JPH10335701A - Manufacturing method for nitride gallium based compound semiconductor light emitting element - Google Patents

Manufacturing method for nitride gallium based compound semiconductor light emitting element

Info

Publication number
JPH10335701A
JPH10335701A JP13690197A JP13690197A JPH10335701A JP H10335701 A JPH10335701 A JP H10335701A JP 13690197 A JP13690197 A JP 13690197A JP 13690197 A JP13690197 A JP 13690197A JP H10335701 A JPH10335701 A JP H10335701A
Authority
JP
Japan
Prior art keywords
layer
gallium nitride
compound semiconductor
based compound
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13690197A
Other languages
Japanese (ja)
Other versions
JP3898798B2 (en
Inventor
Toshio Hata
俊雄 幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP13690197A priority Critical patent/JP3898798B2/en
Publication of JPH10335701A publication Critical patent/JPH10335701A/en
Application granted granted Critical
Publication of JP3898798B2 publication Critical patent/JP3898798B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a proper regrowing boundary by laminating a revaporizing layer on a surface layer of a laminated construction which is laminated by the MOVPE method and by making a regrowing layer regrow by the MBE method on the laminated construction which is exposed by evaporating the reevaporating layer in the MBE device. SOLUTION: A substrate 1 is introduced on a susceptor of the MOVPE device and a surface of the substrate 1 is exposed in the nitrogen or hydrogen atmosphere. After that an AlGaN buffer layer 2, an n-type GaN buffer layer 3, an n-type AlGaN clad layer 4, a non-dope InGaN clad layer 5, an Mg dope AlGaN clad layer 6 and an Mg dope InGaN revaporizing layer 7 are made to grow in order on the substrate 1. After that a wafer is introduced in an MBE device and the Mg dope InGaN revaporizing layer 7 is revaporized in the nitrogen atmosphere over 400 deg.C of substrate temperature or 600 deg.C preferably and a surface of the Mg dope AlGaN clad layer 6 is exposed. After that a p-type GaN contact layer is made to grow.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、青色領域から紫外
光領域で発光可能な窒化ガリウム系化合物半導体発光素
子の製造方法に関し、特にMOVPE法にて成長形成し
た積層構造体上に、MBE法にて再成長層を積層する窒
化ガリウム系化合物半導体発光素子の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a gallium nitride-based compound semiconductor light emitting device capable of emitting light in a blue region to an ultraviolet region, and more particularly, to an MBE method on a laminated structure grown and formed by MOVPE. And a method for manufacturing a gallium nitride-based compound semiconductor light emitting device in which a regrowth layer is stacked.

【0002】[0002]

【従来の技術】図5に従来の窒化ガリウム系化合物半導
体発光素子の模式断面図を示す。サファイヤ基板100
上にAlNバッファ層200、n型GaN層300を有
機金属気相成長法(MOVPE法)にて積層する。その
n型GaN層300上に、RFプラズマを用いた分子線
エピタキシャル法にてn型GaN層400、n型InG
aN発光層500、p型GaN層600が順次積層され
る。最後に、p型GaN層600上にp型用電極700
を形成し、n型GaN層300上にn型用電極800を
形成して作製された窒化ガリウム系化合物半導体発光素
子構造が、例えば、J.J.A.P.Vol.34(1
995)pp.1429〜1431に開示されている。
2. Description of the Related Art FIG. 5 is a schematic sectional view of a conventional gallium nitride compound semiconductor light emitting device. Sapphire substrate 100
An AlN buffer layer 200 and an n-type GaN layer 300 are stacked thereon by a metal organic chemical vapor deposition (MOVPE) method. On the n-type GaN layer 300, an n-type GaN layer 400 and an n-type InG
The aN light emitting layer 500 and the p-type GaN layer 600 are sequentially stacked. Finally, the p-type electrode 700 is formed on the p-type GaN layer 600.
Is formed, and a gallium nitride-based compound semiconductor light emitting device structure manufactured by forming an n-type electrode 800 on an n-type GaN layer 300 is disclosed in, for example, J. A. P. Vol. 34 (1
995) pp. 1429-1431.

【0003】一般に、MBE法にて作製したp型不純物
のキャリヤ濃度は、MOVPE法にて作製したその値よ
りも約1桁高いキャリヤ濃度が得られている。さらにM
OVPE法にて作製したp型窒化ガリウム系化合物半導
体は、熱処理(例えば800℃、20分間)にてp型不
純物を活性化する工程が必要であるが、MBE法にて作
製したp型窒化ガリウム系化合物半導体は、p型不純物
を活性化するための熱処理工程を必要としない。このた
め、前記p型GaNコンタクト層600等を作製するの
にMBE法を用いるのは非常に適している。
Generally, the carrier concentration of a p-type impurity produced by the MBE method is about one digit higher than that of the MOVPE method. And M
The p-type gallium nitride-based compound semiconductor manufactured by the OVPE method requires a step of activating the p-type impurity by heat treatment (for example, 800 ° C., 20 minutes). However, the p-type gallium nitride manufactured by the MBE method is required. A system compound semiconductor does not require a heat treatment step for activating p-type impurities. For this reason, it is very suitable to use the MBE method for producing the p-type GaN contact layer 600 and the like.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前記窒
化ガリウム系化合物半導体発光素子の20mAでの駆動
電圧は6Vと高い値しか得られていない。これはMOV
PE法において作製したn型GaN層300上に、直接
MBE法にてn型GaN層400、n型InGaN発光
層500、p型GaN層600を成長しているため、n
型GaN層300とn型GaN層400の再成長界面が
高抵抗化し、そのために、素子の直列抵抗が増加し駆動
電圧が高いため、長寿命の窒化ガリウム系化合物半導体
発光素子は得られていない。これは、有機金属気相成長
法(MOVPE法)にて積層された積層構造体上に、分
子線エピタキシャル法(MBE法)にて再成長する場
合、再成長するために下地の成長層表面を大気中にさら
すことになり、露出した表面の酸化及び汚染物の付着等
が発生し、この露出表面上に再成長層を積層しても良好
な再成長界面及成長層が得られない問題が生じる。
However, the gallium nitride based compound semiconductor light emitting device has a high driving voltage of 6 V at 20 mA, which is as high as 6 V. This is MOV
Since the n-type GaN layer 400, the n-type InGaN light emitting layer 500, and the p-type GaN layer 600 are directly grown on the n-type GaN layer 300 manufactured by the PE method by the MBE method, n
Resistance of the regrowth interface between the n-type GaN layer 300 and the n-type GaN layer 300 increases the series resistance of the element and increases the driving voltage, so that a long-life gallium nitride-based compound semiconductor light emitting element has not been obtained. . This is because, when regrown by a molecular beam epitaxy method (MBE method) on a layered structure laminated by a metal organic chemical vapor deposition method (MOVPE method), the surface of the underlying growth layer is regrown. Exposure to the atmosphere causes oxidation of the exposed surface and adhesion of contaminants, etc., and even if a regrowth layer is laminated on this exposed surface, there is a problem that a good regrowth interface and a growth layer cannot be obtained. Occurs.

【0005】このために、前記窒化ガリウム系化合物半
導体発光素子の20mAでの駆動電圧は6Vと高い値し
か得られなかった。これはMOVPE法において成長し
た層の上に、直接MBE法にて成長層を成長しているか
らである。
[0005] For this reason, the gallium nitride-based compound semiconductor light emitting device has a high driving voltage of 6 V at 20 mA, which is as high as 6 V. This is because the growth layer is directly grown by MBE on the layer grown by MOVPE.

