JPH10339739A - Inertia sensor - Google Patents

Inertia sensor

Info

Publication number
JPH10339739A
JPH10339739A JP16348597A JP16348597A JPH10339739A JP H10339739 A JPH10339739 A JP H10339739A JP 16348597 A JP16348597 A JP 16348597A JP 16348597 A JP16348597 A JP 16348597A JP H10339739 A JPH10339739 A JP H10339739A
Authority
JP
Japan
Prior art keywords
inertial sensor
weight portion
acceleration
signal
signal generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16348597A
Other languages
Japanese (ja)
Inventor
Koichi Washisu
晃一 鷲巣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP16348597A priority Critical patent/JPH10339739A/en
Publication of JPH10339739A publication Critical patent/JPH10339739A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To miniaturize a sensor and to improve detection accuracy by arranging a signal-generating member in parallel with the plane of a weight part and accommodating the length of the signal-generating member being extended radially within the range of the length in the plane direction of the weight part. SOLUTION: A beam 12d that is a strain-voltage conversion member for generating a resistance change due to, for example, a semiconductor strain gauge for generating a signal according to acceleration and angular velocity being applied to an inertia disk 11 is provided. A signal being generated by a pair of beams 12d is amplified by each amplifier 13 and is subjected to arithmetic processing by an addition circuit 14 and a differential circuit 15. Since the beams 12d are extended from an area near the center of gravity of the inertial disk 11, the space of the inertia disk 11 can be used to the limit for the size of the entire inertia sensor, so that the partial inertial force can be fully utilized. Also, the size needs to be only the length of the diameter of the inertia disk 11, thus miniaturizing a sensor. Further, the beams 12d are extended from an area near the center of gravity of the inertia disk 11 irrespective of the shape thereof, thus extending the length of the beams 12d and improving sensitivity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、加速度,角加速度
を検出する慣性センサに関するもので、特に光学機器に
搭載され、光学機器に加わる手振れ振動を検出するのに
好適な慣性センサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inertial sensor for detecting acceleration and angular acceleration, and more particularly to an inertial sensor mounted on an optical device and suitable for detecting a hand vibration applied to the optical device. .

【0002】[0002]

【従来の技術】従来、加速度,角加速度を検出する慣性
センサは、図9(a)に示される様に、重り41と枠体
42、そして枠体42より重り41を支持する梁43
が、一体のSi(シリコン)単結晶基板より形成されて
成る。また、前記重り41を支持する梁43には、ピエ
ゾ抵抗体44が形成されている。
2. Description of the Related Art Conventionally, an inertial sensor for detecting acceleration and angular acceleration has a weight 41, a frame 42, and a beam 43 supporting the weight 41 from the frame 42, as shown in FIG.
Are formed from an integral Si (silicon) single crystal substrate. A piezoresistor 44 is formed on the beam 43 supporting the weight 41.

【0003】図9(b)は、図9(a)の断面図である
が、この状態で角加速度βが加わると、図9(c)の様
に、重り41が慣性により枠体42に対し相対的に回転
する。これにより梁43が撓み、この撓みを複数のピエ
ゾ抵抗体44により検出し、不図示の制御回路によって
演算する事により、角加速度の方向及び大きさを求める
ことができる。
FIG. 9B is a cross-sectional view of FIG. 9A. When an angular acceleration β is applied in this state, the weight 41 is attached to the frame 42 by inertia as shown in FIG. 9C. It rotates relatively to it. Thereby, the beam 43 bends, and the deflection is detected by the plurality of piezoresistors 44, and the direction and magnitude of the angular acceleration can be obtained by calculating by a control circuit (not shown).

【0004】また、リニア加速度αが加わった時は、図
9(d)に示す様に、重り41は枠体42に対し相対的
に移動し、この移動量をピエゾ抵抗体44により検出す
ることで、リニア加速度αの方向と量を検出することが
できる。
When a linear acceleration α is applied, as shown in FIG. 9D, the weight 41 moves relative to the frame 42, and the amount of movement is detected by the piezoresistor 44. Thus, the direction and amount of the linear acceleration α can be detected.

【0005】[0005]

【発明が解決しようとする課題】上記の様な慣性センサ
の感度は、ピエゾ抵抗体44の感度、梁43の剛性と重
り41の重さの関係(固有振動数)で決まってくる。つ
まり、ピエゾ抵抗体44の感度が同一であっても、梁4
3の剛性を弱くしたり、重り41の重さを重くすること
で、該慣性センサの感度を向上させることができる。
The sensitivity of the inertial sensor as described above is determined by the sensitivity of the piezoresistor 44 and the relationship between the rigidity of the beam 43 and the weight of the weight 41 (natural frequency). That is, even if the sensitivity of the piezoresistor 44 is the same, the beam 4
The sensitivity of the inertial sensor can be improved by weakening the rigidity of the inertial sensor 3 or increasing the weight of the weight 41.

【0006】カメラ等の光学機器にこの様な慣性センサ
を搭載し、手振れ角加速度,加速度を検出する場合を考
えてみる。
Consider a case in which such an inertial sensor is mounted on an optical device such as a camera to detect a camera shake angular acceleration and an acceleration.

