date Title
US5209987A (en) Wire and cable
US4330347A (en) Resistive coating for current conductors in cryogenic applications
WO1985000462A1 (en) Wire and cable
EP0188370B1 (en) Electrical wire with refractory coating
JP2746273B2 (en) Insulated wire conductor
KR20080103020A (en) Electrical conductor
JP2650057B2 (en) Insulated wire conductor
CA1264616A (en) Temperature resistant coated article
US6649845B2 (en) Elongate object with insulating coating
JP2565892B2 (en) Electrical wire
JP2845243B2 (en) Conductor for overhead distribution line
JP2004047181A (en) Corrosion resistant electric wire and its manufacturing method
CA1241395A (en) Electrical wire and cable
JP2003031029A (en) Overhead electric wire
CN218918492U (en) Corrugated copper sheath mineral insulated cable
CN206849544U (en) A kind of high temperature resistant radioresistance naval vessel fireproof cable
JPS6319714A (en) Manufacture of conductor for covered wire
CN113314274A (en) Method for manufacturing polyvinyl chloride insulated non-sheath cable
JPS6016683B2 (en) Method for manufacturing overhead insulated wires
JPH03101004A (en) Aerial power-transmission line
JPS6123604B2 (en)
JPS62160606A (en) Conductor for covered wire
GB2183080A (en) Coated electrical conductor
JPH02273412A (en) Coated wire for aerial distribution line
JPH02297804A (en) Lightning resisting ground cable