【0006】[0006]

【課題を解決するための手段】本発明は上記問題を解決
するためになされたもので、有機金属気相成長法(MO
VPE法)にて半導体からなる積層構造体を形成する工
程と、連続的にMOCVD法にて前記積層構造体の表面
層に再蒸発層を積層する工程と、前記再蒸発層を分子線
エピタキシャル(MBE)装置内にて蒸発させる工程
と、前記再蒸発層を蒸発させることによって露出した前
記積層構造体上にMBE法にて成長層を再成長する工程
と、を包含することを特徴とする窒化ガリウム系化合物
半導体発光素子の製造方法を提供する。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and is directed to a metal organic chemical vapor deposition (MO) method.
VPE method), a step of continuously forming a re-evaporation layer on the surface layer of the layer structure by MOCVD, and a step of forming the re-evaporation layer by molecular beam epitaxy (MOPE method). MBE) a step of evaporating in a device, and a step of re-growing a growth layer on the laminated structure exposed by evaporating the reevaporation layer by MBE. Provided is a method for manufacturing a gallium-based compound semiconductor light emitting device.

【0007】また、前記再蒸発層を形成する工程と、前
記再蒸発層を蒸発させる工程の間に、前記積層構造体の
表面がエッチング等により加工される工程を含むことを
特徴とする。
[0007] The method may further include, between the step of forming the reevaporation layer and the step of evaporating the reevaporation layer, a step of processing the surface of the laminated structure by etching or the like.

【0008】さらに、前記再蒸発層がInzGa1-z
(0<z≦1)から構成されたことを特徴とする。
Further, the reevaporation layer is made of In z Ga 1 -zN.
(0 <z ≦ 1).

【0009】また、前記再蒸発層を蒸発させる工程で
の、基板温度を400℃以上1100℃以下とすること
を特徴とする。
[0009] The method is characterized in that the substrate temperature in the step of evaporating the reevaporation layer is 400 ° C. or more and 1100 ° C. or less.

【0010】また、前記有機金属気相成長法(MOVP
E法)にて半導体からなる積層構造体を形成する工程に
おいて、p型不純物ドープの窒化ガリウム系化合物半導
体を積層する工程を含み、前記再蒸発層を蒸発させる熱
処理工程にて、前記p型不純物ドープの窒化ガリウム系
化合物半導体をp型窒化ガリウム系化合物半導体に改質
することを特徴とする。
The metal organic chemical vapor deposition method (MOVP)
E)) forming a laminated structure made of a semiconductor by a method comprising the step of laminating a gallium nitride-based compound semiconductor doped with a p-type impurity, and performing a heat treatment step of evaporating the reevaporation layer. It is characterized in that a doped gallium nitride-based compound semiconductor is modified into a p-type gallium nitride-based compound semiconductor.

【0011】[0011]

【発明の実施の形態】本発明の実施の形態は、1回目の
結晶成長を行うため、基板1をMOVPE装置のサセプ
タ上に導入し、基板温度1200℃程度まで昇温し、基
板1表面を窒素または水素雰囲気中にさらす。次に、基
板1の温度を500℃〜650℃程度まで降温し、基板
にAl0.1Ga0.9Nバッファ層2を(ここで、バッファ
層はGaN又はAlNからなる2元混晶でもよい)20
0Å〜1μm程度成長し、次に、基板温度を1050℃
程度まで昇温しn型GaNバッファ層3を1〜4μm程
度成長し、次に、n型GaNバッファ層3の上にn型A
0.1Ga0.9Nクラッド層4を0.1〜0.3μm程度
成長し、基板温度を800〜850℃程度に降温しノン
ドープIn0.32Ga0.68N活性層5を成長し、次に、基
板温度を1050℃程度まで昇温MgドープAl0.1
0.9Nクラッド層6を0.1〜0.3μm程度成長
し、さらに、基板温度を800〜850℃程度に降温し
MgドープInzGa1-zN再蒸発層7(ここで、zの範
囲は0より大きく1以下、さらに好ましく0.5以上1
以下)を10〜200Å成長する。ここまで作製した窒
化ガリウム系半導体発光素子の断面図を図1(a)に示
す。ここで、上記再蒸発層は再蒸発してなくなるため、
単結晶層に限定することなく、多結晶またはアモルファ
ス状の層でよい。
BEST MODE FOR CARRYING OUT THE INVENTION In the embodiment of the present invention, in order to perform the first crystal growth, a substrate 1 is introduced on a susceptor of a MOVPE apparatus, the substrate temperature is raised to about 1200 ° C., and the surface of the substrate 1 is heated. Exposure in a nitrogen or hydrogen atmosphere. Next, the temperature of the substrate 1 is lowered to about 500 ° C. to 650 ° C., and an Al 0.1 Ga 0.9 N buffer layer 2 is formed on the substrate (here, the buffer layer may be a binary mixed crystal made of GaN or AlN).
The substrate is grown at a temperature of about 0 ° to 1 μm,
Temperature to about 1 to 4 μm, and then n-type GaN buffer layer 3 is formed on n-type GaN buffer layer 3.
l 0.1 Ga 0.9 N cladding layer 4 is grown to a thickness of about 0.1 to 0.3 μm, the substrate temperature is lowered to about 800 to 850 ° C., and a non-doped In 0.32 Ga 0.68 N active layer 5 is grown. Temperature rise to about 1050 ° C Mg-doped Al 0.1 G
a 0.9 N clad layer 6 is grown to a thickness of about 0.1 to 0.3 μm, and further, the substrate temperature is lowered to about 800 to 850 ° C., and the Mg-doped In z Ga 1 -z N re-evaporation layer 7 (here, z The range is more than 0 and 1 or less, more preferably 0.5 or more and 1
Below) grow 10-200 °. FIG. 1A is a cross-sectional view of the gallium nitride based semiconductor light emitting device manufactured up to this point. Here, since the reevaporation layer does not re-evaporate,
The layer is not limited to a single crystal layer, but may be a polycrystalline or amorphous layer.

【0012】一旦、このウエハーをMOVPE装置から
取り出し、再び、ウエハーをMBE装置に導入し、RF
電力350〜400W、窒素流量5〜10sccmにて
窒素をウエハー上に5分から10分間供給し、窒素雰囲
気中、基板温度約400℃以上、好ましくは600℃に
てMgドープInzGa1-zN再蒸発層7(ここで、zの
範囲は0より大きく1以下、さらに好ましくは0.5以
上1以下)を再蒸発させ、MgドープAl0.1Ga0.9
クラッド層6表面を露出させる。ここまで作製した窒化
ガリウム系半導体発光素子の断面図を図1(b)に示
す。
[0012] Once the wafer is taken out of the MOVPE apparatus, the wafer is again introduced into the MBE apparatus,
Nitrogen is supplied onto the wafer at a power of 350 to 400 W and a nitrogen flow rate of 5 to 10 sccm for 5 to 10 minutes, and in a nitrogen atmosphere, a substrate temperature of about 400 ° C. or more, preferably 600 ° C., and Mg-doped In z Ga 1 -zN. The re-evaporation layer 7 (here, the range of z is more than 0 and 1 or less, more preferably 0.5 or more and 1 or less) is re-evaporated, and Mg-doped Al 0.1 Ga 0.9 N
The surface of the cladding layer 6 is exposed. FIG. 1B is a cross-sectional view of the gallium nitride based semiconductor light emitting device manufactured up to this point.

【0013】次に、基板温度を700℃程度まで昇温
し、p型GaNコンタクト層8を0.1〜1μm程度成
長する。例えば、ECR装置又はRF装置を備えたMB
E装置とする。ここまで作製した窒化ガリウム系半導体
発光素子の断面図を図1(c)に示す。
Next, the substrate temperature is raised to about 700 ° C., and a p-type GaN contact layer 8 is grown to about 0.1 to 1 μm. For example, an MB equipped with an ECR device or an RF device
E unit. FIG. 1C is a cross-sectional view of the gallium nitride-based semiconductor light emitting device manufactured up to this point.