【0007】ここで云う手振れは、例えば0.1mg
(重力の1万分の1)位と非常に微弱であり、この種の
振れを精度良く検出するには、慣性センサの感度を高く
する必要がある。
The camera shake mentioned here is, for example, 0.1 mg.
(1 / 10,000 of gravity), which is extremely weak. To accurately detect such a shake, it is necessary to increase the sensitivity of the inertial sensor.

【0008】ところが、カメラ等の民生機器に搭載する
場合、慣性センサの大きさもコンパクトにしていかなけ
ればならず、感度向上の為に重りを大きくする事はでき
ない。又、梁の剛性を弱くすると、信頼性が確立できな
くなってしまう。
However, when the inertial sensor is mounted on consumer equipment such as a camera, the size of the inertial sensor must be reduced, and the weight cannot be increased to improve the sensitivity. In addition, if the rigidity of the beam is reduced, reliability cannot be established.

【0009】以上の様な理由から、従来の慣性センサを
小型、且つ高精度なものにするといった要求は困難であ
り、カメラ等の民生機器に従来の慣性センサを搭載する
ことができなかった。
For the reasons described above, it is difficult to make the conventional inertial sensor compact and highly accurate, and it has not been possible to mount the conventional inertial sensor on consumer equipment such as a camera.

【0010】(発明の目的)本発明の第1の目的は、小
型、且つ、精度の高い加速度及び角加速度を検出するこ
とのできる慣性センサを提供することにある。
(Object of the Invention) A first object of the present invention is to provide an inertial sensor which is small in size and capable of detecting highly accurate acceleration and angular acceleration.

【0011】本発明の第2の目的は、安価に製造するこ
とのできる慣性センサを提供することにある。
A second object of the present invention is to provide an inertial sensor that can be manufactured at low cost.

【0012】本発明の第3の目的は、検出精度を向上さ
せると共に、安価に製造することができ、しかも携帯時
の振動で支持手段を破損してしまうといったことを無く
すことのできる慣性センサを提供することにある。
A third object of the present invention is to provide an inertial sensor which can improve the detection accuracy, can be manufactured at low cost, and can eliminate the possibility of damaging the supporting means due to the vibrations when carrying. To provide.

【0013】[0013]

【課題を解決するための手段】上記第1の目的を達成す
るために、請求項1〜4記載の本発明は、重り部と、該
重り部を支持する支持手段とを有する慣性センサにおい
て、前記支持手段は、前記重り部の重心近傍より放射状
に延出し、前記重り部に加わる加速度や角加速度に応じ
た信号を発生する信号発生部材を有した慣性センサとす
るものである。
In order to achieve the first object, according to the present invention, there is provided an inertial sensor having a weight portion and a support means for supporting the weight portion. The support means may be an inertial sensor having a signal generating member extending radially from the vicinity of the center of gravity of the weight portion and generating a signal corresponding to acceleration or angular acceleration applied to the weight portion.

【0014】上記構成において、例えば重り部は平板状
とし、信号発生部材を、前記重り部の平面に平行であ
り、且つ、前記重り部の平面に対して垂直方向の重心近
傍より放射状に延出した形状にしている。この様に、信
号発生部材を、重り部の平面に平行であり、且つ、前記
重り部の平面に対して垂直方向に配置するようにして、
放射状に延出した信号発生部材の長さを、重り部の平面
方向の長さの範囲内に納めるようにしている。又、信号
発生部材を、重り部の平面に対して垂直方向の重心近傍
より放射状に延出した形状して、上記の長さでありなが
ら、重り部に加わる加速度や角加速度に応じた、比較的
大きな信号を発生するのに十分な長さとしている。
In the above structure, for example, the weight portion is formed in a flat plate shape, and the signal generating member is parallel to the plane of the weight portion and extends radially from near the center of gravity in a direction perpendicular to the plane of the weight portion. Shape. In this manner, the signal generating member is parallel to the plane of the weight, and is arranged in a direction perpendicular to the plane of the weight,
The length of the radially extending signal generating member is set within the range of the length of the weight in the planar direction. Further, the signal generating member may be formed to extend radially from the vicinity of the center of gravity in a direction perpendicular to the plane of the weight portion, and the length may be the same as that of the signal generation member according to the acceleration or angular acceleration applied to the weight portion. It is long enough to generate a very large signal.

【0015】また、上記第2の目的を達成するために、
請求項5及び7記載の本発明は、重り部と、該重り部を
支持する支持手段とを有する慣性センサにおいて、前記
支持手段は、前記重り部に加わる加速度や角加速度に応
じた信号を発生する信号発生部材を有し、該信号発生部
材を一体に成形した樹脂部材で形成される慣性センサと
するものである。
Further, in order to achieve the second object,
According to a fifth aspect of the present invention, there is provided an inertial sensor having a weight portion and a support means for supporting the weight portion, wherein the support means generates a signal corresponding to acceleration or angular acceleration applied to the weight portion. And an inertial sensor formed of a resin member integrally molded with the signal generating member.