【0014】前記再蒸発層は、例えばInAs,InG
aAs,GaAs等で構成されてもよい、その場合の再
蒸発はAs雰囲気中、再蒸発温度が各々400℃以上、
550℃以上、680℃以上の基板温度を用いることが
できる。また、再蒸発温度はAlGaN層やGgN層に
影響を及ぼさない1100℃以下であれば構わないが、
特に好ましくは800℃以下である。
The reevaporation layer is made of, for example, InAs, InG
It may be composed of aAs, GaAs or the like. In that case, the re-evaporation is performed in an As atmosphere, the re-evaporation temperature is 400 ° C. or more,
A substrate temperature of 550 ° C or higher and 680 ° C or higher can be used. The re-evaporation temperature may be 1100 ° C. or less which does not affect the AlGaN layer and the GgN layer.
Particularly preferably, it is 800 ° C. or lower.

【0015】ここで、装置内にて下地層表面を露出させ
るため、清浄な下地層表面を露出させることができる。
このため、品質の高い再成長界面及び再成長層が実現で
きる。さらに、MOVPE法にて成長したMgがドーピ
ングされた層は、MBE法の水素を含まない窒素雰囲気
中の再蒸発工程中にp型に変化するため、成長後の特別
な熱処理を必要としないので工程が簡略化できる。
Here, since the underlayer surface is exposed in the device, a clean underlayer surface can be exposed.
For this reason, a high-quality regrowth interface and a regrown layer can be realized. Furthermore, since the Mg-doped layer grown by the MOVPE method changes to p-type during the re-evaporation step in a nitrogen-free atmosphere containing no hydrogen by the MBE method, no special heat treatment after growth is required. The process can be simplified.

【0016】以上より、有機金属気相成長法(MOVP
E法)にて積層された積層構造体の表面層を再蒸発層に
て構成することにより、成長炉内例えば分子線エピタキ
シャル法(MBE法)にて再蒸発層を再蒸発させ引き続
き再成長層を積層することにより、品質の高い再成長界
面、再成長層を持つ窒化ガリウム系化合物半導体発光素
子又は窒化ガリウム系化合物半導体レーザが実現でき
る。以下、より詳細に本発明の実施の形態を説明する。
As described above, the metal organic chemical vapor deposition (MOVP)
E), the surface layer of the laminated structure laminated by the re-evaporation layer is constituted by the re-evaporation layer, for example, by the molecular beam epitaxial method (MBE method). , A gallium nitride-based compound semiconductor light emitting device or a gallium nitride-based compound semiconductor laser having a high-quality regrowth interface and a regrown layer can be realized. Hereinafter, embodiments of the present invention will be described in more detail.

【0017】(実施例1)窒化ガリウム系半導体発光素
子の作製には有機金属気相成長法(以下、MOVPE
法)を用い、基板、V族原料としてアンモニア、III
族原料としてトリメチルガリウム、トリメチルアルミニ
ウム、トリメチルインジウム、p型不純物としてビスシ
クロペンタデイエニルマグネシウム(Cp2Mg)、n
型不純物としてモノシランを用い、キャリヤガスとして
水素又は窒素を用いる。
Example 1 A gallium nitride based semiconductor light emitting device was manufactured by metal organic chemical vapor deposition (hereinafter referred to as MOVPE).
Substrate), ammonia as a group V raw material, III
Group material: trimethylgallium, trimethylaluminum, trimethylindium, biscyclopentadienyl magnesium (Cp 2 Mg) as p-type impurity, n
Monosilane is used as a mold impurity, and hydrogen or nitrogen is used as a carrier gas.

【0018】図2(a)〜(e)に基づいて本発明の窒
化ガリウム系半導体発光素子の製造方法を詳細に説明す
る。
A method for manufacturing a gallium nitride based semiconductor light emitting device of the present invention will be described in detail with reference to FIGS.

【0019】1回目の結晶成長を行うため、サファイア
基板11をMOVPE装置のサセプタ上に導入し、基板
温度1100℃程度まで昇温し、基板表面を窒素または
水素雰囲気中にさらし、表面のクリーニングを施す。次
に、サファイア基板11の基板温度を550℃程度まで
降温し、サファイア基板11にAl0.1Ga0.9Nバッフ
ァ層12を500Å程度成長し、次に、基板温度を10
50℃程度まで昇温しn型GaNバッファ層13を4μ
m程度成長し、次に、n型GaNバッファ層13の上に
n型Al0.1Ga0.9Nクラッド層14を0.15μm程
度成長し、基板温度を850℃程度に降温しノンドープ
In0.32Ga0.68N活性層15を30Å成長し、次に、
基板温度を1050℃程度まで昇温MgドープAl0.1
Ga0.9Nクラッド層16を0.15μm程度成長し、
さらに、基板温度を800℃程度に降温しMgドープI
nN再蒸発層17を200Å成長する。ここまで作製し
た窒化ガリウム系半導体発光素子の断面図を図2(a)
に示す。
In order to perform the first crystal growth, the sapphire substrate 11 is introduced onto a susceptor of the MOVPE apparatus, the substrate temperature is raised to about 1100 ° C., the substrate surface is exposed to a nitrogen or hydrogen atmosphere, and the surface is cleaned. Apply. Next, the substrate temperature of the sapphire substrate 11 is decreased to about 550 ° C., and an Al 0.1 Ga 0.9 N buffer layer 12 is grown on the sapphire substrate 11 by about 500 ° C.
The temperature was raised to about 50 ° C. to make the n-type GaN buffer layer 13 4 μm.
Then, an n-type Al 0.1 Ga 0.9 N clad layer 14 is grown on the n-type GaN buffer layer 13 to a thickness of about 0.15 μm, the substrate temperature is lowered to about 850 ° C., and undoped In 0.32 Ga 0.68 N The active layer 15 is grown by 30 ° and then
Raising the substrate temperature to about 1050 ° C. Mg-doped Al 0.1
A Ga 0.9 N cladding layer 16 is grown to about 0.15 μm,
Further, the substrate temperature is lowered to about 800 ° C.
The nN re-evaporation layer 17 is grown by 200 °. FIG. 2A is a cross-sectional view of the gallium nitride based semiconductor light emitting device manufactured up to this point.
Shown in

【0020】一旦、このウエハーをMOVPE装置から
取り出し、このウエハー上に再成長層を積層する。この
再成長には、MBE法を用い、V族原料として窒素、I
II族原料としてガリウム、アルミニウム、インジウ
ム、p型不純物としてマグネシウムを用いる。
Once the wafer is taken out of the MOVPE apparatus, a regrowth layer is laminated on the wafer. For this regrowth, the MBE method was used, and nitrogen and I
Gallium, aluminum and indium are used as group II raw materials, and magnesium is used as a p-type impurity.

【0021】例えば、前記MBE装置とは、ECRプラ
ズマ又はRFプラズマを備えて窒素を基板上に供給する
MBE装置とする。
For example, the MBE apparatus is an MBE apparatus that includes ECR plasma or RF plasma and supplies nitrogen onto a substrate.

【0022】このウエハーをRF−MBE装置に導入
し、RF電力400W、窒素流量5sccmにて窒素を
基板上に10分間供給し、基板温度約400℃にてMg
ドープInN層17を再蒸発させ、MgドープAl0.1
Ga0.9Nクラッド層16の表面を露出させる。ここ
で、装置内にて下地層表面を露出させるため、清浄なM
gドープAl0.1Ga0.9Nクラッド層表面18を露出さ
せることができる。このため、次の工程において、品質
の高い再成長界面及び再成長層が実現できる。ここまで
作製した窒化ガリウム系半導体発光素子の断面図を図2
(b)に示す。
The wafer was introduced into an RF-MBE apparatus, and nitrogen was supplied onto the substrate at an RF power of 400 W and a nitrogen flow rate of 5 sccm for 10 minutes.
The doped InN layer 17 is re-evaporated to obtain Mg-doped Al 0.1
The surface of the Ga 0.9 N cladding layer 16 is exposed. Here, since the underlayer surface is exposed in the apparatus, a clean M
The g-doped Al 0.1 Ga 0.9 N cladding layer surface 18 can be exposed. Therefore, in the next step, a high-quality regrowth interface and regrowth layer can be realized. FIG. 2 is a cross-sectional view of the gallium nitride-based semiconductor light emitting device thus far manufactured.
(B).

【0023】次に、基板温度を700℃程度まで昇温
し、p型GaNコンタクト層19(キャリヤ濃度は1×
1019cm-3)を0.5μm程度成長する。ここまで作
製した窒化ガリウム系半導体発光素子の断面図を図2
(c)に示す。
Next, the substrate temperature is raised to about 700 ° C., and the p-type GaN contact layer 19 (carrier concentration is 1 ×
10 19 cm −3 ) is grown to about 0.5 μm. FIG. 2 is a cross-sectional view of the gallium nitride-based semiconductor light emitting device thus far manufactured.
It is shown in (c).

【0024】次に、マスク20を用いてn型用電極づけ
を行うためにn型GaNバッファ層13の表面が露出す
るまでエッチングする。ここまで作製した窒化ガリウム
系半導体発光素子の断面図を図2(d)に示す。
Next, etching is performed until the surface of the n-type GaN buffer layer 13 is exposed in order to attach an electrode for n-type using the mask 20. FIG. 2D is a cross-sectional view of the gallium nitride based semiconductor light emitting device manufactured up to this point.

【0025】p型GaNコンタクト層19の上にp型用
電極21、露出させたn型GaNバッファ層13表面に
n型用電極22を形成する。ここまで作製した窒化ガリ
ウム系半導体発光素子の断面図を図2(e)に示す。
A p-type electrode 21 is formed on the p-type GaN contact layer 19, and an n-type electrode 22 is formed on the exposed surface of the n-type GaN buffer layer 13. FIG. 2E is a cross-sectional view of the gallium nitride-based semiconductor light emitting device manufactured up to this point.

【0026】ここで、清浄なMgドープAl0.1Ga0.9
Nクラッド層表面18上にp型GaNコンタクト層19
を再成長しているため、この界面での高抵抗化およびp
型不純物の枯渇を防ぐことができ、そのため素子の直列
抵抗が低減でき、素子の駆動電圧が3.6Vと小さく、
素子の長寿命化が実現できた。
Here, clean Mg-doped Al 0.1 Ga 0.9
A p-type GaN contact layer 19 on the N-cladding layer surface 18
Is increased, the resistance at this interface is increased and p
Type impurity can be prevented from being depleted, so that the series resistance of the element can be reduced, and the driving voltage of the element is as small as 3.6 V.
The life of the device can be extended.

【0027】さらに、MOVPE法にて成長したMgド
ープAl0.1Ga0.9Nクラッド層16は再蒸発工程中
(図1(b))において基板温度400℃、水素を含ま
ない窒素雰囲気中(RF電力400W、窒素流量5sc
cm)で熱処理を行うためにMgドープした半導体層は
p型半導体層に変化する。このため、成長後の特別な熱
処理工程例えば800℃、数十分間の熱処理工程を必要
としないので、工程が簡略化できる。
Further, the Mg-doped Al 0.1 Ga 0.9 N cladding layer 16 grown by the MOVPE method has a substrate temperature of 400 ° C. in a nitrogen atmosphere containing no hydrogen (RF power 400 W) during the re-evaporation step (FIG. 1B). , Nitrogen flow 5sc
cm), the semiconductor layer doped with Mg changes to a p-type semiconductor layer. For this reason, a special heat treatment step after growth, for example, a heat treatment step at 800 ° C. for several tens of minutes is not required, so that the step can be simplified.

【0028】また、本発明の製造方法は、MgドープI
nN再蒸発層17までの積層構造体をMOVPE法(成
長レートは約4μm/h)にて形成し、その後、MBE
法(成長レートは約0.7μm/h)にてp型コンタク
ト層のみを形成するため、すべてMBE法で作製する方
法と比較して一枚のウエハーを成長する製造時間が短縮
できる。
Further, the manufacturing method of the present invention is characterized in that the Mg-doped I
The stacked structure up to the nN re-evaporation layer 17 is formed by the MOVPE method (growth rate is about 4 μm / h).
Since only the p-type contact layer is formed by the method (the growth rate is about 0.7 μm / h), the manufacturing time for growing a single wafer can be reduced as compared with the method of manufacturing all using the MBE method.

【0029】以上より、有機金属気相成長法(MOVP
E法)にて積層された積層構造体の表面層を再蒸発層に
て構成することにより、成長炉内例えば分子線エピタキ
シャル法(MBE法)にて再蒸発層を再蒸発させ引き続
き再成長層を積層することにより、品質の高い再成長界
面、再成長層を持つ窒化ガリウム系化合物半導体発光素
子が実現できる。さらに、成長後の特別な熱処理工程を
必要とせず、また、MBE法を用いても一枚のウエハー
を成長する製造時間が短縮できる窒化ガリウム系化合物
半導体発光素子が提供できる。
As described above, the metal organic chemical vapor deposition (MOVP)
E), the surface layer of the laminated structure laminated by the re-evaporation layer is constituted by the re-evaporation layer, for example, by the molecular beam epitaxial method (MBE method). , A gallium nitride-based compound semiconductor light emitting device having a high-quality regrowth interface and a regrown layer can be realized. Further, it is possible to provide a gallium nitride-based compound semiconductor light emitting device which does not require a special heat treatment step after growth and can shorten the manufacturing time for growing one wafer even by using the MBE method.

【0030】(実施例2)図3に本発明の方法で作製し
た窒化ガリウム系化合物半導体レーザ素子の断面図を示
す。n型GaN基板31上に、n型Al0.05Ga0.95
バッファ層32、n型GaN層33、n型Al0.15Ga
0.95Nクラッド層34、In0.2Ga0.8N量子井戸層を
3層(厚さ30Å)とIn0.05Ga0.95Nバリヤ層を2
層(厚さ100Å)を持つ多重量子井戸活性層35、M
gドープAl0.15Ga0.95Nクラッド層36を積層させ
る。その上に電流狭窄構造として、清浄なMgドープA
0.1Ga0.9Nクラッド層表面39を露出させた開口部
をもうけたMgドープIn0.1Ga0.9N再蒸発層37、
n型Al0.05Ga0.95N内部電流阻止層38を電流阻止
構造として設けている。さらに、MBE法で形成された
p型Al0.1Ga0.9Nクラッド層40で開口部を埋め込
み平坦化して、その上にp型GaNコンタクト層41
(キャリヤ濃度は1×1019cm-3)を積層している。
Example 2 FIG. 3 is a sectional view of a gallium nitride-based compound semiconductor laser device manufactured by the method of the present invention. On an n-type GaN substrate 31, an n-type Al 0.05 Ga 0.95 N
Buffer layer 32, n-type GaN layer 33, n-type Al 0.15 Ga
0.95 N cladding layer 34, three In 0.2 Ga 0.8 N quantum well layers (thickness 30 °) and two In 0.05 Ga 0.95 N barrier layers.
Multi-quantum well active layer 35 having a thickness of 100
A g-doped Al 0.15 Ga 0.95 N cladding layer 36 is laminated. On top of this, clean Mg-doped A
a Mg-doped In 0.1 Ga 0.9 N re-evaporation layer 37 having an opening exposing the l 0.1 Ga 0.9 N cladding layer surface 39;
An n-type Al 0.05 Ga 0.95 N internal current blocking layer 38 is provided as a current blocking structure. Further, the opening is buried and flattened with a p-type Al 0.1 Ga 0.9 N cladding layer 40 formed by the MBE method, and a p-type GaN contact layer 41 is formed thereon.
(The carrier concentration is 1 × 10 19 cm −3 ).