【0016】上記の様に、支持手段を、信号発生部材を
一体に成形した樹脂部材で構成するようにしている。
As described above, the support means is constituted by a resin member in which the signal generating member is integrally formed.

【0017】同じく上記第2の目的を達成するために、
請求項6〜8記載の本発明は、重り部と、該重り部を支
持する支持手段とを有する慣性センサにおいて、前記支
持手段は、前記重り部に加わる加速度や角加速度に応じ
た信号を発生する信号発生部材を具備した弾性部材を有
し、該弾性部材を一体に成形した樹脂部材で形成される
慣性センサとするものである。
Similarly, in order to achieve the second object,
According to a sixth aspect of the present invention, there is provided an inertial sensor having a weight portion and a support means for supporting the weight portion, wherein the support means generates a signal corresponding to an acceleration or an angular acceleration applied to the weight portion. And an inertial sensor formed of a resin member integrally molded with the elastic member.

【0018】上記の様に、支持手段を、信号発生部材を
有する弾性部材を一体に成形した樹脂部材で構成するよ
うにしている。
As described above, the support means is constituted by a resin member integrally formed with an elastic member having a signal generating member.

【0019】また、上記第3の目的を達成するために、
請求項9及び10記載の本発明は、重り部と、該重り部
を支持する支持手段とを有する慣性センサにおいて、前
記支持手段は、前記重り部に加わる加速度や角加速度に
応じた信号を発生する信号発生部材を具備した弾性部材
と、該弾性部材の不要な振動を吸収する為の振動吸収部
材とを有し、これら各部材を一体成形した樹脂部材で形
成される慣性センサとするものである。
In order to achieve the third object,
According to a ninth and tenth aspect of the present invention, in the inertial sensor having a weight portion and a support means for supporting the weight portion, the support means generates a signal corresponding to an acceleration or an angular acceleration applied to the weight portion. An elastic member provided with a signal generating member, and a vibration absorbing member for absorbing unnecessary vibration of the elastic member, and each of these members is an inertial sensor formed of a resin member integrally molded. is there.

【0020】上記の様に、支持手段を、信号発生部材を
具備した弾性部材、及び、該弾性部材を挟むようにして
一体成形される振動吸収部材を一体に成形した樹脂部材
で構成すると共に、振動吸収部材により、弾性部材の弾
性定数と重り部の質量で求められる固有共振周波数にお
ける、携帯時等の大きな振動を抑えるようにしている。
As described above, the supporting means is constituted by an elastic member provided with a signal generating member and a resin member integrally formed with a vibration absorbing member integrally formed so as to sandwich the elastic member. The member suppresses a large vibration at the time of carrying or the like at the natural resonance frequency determined by the elastic constant of the elastic member and the mass of the weight.

【0021】[0021]

【発明の実施の形態】以下、本発明を図示の実施の形態
に基づいて詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on illustrated embodiments.

【0022】図1は本発明の実施の第1の形態に係る慣
性センサの斜視図であり、11は銅等の比重の重い物質
により形成された慣性円盤(重り部)である。12は支
持手段であり、慣性円盤11を支持する支持枠12a
と、前記円盤11に加わる加速度や角加速度に応じた信
号を発生する、半導体歪みゲージ等歪みによる抵抗変化
を生じる部材(歪み電圧変換部材)であるところの梁1
2dと、慣性円盤11を圧入する軸12cを備えた受部
12bが一体で成形された樹脂部材より構成されている
(支持枠12aと受部12bが樹脂部材)。対の梁12
dに発生する信号(歪み電圧)は各々増幅器13により
増幅され、加算回路14,差動回路15により演算処理
される。前記増幅器13から差動回路15までが入力加
速度と入力角加速度を検出する検出手段に相当する。
FIG. 1 is a perspective view of an inertial sensor according to a first embodiment of the present invention. Numeral 11 denotes an inertial disk (weight portion) formed of a substance having a high specific gravity such as copper. Reference numeral 12 denotes a support means, which is a support frame 12a for supporting the inertial disk 11.
And a beam 1 that is a member (strain voltage conversion member) that generates a signal corresponding to the acceleration or angular acceleration applied to the disk 11 and that generates a resistance change due to strain, such as a semiconductor strain gauge.
2d and a receiving portion 12b provided with a shaft 12c for press-fitting the inertial disk 11 are integrally formed of a resin member (the supporting frame 12a and the receiving portion 12b are resin members). Twin beams 12
The signal (distortion voltage) generated at d is amplified by the amplifier 13 and is processed by the adder circuit 14 and the differential circuit 15. The components from the amplifier 13 to the differential circuit 15 correspond to a detecting means for detecting the input acceleration and the input angular acceleration.

【0023】図2は、図1の慣性センサを軸方向から見
た図であり、該慣性センサに矢印15方向にリニア加速
度が加わった場合を示している。
FIG. 2 is a diagram of the inertial sensor of FIG. 1 viewed from the axial direction, and shows a case where a linear acceleration is applied to the inertial sensor in the direction of arrow 15.