【0031】このような本発明の窒化ガリウム系半導体
発光素子の製造方法を図4(a)〜(e)に基づいて詳
細に説明する。窒化ガリウム系化合物半導体発光素子の
作製には有機金属気相成長法(以下、MOVPE法)を
用い、基板とV族原料としてアンモニア、III族原料
としてトリメチルガリウム、トリメチルアルミニウム、
トリメチルインジウム、p型不純物としてビスシクロペ
ンタデイエニルマグネシウム(Cp2Mg)、n型不純
物としてモノシランを用い、キャリヤガスとして水素又
は窒素を用いる。
A method for manufacturing such a gallium nitride based semiconductor light emitting device of the present invention will be described in detail with reference to FIGS. The metal-organic vapor phase epitaxy (hereinafter, referred to as MOVPE) method is used for manufacturing a gallium nitride-based compound semiconductor light emitting device, and ammonia is used as a substrate and group V material, trimethylgallium, trimethylaluminum is used as group III material,
Trimethylindium, biscyclopentadienyl magnesium (Cp 2 Mg) as a p-type impurity, monosilane as an n-type impurity, and hydrogen or nitrogen as a carrier gas are used.

【0032】1回目の結晶成長を行うため、n型GaN
基板31をMOVPE装置のサセプタ上に導入し、基板
温度1200℃程度まで昇温し、基板表面を窒素または
水素雰囲気中にさらし、表面のクリーニングを施す。次
に、n型GaN基板31の基板温度を1050℃程度ま
で降温し、n型GaN基板31にn型Al0.05Ga0.95
Nバッファ層32を550Å程度成長させる。次に、基
板温度を1050℃程度まで昇温し、n型GaN層33
を4μm成長し、n型GaN層33の上にn型Al0.15
Ga0.95Nクラッド層34を0.1μm程度成長させ
る。基板温度を800℃程度に降温し、In0.2Ga0.8
N量子井戸層を3層(厚さ30Å)とIn0.05Ga0.95
Nバリヤ層を2層(厚さ100Å)を持つ多重量子井戸
活性層35を成長させる。次に、MgドープAl0.15
0.95Nクラッド層36を0.1μm程度成長させ、さ
らに、基板温度を800〜850℃程度に降温し、Mg
ドープIn0.1Ga0.9N再蒸発層37を200Å成長さ
せる。次に、基板温度を1000℃程度まで昇温し、n
型Al0.05Ga0.95N内部電流阻止層38を0.15μ
m程度成長させる。ここまで作製した窒化ガリウム系半
導体発光素子の断面図を図4(a)に示す。
In order to perform the first crystal growth, n-type GaN
The substrate 31 is introduced onto a susceptor of the MOVPE apparatus, the temperature of the substrate is raised to about 1200 ° C., the surface of the substrate is exposed to a nitrogen or hydrogen atmosphere, and the surface is cleaned. Next, the substrate temperature of the n-type GaN substrate 31 is decreased to about 1050 ° C., and the n-type GaN substrate 31 is provided with n-type Al 0.05 Ga 0.95
The N buffer layer 32 is grown by about 550 °. Next, the substrate temperature is raised to about 1050 ° C.
Is grown on the n-type GaN layer 33 by n-type Al 0.15
A Ga 0.95 N cladding layer 34 is grown to a thickness of about 0.1 μm. The substrate temperature is lowered to about 800 ° C., and In 0.2 Ga 0.8
Three N quantum well layers (thickness 30 °) and In 0.05 Ga 0.95
A multiple quantum well active layer 35 having two N barrier layers (thickness of 100 °) is grown. Next, Mg-doped Al 0.15 G
a 0.95 N cladding layer 36 is grown to a thickness of about 0.1 μm, and further, the substrate temperature is lowered to about 800 to 850 ° C.
The doped In 0.1 Ga 0.9 N re-evaporation layer 37 is grown by 200 °. Next, the substrate temperature is raised to about 1000 ° C., and n
Type Al 0.05 Ga 0.95 N internal current blocking layer 38 is 0.15 μm
grow about m. FIG. 4A is a cross-sectional view of the gallium nitride-based semiconductor light emitting device manufactured up to this point.

【0033】一旦、このウエハーをMOVPE装置から
取り出し、通常のフォトリソグラフィ工程とエッチング
工程を用いてn型Al0.05Ga0.95N内部電流阻止層3
8の一部をMgドープIn0.1Ga0.9N再蒸発層37表
面上までエッチングし、ストライプ状の溝を形成する。
ここまで作製した窒化ガリウム系半導体発光素子の断面
図を図4(b)に示す。
Once the wafer is taken out of the MOVPE apparatus, the n-type Al 0.05 Ga 0.95 N internal current blocking layer 3 is formed using a normal photolithography process and an etching process.
A part of 8 is etched to the surface of the Mg-doped In 0.1 Ga 0.9 N re-evaporation layer 37 to form a stripe-shaped groove.
FIG. 4B is a cross-sectional view of the gallium nitride based semiconductor light emitting device manufactured up to this point.

【0034】このエッチングによって露出したIn0.1
Ga0.9N再蒸発層の領域とn型Al0.05Ga0.95N内
部電流阻止層38の領域に再成長層を積層するのに、M
BE法を用いる。V族原料として窒素、III族原料と
してガリウム、アルミニウム、インジウム、p型不純物
としてマグネシウムを用いる。例えば、前記MBE装置
とは、ECRプラズマ又はRFプラズマを備えて窒素を
基板上に供給するMBE装置とする。
The In 0.1 exposed by this etching
In order to stack the regrowth layer in the region of the Ga 0.9 N re-evaporation layer and the region of the n-type Al 0.05 Ga 0.95 N internal current blocking layer 38, M
The BE method is used. Nitrogen is used as a group V material, gallium, aluminum, indium is used as a group III material, and magnesium is used as a p-type impurity. For example, the MBE apparatus is an MBE apparatus that includes ECR plasma or RF plasma and supplies nitrogen onto a substrate.

【0035】このウエハーをRF−MBE装置に導入
し、RF電力350W、窒素流量10sccmにて窒素
を基板上に5分間供給し、基板温度約800℃にてMg
ドープIn0.1Ga0.9N再蒸発層37を再蒸発させ、清
浄なMgドープAl0.1Ga0.9Nクラッド層表面39を
露出させる。ここで、MBE装置内にて下地層表面を露
出させるため、清浄なMgドープAl0.1Ga0.9Nクラ
ッド層表面39をストライプ状の溝の底面として露出さ
せることができる。このため、次の工程において、品質
の高い再成長界面及び再成長層が実現できる。ここまで
作製した窒化ガリウム系半導体発光素子の断面図を図4
(c)に示す。
The wafer was introduced into an RF-MBE apparatus, and nitrogen was supplied onto the substrate at an RF power of 350 W and a nitrogen flow rate of 10 sccm for 5 minutes.
The doped In 0.1 Ga 0.9 N reevaporation layer 37 is re-evaporated to expose a clean Mg-doped Al 0.1 Ga 0.9 N cladding layer surface 39. Here, since the underlayer surface is exposed in the MBE apparatus, the clean Mg-doped Al 0.1 Ga 0.9 N clad layer surface 39 can be exposed as the bottom surface of the stripe-shaped groove. Therefore, in the next step, a high-quality regrowth interface and regrowth layer can be realized. FIG. 4 is a cross-sectional view of the gallium nitride-based semiconductor light-emitting device thus far manufactured.
It is shown in (c).

【0036】次に、基板温度を800℃程度まで昇温
し、MBE法でp型Al0.1Ga0.9Nクラッド層40お
よびp型GaNコンタクト層41(キャリヤ濃度は1×
1019cm-3)を0.5μm程度成長する。ここまで作
製した窒化ガリウム系半導体発光素子の断面図を図4
(d)に示す。
Next, the substrate temperature is raised to about 800 ° C., and the p-type Al 0.1 Ga 0.9 N cladding layer 40 and the p-type GaN contact layer 41 (carrier concentration is 1 ×
10 19 cm −3 ) is grown to about 0.5 μm. FIG. 4 is a cross-sectional view of the gallium nitride-based semiconductor light-emitting device thus far manufactured.
(D).

【0037】p型GaNコンタクト層41の上にp型用
電極42、n型GaN基板31にn型用電極43を形成
する。ここまで作製した窒化ガリウム系半導体発光素子
の断面図を図4(e)に示す。
A p-type electrode 42 is formed on the p-type GaN contact layer 41, and an n-type electrode 43 is formed on the n-type GaN substrate 31. FIG. 4E is a cross-sectional view of the gallium nitride based semiconductor light emitting device manufactured up to this point.

【0038】ここで、清浄なMgドープAl0.1Ga0.9
Nクラッド層表面39に形成されたストライプ状の溝上
にp型Al0.1Ga0.9Nクラッド層40を再成長してい
るため、この界面での高抵抗化およびp型不純物の枯渇
を防ぐことができ、そのため素子の直列抵抗が低減で
き、素子の駆動電圧が3.6Vと小さく、素子の長寿命
化が実現できた。
Here, clean Mg-doped Al 0.1 Ga 0.9
Since the p-type Al 0.1 Ga 0.9 N cladding layer 40 is regrown on the stripe-shaped grooves formed on the N-cladding layer surface 39, it is possible to prevent the interface from increasing in resistance and depleting p-type impurities. Therefore, the series resistance of the element can be reduced, the driving voltage of the element is as small as 3.6 V, and the life of the element can be extended.

【0039】ここで、MBE法の再成長温度は800℃
程度で、MgドープAl0.15Ga0.95Nクラッド層36
およびn型Al0.05Ga0.95N内部電流阻止層38上に
p型Al0.1Ga0.9Nクラッド層40、p型GaNコン
タクト層41を形成することができるためn型Al0.05
Ga0.95N電流阻止層38に形成した溝の形状を変形す
ることなく再成長ができ、安定な素子の横モードが得ら
れる。
Here, the regrowth temperature of the MBE method is 800 ° C.
The Mg-doped Al 0.15 Ga 0.95 N clad layer 36
Since the p-type Al 0.1 Ga 0.9 N cladding layer 40 and the p-type GaN contact layer 41 can be formed on the n-type Al 0.05 Ga 0.95 N internal current blocking layer 38, the n-type Al 0.05
Regrowth can be performed without changing the shape of the groove formed in the Ga 0.95 N current blocking layer 38, and a stable transverse mode of the device can be obtained.

【0040】さらに、MOVPE法にて成長したMgド
ープAl0.1Ga0.9Nクラッド層36は再蒸発工程中
(図4(c))において、基板温度800℃、水素を含
まない窒素雰囲気中(RF電力400W、窒素流量5s
ccm)で熱処理するためにp型半導体に変化する、こ
のため、成長後の特別な熱処理工程例えば800℃、数
十分間の熱処理工程を必要としないので、工程が簡略化
できる。
Further, the Mg-doped Al 0.1 Ga 0.9 N cladding layer 36 grown by the MOVPE method has a substrate temperature of 800 ° C. in a nitrogen atmosphere containing no hydrogen (RF power) during the re-evaporation step (FIG. 4C). 400W, nitrogen flow 5s
Since the heat treatment is performed at ccm), the semiconductor device is changed to a p-type semiconductor. Therefore, a special heat treatment process after growth, for example, a heat treatment process at 800 ° C. for several tens of minutes is not required, so that the process can be simplified.

【0041】また、本発明の製造方法は、MgドープI
0.1Ga0.9N再蒸発層37までの積層構造体をMOV
PE法(成長レートは約4μm/h)にて形成し、その
後、MBE法(成長レートは約0.7μm/h)にてp
型Al0.1Ga0.9Nクラッド層40、p型GaNコンタ
クト層41のみを形成するため、一枚のウエハーを成長
する製造時間が短縮できる。
Further, the manufacturing method of the present invention is characterized in that the Mg-doped I
The stacked structure up to the n 0.1 Ga 0.9 N re-evaporation layer 37 is
It is formed by the PE method (growth rate is about 4 μm / h), and then formed by the MBE method (growth rate is about 0.7 μm / h).
Since only the Al 0.1 Ga 0.9 N clad layer 40 and the p-type GaN contact layer 41 are formed, the manufacturing time for growing one wafer can be reduced.

【0042】以上より、有機金属気相成長法(MOVP
E法)にて積層された積層構造体の表面層を再蒸発層に
て構成することにより、成長炉内例えば分子線エピタキ
シャル法(MBE法)にて再蒸発層を再蒸発させ引き続
き再成長層を積層することにより、品質の高い再成長界
面、再成長層を持つ窒化ガリウム系化合物半導体レーザ
が実現できる。さらに、成長後の特別な熱処理工程を必
要とせず、また、MBE法を用いても一枚のウエハーを
成長する製造時間が短縮できる窒化ガリウム系化合物半
導体レーザが提供できる。
As described above, the metalorganic vapor phase epitaxy (MOVP)
E), the surface layer of the laminated structure laminated by the re-evaporation layer is constituted by the re-evaporation layer, for example, by the molecular beam epitaxial method (MBE method). , A gallium nitride-based compound semiconductor laser having a high-quality regrowth interface and a regrown layer can be realized. Further, it is possible to provide a gallium nitride-based compound semiconductor laser that does not require a special heat treatment step after growth and can shorten the manufacturing time for growing one wafer even by using the MBE method.

【0043】[0043]

【発明の効果】本発明によれば、有機金属気相成長法
(MOVPE法)にて積層された積層構造体の表面層を
再蒸発層にて構成することにより、分子線エピタキシャ
ル法(MBE法)にて再蒸発層を再蒸発させ、引き続き
再成長層を積層することにより、品質の高い再成長界
面、再成長層が得られ、界面での直列抵抗分が低くなる
ため、信頼性の優れた窒化ガリウム系化合物半導体発光
素子又は窒化ガリウム系化合物半導体レーザが作製でき
る。
According to the present invention, the surface layer of the laminated structure laminated by the metal organic chemical vapor deposition (MOVPE) method is constituted by the reevaporation layer, so that the molecular beam epitaxial method (MBE method) is used. ), The re-evaporation layer is re-evaporated, and then the re-growth layer is successively laminated. As a result, a high-quality re-growth interface and a re-growth layer are obtained, and the series resistance at the interface is reduced. A gallium nitride-based compound semiconductor light emitting device or a gallium nitride-based compound semiconductor laser can be manufactured.

【0044】また、再蒸発層は蒸気圧の高いInzGa
1-zN(0<z≦1)で構成するため、再蒸発に必要な
基板温度は十分に低い基板温度で可能なため下地層に悪
影響を及ぼすことはなく、容易に再蒸発層を除去でき清
浄な下地層表面を露出させることが可能となる。
[0044] Furthermore, re-evaporation layer having a high vapor pressure an In z Ga
Since 1-z N (0 <z ≦ 1) is used, the substrate temperature required for re-evaporation can be at a sufficiently low substrate temperature, so that the under-layer is not adversely affected and the re-evaporation layer is easily removed. Thus, it is possible to expose a clean underlayer surface.

【0045】さらに、MOCVD法で作製した積層体構
造中のp型ドープ半導体層を再蒸発層を蒸発させる工程
で、p型半導体層に改質することができるため、成長後
の特別な熱処理工程を必要としないので、工程が簡略化
できる。
Further, since the p-type doped semiconductor layer in the stacked structure manufactured by the MOCVD method can be modified into a p-type semiconductor layer in the step of evaporating the reevaporation layer, a special heat treatment step after the growth is performed. Is not required, so that the process can be simplified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の窒化ガリウム系化合物半導体発光素子
の作製工程を示す断面図である。
FIG. 1 is a cross-sectional view showing a manufacturing process of a gallium nitride based compound semiconductor light emitting device of the present invention.