【0024】この場合、各々の梁12dは同一方向に撓
む(歪む)為、その各々の出力の加算値(加算回路14
の出力)は変化しリニア加速度を示すが、差動値(差動
回路15の出力)は互いに打ち消し合って変化しない。
In this case, since each beam 12d bends (distorts) in the same direction, the added value of each output (addition circuit 14)
) Changes to indicate linear acceleration, but the differential values (outputs of the differential circuit 15) cancel each other out and do not change.

【0025】図3は、図2と同様に図1の慣性センサを
軸方向から見た図であり、該慣性センサに矢印16方向
に回転加速度(角加速度)が加わった場合を示してい
る。
FIG. 3 is a view of the inertial sensor of FIG. 1 viewed from the axial direction, similarly to FIG. 2, and shows a case where a rotational acceleration (angular acceleration) is applied to the inertial sensor in the direction of arrow 16.

【0026】この場合、各々の梁12dは逆方向に撓む
為、その各々の加算値は変化しないが、差動値は変化す
る。
In this case, since each beam 12d bends in the opposite direction, the added value of each beam does not change, but the differential value changes.

【0027】すなわち、各々の梁12dの出力の加算値
でリニア加速度を、差動値で角加速度を、それぞれ知る
事ができる。
That is, the linear acceleration can be known by the sum of the outputs of the beams 12d, and the angular acceleration can be known by the differential value.

【0028】図4は、図1の構成の慣性センサの回路構
成を示すブロック図であり、抵抗体である梁12dは同
じ値の抵抗17とブリッジを構成し、発振器18より交
流電圧(例えば20KHz,2VP-P)が印加されてい
る。
FIG. 4 is a block diagram showing the circuit configuration of the inertial sensor having the configuration shown in FIG. 1. The beam 12d, which is a resistor, forms a bridge with a resistor 17 having the same value. , 2V PP ).

【0029】梁12dの撓みにより該梁12dの抵抗値
が変化すると、ブリッジ間電圧が変化し、それを増幅器
13で増幅する。この信号は20KHzに変調されてい
る為、この帯域のみ透過するバンドパスフィルタ19で
それ以外のノイズをカットし、検波器110により発振
器18の参照信号で復調し、ローパスフィルタ111で
20KHZ 成分を平滑化する。その後、加算回路14,
差動回路15に入力し、リニア加速度,角加速度を求め
ている。
When the resistance value of the beam 12d changes due to the bending of the beam 12d, the voltage between the bridges changes and the voltage is amplified by the amplifier 13. Since this signal is modulated on 20 KHz, the band only by cutting the rest of the noise in the band pass filter 19 which transmits, demodulated by a reference signal oscillator 18 by detector 110, the 20 kHz Z components in the low-pass filter 111 Smoothing. After that, the addition circuit 14,
The signal is input to the differential circuit 15 to obtain a linear acceleration and an angular acceleration.

【0030】この様に交流増幅を行っている為に、増幅
回路内のノイズ(低周波ドリフトを含む)の影響を排除
している。
Since the AC amplification is performed as described above, the influence of noise (including low frequency drift) in the amplifier circuit is eliminated.

【0031】この実施の第1の形態の特徴は、慣性円盤
11の重心(中心)近傍より梁12dが延出している事
にある。これにより、慣性センサ全体の大きさに対し、
慣性円盤11のスペースをギリギリ迄使う事ができ、そ
の分慣性力を大きく利用できる。また、大きさも慣性円
盤11の直径の長さのみで住む為、従来に比べて非常に
コンパクトにすることができる。更に、この様な形状で
ありながら、慣性円盤11の重心(中心)近傍より梁1
2dを延出させている為、該梁12dの長さも十分長く
することができ、撓み量を大きくする事が可能となり、
しかも半導体歪ゲージも長くできる為、その感度も高く
できる。従って、慣性センサの感度を大幅に向上させる
事ができる。
The feature of the first embodiment is that the beam 12d extends from near the center of gravity (center) of the inertial disk 11. As a result, with respect to the size of the entire inertial sensor,
The space of the inertial disk 11 can be used up to the last minute, and the inertia force can be greatly utilized accordingly. In addition, since the size of the inertial disk 11 is only the length of the diameter of the inertial disk 11, the size of the inertial disk 11 can be extremely reduced as compared with the related art. Furthermore, while having such a shape, the beam 1 is located near the center of gravity (center) of the inertial disk 11.
Since 2d is extended, the length of the beam 12d can be made sufficiently long, and the amount of bending can be increased.
Moreover, since the length of the semiconductor strain gauge can be increased, the sensitivity can be increased. Therefore, the sensitivity of the inertial sensor can be greatly improved.

【0032】次に、梁12dを構成する半導体歪ゲージ
は樹脂の支持枠12a,受け部12bと共に一体に成形
されている為に取り付けの為の作業が必要なく、作業コ
ストを低くできると共に、部品信頼性も上げる事が可能
となった。
Next, since the semiconductor strain gauge forming the beam 12d is integrally formed with the resin support frame 12a and the receiving portion 12b, no work for mounting is required, so that the working cost can be reduced and the parts can be reduced. Reliability has also been improved.

【0033】尚、梁12dに関して半導体歪ゲージを用
いて説明したが、これに限られるものでは無く、抵抗線
歪ゲージ、圧電素子等を用いても良いのは云う迄もな
い。
Although the beam 12d has been described using a semiconductor strain gauge, the invention is not limited to this. Needless to say, a resistance wire strain gauge, a piezoelectric element or the like may be used.

【0034】(実施の第2の形態)図5は本発明の実施
の第2の形態に係る慣性センサあり、図1と同じ部分は
同一番号を付し、その説明は省く。
(Second Embodiment) FIG. 5 shows an inertial sensor according to a second embodiment of the present invention. The same parts as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.

【0035】図1と異なるのは、梁21が半導体歪ゲー
ジでは無く、ベリリウム−カッパー等の板バネで構成さ
れ、その表裏面に半導体歪ゲージ12e(12e1 〜1
2e4 )が貼り付けてある点である。板バネより成る梁
21は予め半導体歪ゲージが貼り付けられた状態で、受
部12b,支持枠12aと一体で成形される。よって、
該慣性センサを安価に製造することができる。
The difference from FIG. 1 is that the beam 21 is not a semiconductor strain gauge but a plate spring such as beryllium-copper or the like, and the semiconductor strain gauges 12e (12e 1 to 12e 1)
2e 4 ) is attached. The beam 21 made of a leaf spring is formed integrally with the receiving portion 12b and the support frame 12a in a state where the semiconductor strain gauge is attached in advance. Therefore,
The inertial sensor can be manufactured at low cost.

【0036】半導体歪ゲージ12eは板バネより成る梁
21の表裏面に貼り付けられている為に、撓みにより生
じる抵抗変化(電圧変化)を検出する回路は図6の様な
ブリッジ構成となる。
Since the semiconductor strain gauge 12e is attached to the front and back surfaces of the beam 21 made of a leaf spring, a circuit for detecting a resistance change (voltage change) caused by bending has a bridge configuration as shown in FIG.

【0037】梁21が撓む時、表裏いずれかの半導体歪
ゲージ12eは伸び、他方は縮む為に、図6の様な構成
にすると、出力は倍にできる。
When the beam 21 bends, the semiconductor strain gauge 12e on one of the front and back sides expands, and the other contracts, so that the output can be doubled by adopting the configuration shown in FIG.

【0038】この様な構成にすると、半導体歪ゲージ1
2eを薄くできる為にコストも低くでき、又、板バネよ
り成る梁21で慣性円盤を支持する為に耐久性を向上で
き、更に検出感度を大きくできるメリットが生まれる。
With such a configuration, the semiconductor strain gauge 1
2e can be made thinner, so that the cost can be reduced. In addition, since the inertial disk is supported by the beam 21 made of a leaf spring, the durability can be improved, and the detection sensitivity can be further increased.

【0039】(実施の第3の形態)図7は本発明の実施
の第2の形態に係る慣性センサあり、図1及び図5と同
じ部分は同一番号を付し、その説明は省く。
(Third Embodiment) FIG. 7 shows an inertial sensor according to a second embodiment of the present invention. The same parts as those in FIGS. 1 and 5 are denoted by the same reference numerals, and description thereof will be omitted.

【0040】図5と異なるのは、板バネ21の辺部が支
持枠12aの樹脂フレーム12fにくるまれている点で
ある。
The difference from FIG. 5 is that the sides of the leaf spring 21 are wrapped around the resin frame 12f of the support frame 12a.

【0041】板バネより成る梁21は、そのバネ定数と
慣性円盤11の質量で求められる固有振動数(共振点)
において大きな振幅の振動を示す。その為、この周波数
近辺の加速度が加わった時においては検出精度が著しく
低下する。この実施の第3の形態は、この問題を解決す
る為に、板バネより成る梁21の辺を樹脂フレーム12
eでくるみ、共振点での大振幅振動を抑える構成にして
いる。(樹脂フレーム12eを振動吸収部材として利用
している。) これにより、固有振動数近傍の周波数の加速度の検出精
度を高める事ができると共に、携帯時の振動(固有振動
数近傍)で慣性円盤11が大きく振動し、梁21が変形
或いは破損してしまう事を防いでいる。
The beam 21 composed of a leaf spring has a natural frequency (resonance point) obtained from its spring constant and the mass of the inertial disk 11.
Shows large amplitude vibration. Therefore, when an acceleration near this frequency is applied, the detection accuracy is significantly reduced. In the third embodiment, in order to solve this problem, the side of the beam 21 made of a leaf spring is
The structure is such that large-amplitude vibration at the resonance point is suppressed by e. (The resin frame 12e is used as a vibration absorbing member.) As a result, the accuracy of detecting acceleration at a frequency near the natural frequency can be improved, and the inertia disk 11 can be used for vibration (near the natural frequency) when carrying. Vibrates greatly, thereby preventing the beam 21 from being deformed or damaged.

【0042】この慣性センサの回路構成は図5と同様で
あるが、例えば角加速度のみ検出すれば良いのであれ
ば、図8の様に4つの半導体歪ゲージ12e1 ,12e
2 ,12e3 ,12e4 をブリッジ構成にすると、角加
速度による梁の撓み分だけを検出する事ができ、回路を
大幅に簡略化する事ができる。
The circuit configuration of this inertial sensor is the same as that of FIG. 5, but if only the angular acceleration needs to be detected, for example, four semiconductor strain gauges 12e 1 and 12e as shown in FIG.
When the bridges 2 , 12 e 3 and 12 e 4 are formed in a bridge configuration, only the deflection of the beam due to angular acceleration can be detected, and the circuit can be greatly simplified.

【0043】本発明の各構成と実施の形態の各構成との
対応関係は上述した通りであるが、本発明は、これら実
施の形態の構成に限定されるものではなく、請求項で示
した機能、又は実施の形態がもつ機能が達成できる構成
であればどのようなものであってもよいことは言うまで
もない。
Although the correspondence between each configuration of the present invention and each configuration of the embodiment is as described above, the present invention is not limited to the configuration of the embodiment and is described in the claims. It goes without saying that any configuration may be used as long as the function or the function of the embodiment can be achieved.

【0044】(変形例)上記の実施の形態においては、
重り部として、平板状のものを例にしているが、これに
限定されるものではなく、例えば三角錐の形状をしたも
のを二つ備え、これらの頂角部分を向かい合わせ、これ
ら頂角部分を支持手段で支持した構造にしたものでも良
い。この場合、重り部の重心位置はそれぞれの頂角部分
が向き合った位置に来る為、この位置より半導体歪ゲー
ジ等の梁部材を放射状に延出させることで、本発明の目
的とする、慣性センサのコンパクト化や、加速度,角加
速度の検出精度の向上等を達成することができる。
(Modification) In the above embodiment,
The weight portion is exemplified by a flat plate shape, but is not limited thereto.For example, two triangular pyramid shapes are provided, and their apex portions are opposed to each other, and these apex portions are May be supported by supporting means. In this case, since the position of the center of gravity of the weight portion is located at a position where the respective apex portions face each other, by extending a beam member such as a semiconductor strain gauge radially from this position, the object of the present invention is to provide an inertial sensor. And the detection accuracy of acceleration and angular acceleration can be improved.

【0045】[0045]

【発明の効果】以上説明したように、本発明によれば、
信号発生部材を、平板状の重り部の平面に平行であり、
且つ、前記重り部の平面に対して垂直方向に配置するよ
うにして、放射状に延出した信号発生部材の長さを、重
り部の平面方向の長さの範囲内に納めるようにすると共
に、信号発生部材を、重り部の平面に対して垂直方向の
重心近傍より放射状に延出した形状して、上記の長さで
ありながら、重り部に加わる加速度や角加速度に応じ
た、比較的大きな信号を発生するに十分な長さとしてい
る為、小型、且つ、精度の高い加速度及び角加速度を検
出することができる慣性センサを提供できるものであ
る。
As described above, according to the present invention,
The signal generating member is parallel to the plane of the flat weight,
And, by arranging in a direction perpendicular to the plane of the weight portion, the length of the signal generating member extending radially, so as to fit within the range of the length of the weight portion in the plane direction, The signal generating member is shaped to extend radially from the vicinity of the center of gravity in the direction perpendicular to the plane of the weight, and has a relatively large size corresponding to the acceleration or angular acceleration applied to the weight while having the above length. Since the length is set to be long enough to generate a signal, it is possible to provide an inertial sensor which is small and capable of detecting highly accurate acceleration and angular acceleration.

【0046】また、本発明によれば、支持手段を、信号
発生部材を一体に成形した樹脂部材で構成するようにし
ている為、安価に製造することができる慣性センサを提
供できるものである。
Further, according to the present invention, since the supporting means is constituted by a resin member in which the signal generating member is integrally formed, an inertial sensor which can be manufactured at low cost can be provided.

【0047】また、本発明によれば、支持手段を、信号
発生部材を有する弾性部材を一体に成形した樹脂部材で
構成するようにしている為、安価に製造することができ
る慣性センサを提供できるものである。
Further, according to the present invention, since the supporting means is constituted by a resin member in which an elastic member having a signal generating member is integrally formed, an inertial sensor which can be manufactured at low cost can be provided. Things.

【0048】また、本発明によれば、支持手段を、信号
発生部材を具備した弾性部材、及び、該弾性部材を挟む
ようにして一体成形される振動吸収部材を一体に成形し
た樹脂部材で構成すると共に、振動吸収部材により、弾
性部材の弾性定数と重り部の質量で求められる固有共振
周波数における、携帯時等の大きな振動を抑えるように
している為、検出精度を向上させると共に、安価に製造
することができ、しかも携帯時の振動で支持手段を破損
してしまうといったことを無くすことができる慣性セン
サを提供できるものである。
According to the present invention, the supporting means is constituted by an elastic member having a signal generating member, and a resin member integrally molded with a vibration absorbing member integrally molded so as to sandwich the elastic member. Because the vibration absorbing member suppresses large vibrations at the time of carrying, etc., at the natural resonance frequency determined by the elastic constant of the elastic member and the mass of the weight portion, the detection accuracy is improved and the device is manufactured at low cost. It is possible to provide an inertial sensor that can eliminate the possibility of damaging the support means due to vibrations when the portable device is carried.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の第1の形態に係る慣性センサの
斜視図である。
FIG. 1 is a perspective view of an inertial sensor according to a first embodiment of the present invention.