【図2】本発明の窒化ガリウム系化合物半導体発光素子
の作製工程を示す断面図である。
FIG. 2 is a cross-sectional view showing a manufacturing process of the gallium nitride-based compound semiconductor light emitting device of the present invention.

【図3】本発明の窒化ガリウム系化合物半導体レーザ素
子の断面図である。
FIG. 3 is a sectional view of a gallium nitride based compound semiconductor laser device of the present invention.

【図4】本発明の窒化ガリウム系化合物半導体レーザ素
子の作製工程を示す断面図である。
FIG. 4 is a cross-sectional view showing a step of manufacturing the gallium nitride-based compound semiconductor laser device of the present invention.

【図5】従来の窒化ガリウム系化合物半導体発光素子の
断面図である。
FIG. 5 is a cross-sectional view of a conventional gallium nitride-based compound semiconductor light emitting device.

【符号の説明】[Explanation of symbols]

1 基板 2 n型Al0.1Ga0.9Nバッファ層 3 n型GaNバッファ層 4 n型Al0.1Ga0.9Nクラッド層 5 In0.32Ga0.68N活性層 6 MgドープAl0.1Ga0.9Nクラッド層 7 MgドープInzGa1-zN再蒸発層 9 p型GaNコンタクト層 11 サファイア基板 12 n型Al0.1Ga0.9Nバッファ層 13 n型GaNバッファ層 14 n型Al0.1Ga0.9Nクラッド層 15 In0.32Ga0.68N活性層 16 MgドープAl0.1Ga0.9Nクラッド層 17 MgドープInN再蒸発層 18 清浄なMgドープAl0.1Ga0.9Nクラッド層表
面 19 p型GaNコンタクト層 21 p型用電極 22 n型用電極 31 n型GaN基板 32 n型Al0.05Ga0.95Nバッファ層 33 n型GaNバッファ層 34 n型Al0.15Ga0.85Nクラッド層 35 多重量子井戸活性層 36 MgドープAl0.15Ga0.85Nクラッド層 37 MgドープIn0.1Ga0.9N再蒸発層 38 n型Al0.05Ga0.95N内部電流阻止層 39 清浄なMgドープAl0.15Ga0.85Nクラッド層
表面 40 p型Al0.1Ga0.9Nクラッド層 41 p型GaNコンタクト層 42 p型用電極 43 n型用電極
Reference Signs List 1 substrate 2 n-type Al 0.1 Ga 0.9 N buffer layer 3 n-type GaN buffer layer 4 n-type Al 0.1 Ga 0.9 N cladding layer 5 In 0.32 Ga 0.68 N active layer 6 Mg-doped Al 0.1 Ga 0.9 N cladding layer 7 Mg-doped In z Ga 1-z n re-evaporation layer 9 p-type GaN contact layer 11 sapphire substrate 12 n-type Al 0.1 Ga 0.9 n buffer layer 13 n-type GaN buffer layer 14 n-type Al 0.1 Ga 0.9 n cladding layer 15 In 0.32 Ga 0.68 n Active layer 16 Mg-doped Al 0.1 Ga 0.9 N cladding layer 17 Mg-doped InN re-evaporation layer 18 Clean Mg-doped Al 0.1 Ga 0.9 N cladding layer surface 19 p-type GaN contact layer 21 p-type electrode 22 n-type electrode 31 n -type GaN substrate 32 n-type Al 0.05 Ga 0.95 n buffer layer 33 n-type GaN buffer layer 34 n-type Al 0.15 Ga 0.85 n click Head layer 35 multiple quantum well active layer 36 Mg doped Al 0.15 Ga 0.85 N cladding layer 37 Mg doped In 0.1 Ga 0.9 N re-evaporation layer 38 n-type Al 0.05 Ga 0.95 N internal current blocking layer 39 clean Mg-doped Al 0.15 Ga 0.85 N cladding layer surface 40 p-type Al 0.1 Ga 0.9 N cladding layer 41 p-type GaN contact layer 42 p-type electrode 43 n-type electrode

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 有機金属気相成長法(MOVPE法)に
て半導体からなる積層構造体を形成する工程と、 連続的にMOCVD法にて前記積層構造体の表面層に再
蒸発層を積層する工程と、 前記再蒸発層を分子線エピタキシャル(MBE)装置内
にて蒸発させる工程と、 前記再蒸発層を蒸発させることによって露出した前記積
層構造体上にMBE法にて成長層を再成長する工程と、
を包含することを特徴とする窒化ガリウム系化合物半導
体発光素子の製造方法。
1. A step of forming a laminated structure made of a semiconductor by a metal organic chemical vapor deposition method (MOVPE method), and successively laminating a reevaporation layer on a surface layer of the laminated structure by a MOCVD method. And evaporating the re-evaporation layer in a molecular beam epitaxy (MBE) apparatus. Re-growing the growth layer by MBE on the laminated structure exposed by evaporating the re-evaporation layer. Process and
A method for manufacturing a gallium nitride-based compound semiconductor light emitting device, comprising:
【請求項2】 前記再蒸発層を形成する工程と、前記再
蒸発層を蒸発させる工程の間に、前記積層構造体の表面
がエッチング等により加工される工程を含むことを特徴
とする請求項1に記載の窒化ガリウム系化合物半導体発
光素子の製造方法。
2. The method according to claim 1, further comprising, between the step of forming the reevaporation layer and the step of evaporating the reevaporation layer, a step of processing the surface of the laminated structure by etching or the like. 2. The method for manufacturing a gallium nitride-based compound semiconductor light-emitting device according to item 1.
【請求項3】 前記再蒸発層がInzGa1-zN(0<z
≦1)から構成されたことを特徴とする請求項1または
2のいずれかに記載の窒化ガリウム系化合物半導体発光
素子の製造方法。
3. The re-evaporation layer is made of In z Ga 1 -zN (0 <z
3. The method for manufacturing a gallium nitride-based compound semiconductor light-emitting device according to claim 1, wherein ≦ 1).
【請求項4】 前記再蒸発層を蒸発させる工程での、基
板温度を400℃以上1100℃以下とすることを特徴
とする請求項3に記載の窒化ガリウム系化合物半導体発
光素子の製造方法。
4. The method for manufacturing a gallium nitride-based compound semiconductor light emitting device according to claim 3, wherein the substrate temperature in the step of evaporating the reevaporation layer is set to 400 ° C. or more and 1100 ° C. or less.
【請求項5】 前記有機金属気相成長法(MOVPE
法)にて半導体からなる積層構造体を形成する工程にお
いて、p型不純物ドープの窒化ガリウム系化合物半導体
を積層する工程を含み、 前記再蒸発層を蒸発させる熱処理工程にて、前記p型不
純物ドープの窒化ガリウム系化合物半導体をp型窒化ガ
リウム系化合物半導体に改質することを特徴とする請求
項4に記載の窒化ガリウム系化合物半導体発光素子の製
造方法。
5. The method of claim 1, wherein the metal organic chemical vapor deposition (MOVPE)
Forming a laminated structure made of a semiconductor by the method), including a step of laminating a gallium nitride-based compound semiconductor doped with a p-type impurity, and a heat treatment step of evaporating the reevaporation layer, 5. The method for manufacturing a gallium nitride-based compound semiconductor light emitting device according to claim 4, wherein said gallium nitride-based compound semiconductor is modified into a p-type gallium nitride-based compound semiconductor.
JP13690197A 1997-05-27 1997-05-27 Method for manufacturing gallium nitride compound semiconductor light emitting device Expired - Fee Related JP3898798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13690197A JP3898798B2 (en) 1997-05-27 1997-05-27 Method for manufacturing gallium nitride compound semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13690197A JP3898798B2 (en) 1997-05-27 1997-05-27 Method for manufacturing gallium nitride compound semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH10335701A true JPH10335701A (en) 1998-12-18
JP3898798B2 JP3898798B2 (en) 2007-03-28