【図2】図1の慣性センサに矢印方向のリニア加速度が
加わった際の状態をその軸方向から見た図である。
FIG. 2 is a diagram showing a state when a linear acceleration in an arrow direction is applied to the inertial sensor of FIG. 1 as viewed from the axial direction thereof.

【図3】図1の慣性センサに矢印方向の回転角速度が加
わった際の状態をその軸方向から見た図である。
FIG. 3 is a diagram showing a state when a rotational angular velocity in an arrow direction is applied to the inertial sensor of FIG. 1 as viewed from the axial direction thereof.

【図4】図1の慣性センサの回路構成を示すブロック図
である。
FIG. 4 is a block diagram showing a circuit configuration of the inertial sensor of FIG.

【図5】本発明の実施の第2の形態に係る慣性センサの
斜視図である。
FIG. 5 is a perspective view of an inertial sensor according to a second embodiment of the present invention.

【図6】図5の慣性センサの回路構成を示すブロック図
である。
FIG. 6 is a block diagram showing a circuit configuration of the inertial sensor of FIG.

【図7】本発明の実施の第3の形態に係る慣性センサの
斜視図である。
FIG. 7 is a perspective view of an inertial sensor according to a third embodiment of the present invention.

【図8】図7の慣性センサの回路構成を示すブロック図
である。
FIG. 8 is a block diagram illustrating a circuit configuration of the inertial sensor of FIG. 7;

【図9】従来の慣性センサの構造及び加速度,角速度を
検出する際について説明する為の図である。
FIG. 9 is a diagram for explaining a structure of a conventional inertial sensor and a case of detecting acceleration and angular velocity.

【符号の説明】[Explanation of symbols]

11 慣性円盤 12 支持手段 12a 支持枠 12d 半導体歪ゲージ等より成る梁 12e 半導体歪ゲージ 14 増幅回路 15 差動回路 21 板バネより成る梁 DESCRIPTION OF SYMBOLS 11 Inertial disk 12 Support means 12a Support frame 12d Beam made of a semiconductor strain gauge 12e Semiconductor strain gauge 14 Amplifying circuit 15 Differential circuit 21 Beam made of a leaf spring

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 重り部と、該重り部を支持する支持手段
とを有する慣性センサにおいて、 前記支持手段は、前記重り部の重心近傍より放射状に延
出し、前記重り部に加わる加速度や角加速度に応じた信
号を発生する信号発生部材を有したことを特徴とする慣
性センサ。
1. An inertial sensor having a weight part and a support means for supporting the weight part, wherein the support means extends radially from near the center of gravity of the weight part, and acceleration or angular acceleration applied to the weight part An inertial sensor comprising a signal generating member for generating a signal according to the following.
【請求項2】 前記信号発生部材は、前記重り部の重心
近傍より放射状に延出し、前記重り部に加速度や角加速
度が加わることにより歪みを生じ、その歪み量に応じた
電圧信号を発生する部材であることを特徴とする請求項
1記載の慣性センサ。
2. The signal generating member radially extends from the vicinity of the center of gravity of the weight portion, and generates a distortion by applying acceleration or angular acceleration to the weight portion, and generates a voltage signal according to the amount of the distortion. The inertial sensor according to claim 1, wherein the inertial sensor is a member.
【請求項3】 前記信号発生部材の、前記重り部の重心
近傍より放射状に延出した各々の部分に発生する歪み電
圧変換信号より、前記入力加速度と入力角加速度を検出
する検出手段を有したことを特徴とする請求項2記載の
慣性センサ。
3. A detection means for detecting the input acceleration and the input angular acceleration from a distortion voltage conversion signal generated at each portion of the signal generating member extending radially from near the center of gravity of the weight portion. 3. The inertial sensor according to claim 2, wherein:
【請求項4】 前記重り部は平板状をしており、前記信
号発生部材は、前記重り部の平面に平行であり、且つ、
前記重り部の平面に対して垂直方向の重心近傍より放射
状に延出した形状をしていることを特徴とする請求項
1,2又は3記載の慣性センサ。
4. The weight portion has a flat plate shape, and the signal generating member is parallel to a plane of the weight portion, and
The inertial sensor according to claim 1, wherein the inertial sensor has a shape extending radially from near a center of gravity in a direction perpendicular to a plane of the weight portion.
【請求項5】 重り部と、該重り部を支持する支持手段
とを有する慣性センサにおいて、 前記支持手段は、前記重り部に加わる加速度や角加速度
に応じた信号を発生する信号発生部材を有し、該信号発
生部材を一体に成形した樹脂部材で形成されることを特
徴とする慣性センサ。
5. An inertial sensor having a weight portion and a support means for supporting the weight portion, wherein the support means has a signal generating member for generating a signal corresponding to an acceleration or an angular acceleration applied to the weight portion. An inertial sensor characterized in that the signal generating member is formed of a resin member integrally molded.
【請求項6】 重り部と、該重り部を支持する支持手段
とを有する慣性センサにおいて、 前記支持手段は、前記重り部に加わる加速度や角加速度
に応じた信号を発生する信号発生部材を具備した弾性部
材を有し、該弾性部材を一体に成形した樹脂部材で形成
されることを特徴とする慣性センサ。
6. An inertial sensor having a weight portion and support means for supporting the weight portion, wherein the support means includes a signal generating member for generating a signal corresponding to acceleration or angular acceleration applied to the weight portion. An inertial sensor, comprising an elastic member formed as described above, and a resin member formed by integrally molding the elastic member.
【請求項7】 前記信号発生部材は、抵抗線歪ゲージ或
いは半導体歪ゲージであることを特徴とする請求項1,
5又は6記載の慣性センサ。
7. The apparatus according to claim 1, wherein said signal generating member is a resistance strain gauge or a semiconductor strain gauge.
7. The inertial sensor according to 5 or 6.
【請求項8】 前記弾性部材は、板バネであることを特
徴とする請求項6記載の慣性センサ。
8. The inertial sensor according to claim 6, wherein the elastic member is a leaf spring.
【請求項9】 重り部と、該重り部を支持する支持手段
とを有する慣性センサにおいて、 前記支持手段は、前記重り部に加わる加速度や角加速度
に応じた信号を発生する信号発生部材を具備した弾性部
材と、該弾性部材の不要な振動を吸収する為の振動吸収
部材とを有し、これら各部材を一体成形した樹脂部材で
形成されることを特徴とする慣性センサ。
9. An inertial sensor having a weight portion and support means for supporting the weight portion, wherein the support means includes a signal generating member for generating a signal corresponding to acceleration or angular acceleration applied to the weight portion. An inertial sensor, comprising: an elastic member formed as described above; and a vibration absorbing member for absorbing unnecessary vibration of the elastic member.
【請求項10】 前記振動吸収部材は、前記信号発生部
材を具備した弾性部材を挟むようにして、一体成形され
ることを特徴とする請求項9記載の慣性センサ。
10. The inertial sensor according to claim 9, wherein said vibration absorbing member is integrally formed so as to sandwich an elastic member provided with said signal generating member.
JP16348597A 1997-06-06 1997-06-06 Inertia sensor Pending JPH10339739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16348597A JPH10339739A (en) 1997-06-06 1997-06-06 Inertia sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16348597A JPH10339739A (en) 1997-06-06 1997-06-06 Inertia sensor

Publications (1)

Publication Number Publication Date
JPH10339739A true JPH10339739A (en) 1998-12-22

Family

ID=15774772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16348597A Pending JPH10339739A (en) 1997-06-06 1997-06-06 Inertia sensor

Country Status (1)

Country Link
JP (1) JPH10339739A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004354358A (en) * 2003-05-26 2004-12-16 Microstone Corp Angular acceleration sensor
JP2009079948A (en) * 2007-09-26 2009-04-16 Oki Semiconductor Co Ltd Semiconductor acceleration sensor and its manufacturing method
JP2013079885A (en) * 2011-10-05 2013-05-02 Hitachi Automotive Systems Ltd Rotational angular velocity sensor or rotational angular acceleration sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004354358A (en) * 2003-05-26 2004-12-16 Microstone Corp Angular acceleration sensor
JP2009079948A (en) * 2007-09-26 2009-04-16 Oki Semiconductor Co Ltd Semiconductor acceleration sensor and its manufacturing method
JP2013079885A (en) * 2011-10-05 2013-05-02 Hitachi Automotive Systems Ltd Rotational angular velocity sensor or rotational angular acceleration sensor

Similar Documents

Publication Publication Date Title
US9164119B2 (en) Angular velocity detection device and angular velocity sensor including the same
JP3151927B2 (en) Acceleration sensor
JP2011137826A (en) Oscillating micro-mechanical sensor for angular velocity
KR20100017610A (en) A method for measuring angular velocity and a vibrating micromechanical sensor of angular velocity
JP3102320B2 (en) Sensor device
EP3835794B1 (en) Resonator including one or more mechanical beams with added mass
EP2037217B1 (en) Inertia force sensor
JP2011117944A (en) Acceleration sensor
EP0706030B1 (en) Bearing sensor and bearing-distance sensor
JP4126826B2 (en) Angular velocity sensor
US5045745A (en) Spinning piezoelectric beam of a dual-axis angular rate sensor and method for its adjustment
JPH10339739A (en) Inertia sensor
US6895819B1 (en) Acceleration sensor
JP3166522B2 (en) Acceleration sensor
JP4710926B2 (en) Angular velocity sensor
JPH06300776A (en) Revolution accelerometer
US5578754A (en) Vibration-type angular-velocity sensor
JPH09145736A (en) Composite acceleration/angular velocity sensor
JPS6066110A (en) Angular motion speed detector
JP2003166828A (en) Physical quantity measuring device and vibrator
JP3129022B2 (en) Acceleration sensor
JPH06249874A (en) Acceleration sensor
JP3079214B2 (en) Accelerometer
JP3129117B2 (en) Acceleration sensor
JPWO2005052601A1 (en) Acceleration detector