Family

ID=15186223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13690197A Expired - Fee Related JP3898798B2 (en) 1997-05-27 1997-05-27 Method for manufacturing gallium nitride compound semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3898798B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208874A (en) * 1999-01-12 2000-07-28 Sony Corp Nitride semiconductor, its manufacture, nitride semiconductor light-emitting device, and its manufacture
JP2005019835A (en) * 2003-06-27 2005-01-20 Nichia Chem Ind Ltd Nitride semiconductor laser device and its fabricating process
JP2006165453A (en) * 2004-12-10 2006-06-22 Nichia Chem Ind Ltd Nitride semiconductor element
JP2006165069A (en) * 2004-12-02 2006-06-22 Ulvac Japan Ltd Growing method and apparatus for compound semiconductor
US7190004B2 (en) 2003-12-03 2007-03-13 Sumitomo Electric Industries, Ltd. Light emitting device
US7202509B2 (en) 2003-08-26 2007-04-10 Sumitomo Electric Industries, Ltd. Light emitting apparatus
JP2008147547A (en) * 2006-12-13 2008-06-26 Matsushita Electric Ind Co Ltd Manufacturing method of nitride semiconductor laser device and nitride semiconductor laser device
KR100878390B1 (en) 2007-01-17 2009-01-13 삼성전기주식회사 Method of Growing InGaN-based Mutilayer Structure by Plasma-assisted MBE and Manufacturing ?-Nitride Light Emitting Device Using the Same
JP2009182315A (en) * 2008-02-01 2009-08-13 Nippon Mining & Metals Co Ltd Method of processing surface of semiconductor substrate, semiconductor substrate, and thin film forming method
US7817692B2 (en) 2003-06-27 2010-10-19 Nichia Corporation Nitride semiconductor laser device having current blocking layer and method of manufacturing the same
JP2012182203A (en) * 2011-02-28 2012-09-20 Sumitomo Electric Ind Ltd Group-iii nitride semiconductor element, and method of producing the same
JP2012222284A (en) * 2011-04-13 2012-11-12 Ibiden Co Ltd Susceptor for epitaxial growth, and epitaxial growth device and epitaxial growth method using the same
US8664687B2 (en) * 2004-03-31 2014-03-04 Samsung Electronics Co., Ltd. Nitride semiconductor light-emitting device and process for producing the same
JP2019140154A (en) * 2018-02-06 2019-08-22 住友電気工業株式会社 Method for manufacturing nitride semiconductor device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208874A (en) * 1999-01-12 2000-07-28 Sony Corp Nitride semiconductor, its manufacture, nitride semiconductor light-emitting device, and its manufacture
JP2005019835A (en) * 2003-06-27 2005-01-20 Nichia Chem Ind Ltd Nitride semiconductor laser device and its fabricating process
US7817692B2 (en) 2003-06-27 2010-10-19 Nichia Corporation Nitride semiconductor laser device having current blocking layer and method of manufacturing the same
US7202509B2 (en) 2003-08-26 2007-04-10 Sumitomo Electric Industries, Ltd. Light emitting apparatus
US7687822B2 (en) 2003-08-26 2010-03-30 Sumitomo Electric Industries, Ltd. Light emitting apparatus
KR100955634B1 (en) * 2003-12-03 2010-05-03 스미토모덴키고교가부시키가이샤 Light emitting device
US7190004B2 (en) 2003-12-03 2007-03-13 Sumitomo Electric Industries, Ltd. Light emitting device
US8664687B2 (en) * 2004-03-31 2014-03-04 Samsung Electronics Co., Ltd. Nitride semiconductor light-emitting device and process for producing the same
JP2006165069A (en) * 2004-12-02 2006-06-22 Ulvac Japan Ltd Growing method and apparatus for compound semiconductor
JP2006165453A (en) * 2004-12-10 2006-06-22 Nichia Chem Ind Ltd Nitride semiconductor element
US8119429B2 (en) 2006-12-13 2012-02-21 Pansonic Corporation Method for fabricating nitride semiconductor laser device and nitride semiconductor laser device
JP2008147547A (en) * 2006-12-13 2008-06-26 Matsushita Electric Ind Co Ltd Manufacturing method of nitride semiconductor laser device and nitride semiconductor laser device
KR100878390B1 (en) 2007-01-17 2009-01-13 삼성전기주식회사 Method of Growing InGaN-based Mutilayer Structure by Plasma-assisted MBE and Manufacturing ?-Nitride Light Emitting Device Using the Same
JP2009182315A (en) * 2008-02-01 2009-08-13 Nippon Mining & Metals Co Ltd Method of processing surface of semiconductor substrate, semiconductor substrate, and thin film forming method
JP2012182203A (en) * 2011-02-28 2012-09-20 Sumitomo Electric Ind Ltd Group-iii nitride semiconductor element, and method of producing the same
JP2012222284A (en) * 2011-04-13 2012-11-12 Ibiden Co Ltd Susceptor for epitaxial growth, and epitaxial growth device and epitaxial growth method using the same
JP2019140154A (en) * 2018-02-06 2019-08-22 住友電気工業株式会社 Method for manufacturing nitride semiconductor device

Also Published As

Publication number Publication date
JP3898798B2 (en) 2007-03-28

Similar Documents

Publication Publication Date Title
JP3688843B2 (en) Nitride semiconductor device manufacturing method
US6920166B2 (en) Thin film deposition method of nitride semiconductor and nitride semiconductor light emitting device
JP3988018B2 (en) Crystal film, crystal substrate and semiconductor device
JP2000232238A (en) Nitride semiconductor light-emitting element and manufacture thereof
JPH11135770A (en) Iii-v compd. semiconductor, manufacture thereof and semiconductor element
US6801559B2 (en) Group III nitride compound semiconductor laser
JP2001308462A (en) Method of manufacturing nitride semiconductor element
JP3898798B2 (en) Method for manufacturing gallium nitride compound semiconductor light emitting device
JPH10321962A (en) Nitride gallium-based compound semiconductor light-emitting element and manufacture
JP2010272593A (en) Nitride semiconductor light emitting element and manufacturing method of the same
JP2001148544A (en) Semiconductor light-emitting element
JP4608731B2 (en) Manufacturing method of semiconductor laser
JP2000077336A (en) Substrate for semiconductor growth, manufacture thereof, and semiconductor device
JP2001148348A (en) Gab SEMICONDUCTOR ELEMENT AND MANUFACTURING METHOD
US20230402564A1 (en) Method of transferring a pattern to an epitaxial layer of a light emitting device
US5995527A (en) Semiconductor laser device having an inn contact layer and a method of fabricating the same
JPH10303502A (en) Gallium nitride compound semiconductor light emitting element and its manufacture
JP2001057463A (en) Film structure and element of nitrogen compound semiconductor element, and manufacture of them
JP2000307193A (en) Semiconductor laser, its manufacture, semiconductor device and manufacture of the same
JP3963233B2 (en) Gallium nitride compound semiconductor light emitting device and method for manufacturing the same
JP2002094113A (en) Method for fabricating iii-v nitride-based semiconductor light emitting device
JP2009212343A (en) Nitride semiconductor element, and method of manufacturing the same
JP4363415B2 (en) Crystal film, crystal substrate and semiconductor device
JP3753077B2 (en) Semiconductor multilayer film, semiconductor device using the same, and manufacturing method thereof
JP4826019B2 (en) Manufacturing method of semiconductor laser device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040527

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061222

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees